
mathematics

Article

Use the K-Neighborhood Subgraphs to Compute
Canonical Labelings of Graphs

Jianqiang Hao 1,* , Yunzhan Gong 2, Jianzhi Sun 1 and Li Tan 1

1 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University,
No. 11, Fu Cheng Road, Beijing 100048, China

2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, No 10, Xitucheng Road, Haidian District, Beijing 100876, China

* Correspondence: Bshjq@vip.163.com; Tel.: +86-10-6898-5704

Received: 5 July 2019; Accepted: 27 July 2019; Published: 1 August 2019
����������
�������

Abstract: This paper puts forward an innovative theory and method to calculate the canonical
labelings of graphs that are distinct to Nauty’s. It shows the correlation between the canonical
labeling of a graph and the canonical labeling of its complement graph. It regularly examines the
link between computing the canonical labeling of a graph and the canonical labeling of its open
k-neighborhood subgraph . It defines di f f usion degree sequences and entire di f f usion degree sequence .
For each node of a graph G, it designs a characteristic m_NearestNode to improve the precision for
calculating canonical labeling. Two theorems established here display how to compute the first
nodes of MaxQ(G). Another theorem presents how to determine the second nodes of MaxQ(G).
When computing Cmax(G), if MaxQ(G) already holds the first i nodes u1, u2, · · · , ui, Diffusion and
Nearest Node theorems provide skill on how to pick the succeeding node of MaxQ(G). Further,
it also establishes two theorems to determine the Cmax(G) of disconnected graphs. Four algorithms
implemented here demonstrate how to compute MaxQ(G) of a graph. From the results of the
software experiment, the accuracy of our algorithms is preliminarily confirmed. Our method can be
employed to mine the frequent subgraph. We also conjecture that if there is a node v ∈ S(G) meeting
conditions Cmax(G− v) 6 Cmax(G− w) for each w ∈ S(G) ∧ w 6= v, then u1 = v for MaxQ(G).

Keywords: canonical labeling; open k-neighborhood subgraph; algorithm; adjacency matrix;
diffusion degree sequence; entire diffusion degree sequences

1. Introduction

This paper is the close companion to Reference [1], in which a novel theory and method are
presented for calculating the canonical labelings of digraphs. The center subgraph Cen(G) [2] can also
be used to determine the first vertex u1 added into MaxQ(G) of undirected graphs.

This article concentrates on the construction of a universal system and a way of calculating
the canonical labeling Cmax(G) of undirected graphs [3–5], which is also called an optimum code [6],
a canonical code [7] or a canonical form [8] and is the single string corresponding one-to-one to a
graph such that two graphs are isomorphic if and only if both have the accurate same canonical
labelings. Currently, the calculation of the canonical labeling as the graph isomorphism problem is an
unsolved challenge in computational complexity theory such that no polynomial-time algorithm
appears for calculating the canonical labeling of an undirected graph. The study of canonical
labeling has contributed to the studies of problems in many fields, including quantum chemistry [9],
biochemistry [10,11] and so on.

Many exponential algorithms have emerged to deal with the problem. However, different researchers
like to define different canonical labeling. Given a graph of n vertices, Kuramochi and Karypis build

Mathematics 2019, 7, 690; doi:10.3390/math7080690 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6103-0137
http://dx.doi.org/10.3390/math7080690
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/8/690?type=check_update&version=3

Mathematics 2019, 7, 690 2 of 35

the canonical labeling by concatenating the columns of the upper-triangular part of its adjacency
matrix [12,13]. Huan et al. concatenate the lower triangular elements (including the diagonal elements)
of its adjacency matrix to create its canonical labeling [14]. Kashani et al. determine the canonical
labeling by concatenating the rows of its adjacency matrix to form an n2 binary number [15,16].
Each of these canonical labelings correspondings one-to-one to a lexicographically smallest graph
whose adjacency matrix is seen as a linear string, which is lexicographically smallest. Nevertheless,
the computation of the lexicographically least graph is NP-hard [8,17].

Throughout the paper, the canonical labeling Cmax(G) of a graph G is the lexicographically largest
string constructed by concatenating the rows of the upper triangular portion of the adjacency matrix
associated with G (see Definition 5). The computational complexity that determines the canonical
labeling Cmax(G) of G is also NP-hard.

Babai and Luks used a general group-theoretic method to calculate canonical labeling [8].
Nevertheless, combinatorial approaches have operated well in numerous particular situations.
For stochastic graphs, Babai et al. generate canonical labeling with high possibility [8,18]. Arvind et al.
introduce two similar logspace algorithms for partial 2- and 3-Trees [17,19].

Currently, Nauty is the most prevalent and pragmatic means for determining the automorphism
group and the canonical labelings of graphs [3,20–22]. It appears to have shifted the industry norm for
determining the canonical labeling also the automorphism group. For calculating the canonical labeling
and automorphism group, Nauty and Yan and Han [23] use the depth-first search to traverse the latent
intermediary vertices in the search tree. The vertices of the search tree produced by Nauty are equitable
ordered partitions of vertices in G. Nauty iteratively refines partitioning vertices until places the
vertices that have the exact equivalent features into an automorphism orbit. As the partition refinement
becomes finer and finer, it automatically makes the canonical labeling. Nonetheless, Nauty also needs
exponential time to calculate the canonical labeling for a given Miyazaki graph [24]. Tener and Deo
earned advances for processing the problem [25].

Besides Nauty, Traces [4], Bliss [5,26] and Conauto [27] are all state-of-the-art tools for graphs
isomorphism testing. Based on the individualization of nodes, backtracking and partition refinement,
Bliss [5,26] is powerful canonical labeling means for dealing with large and sparse graphs. Katebi et al.
combine Saucy with Bliss and show that it is faster for computing the automorphism group of a graph
with Saucy and then calculating its canonical labeling with Bliss than for alone calculating its canonical
labeling with Bliss [28]. To fix the vulnerability of Nauty, Traces uses the policy of breadth-first
search to decide the automorphism group and the canonical labeling [4]. Conauto also utilizes the
fundamental individualization/refinement method and is quite quick for random graphs and several
classes of hard graphs.

For the advancement of performance, current algorithms usually employ backtracking and orbit
partitioning way to circumvent frequently visiting the same nodes and contrive to decrease the accessed
nodes in the search tree. For the canonical labeling issue, McKay et al. present a full examination of
the problem [22,23].

Nauty governed the area for several decades. Therefore, in-depth research for canonical labeling
has been limited to the theoretical skeleton of Nauty. This implies that people are only like to support
the study trajectory of nauty to extend and build further research.

Since there are several different definitions of canonical labeling, there is no uniform standard such
that each researcher works on oneself standard. Besides the lack of a unified standard, the research on
the connection between the distinct canonical labeling is also quite lacking. It is a hard task that one
wants to confirm the accuracy of canonical labeling achieved by executing an algorithm. Up to now,
the criterion by which one can decide which definition is better does not appear.

In this paper, the definition of canonical labeling is completely distinct that of nauty. Unless by
chance, the canonical labeling produced by Nauty will be not a canonical labeling according to the
definition presented by the paper. It is sometimes difficult to confirm the accuracy of the canonical
labeling achieved by executing Nauty according to the criterion of Nauty. Since the insides of many

Mathematics 2019, 7, 690 3 of 35

graphs contain a large number of automorphisms, the calculation of canonical labeling becomes
extremely arduous in certain situations.

A graph invariant I(G) is called complete if the equality of the invariants I(G) and I(H) implies
the isomorphism of the graphs G and H. However, even polynomial-valued invariants such as the
chromatic polynomial are not usually complete. A path graph is a graph consisting of exactly its
maximal path. For example, the path graph with 4 vertices and the claw graph K1,3 both have the same
chromatic polynomial.

Many algorithms also use the identical definition of canonical labeling as adopted in the paper.
However, their main goal is not to consider how to calculate canonical labeling but for other purposes
such as mining the frequent subgraphs. Therefore, these algorithms can only run for some limited
graph classes. Until now, based on current knowledge and Definition 5 present in this paper, a universal
algorithm for calculating the canonical labelings of graphs does not appear.

Jianqiang Hao et al. also provide Propositions 5–6, Lemmas 1–3 and Theorems 10–13 in
Reference [2] by which one can compute the proper vertices added into MaxQ(G). However, they do
not give any proof. In this article, we prove Theorems 3–6 that are one-to-one corresponding to
Theorems 10–13 in Reference [2]. We also present the reasons for Lemmas 8–9, which are one-to-one
corresponding to Lemmas 2–3 in Reference [2].

In the rest of this paper, Section 2 presents some fundamental vocabulary and preparatory
knowledge. Section 3 represents the results followed by some analysis. Section 4 gives our algorithms
for calculating the canonical labeling. Section 5 demonstrates the implementation of our algorithms
and evaluates our way through many examples. Finally, Section 6 remarks on our conclusions and
future work.

2. Preliminaries

This paper only handles limited undirected graphs with neither loops nor multiple edges. A graph
consists of a set of nodes and a collection of edges. For a graph G = (V(G), E(G)), assume that V(G)

and E(G) represent the set of vertices of G and the collection of edges of G. Any an edge (u, v) ∈ E(G)

joins two vertices u ∈ G and v ∈ G. For this article to be self-contained, the relevant concepts and
definitions are given below.

Definition 1. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. A vertex-induced subdigraph
on V1 ⊆ V(G) of G is a subgraph with the vertices set V1 together with any side whose endpoints are both in V1,
expressed by G[V1].

Definition 2. Given two undirected graphs G = (V(G), E(G)) and H = (V(H), E(H)) of n vertices.
If there is a bijection f : V(G)→ V(H) such that ∀(u, v) ∈ E(G) if and only if (f (u), f (v)) ∈ E(H). We call
f an isomorphic projection of G → H. Furthermore, we state that the graph G and H are isomorphic, signified
by G ∼= H. An isomorphic map f of G onto itself is declared to be an automorphism of G.

Let X = (x1, x2, · · · , xi, · · · xm) in Rm and Y = (y1, y2, · · · , yj, · · · yn) in Rn be two vectors,
the issue emerges as to how to determine which one is larger. When comparing two vectors,
the following rules must be satisfied.

Definition 3. Given two vectors X = (x0, x1, · · · , xi, · · · xm) and Y = (y0, y1, · · · , yi, · · · yn) in N (the
collection of natural numbers) satisfying m ≥ 0 and n ≥ 0. Then, the lexicographic order of the two vectors is
defined as follows:

1. X = Y, if m = n and xi = yi for all 0 ≤ i ≤ m.
2. X < Y if and only if either of the following is true.

(a) ∃k, 0 ≤ k ≤ min(m, n), xi = yi for i < k, xk < yk.

Mathematics 2019, 7, 690 4 of 35

(b) xi = yi for 0 ≤ i ≤ m and m < n.

Definition 4. Given two vectors Z1 = (X0, X1, · · · , Xi, · · ·Xm) and Z2 = (Y0, Y1, · · · , Yj, · · ·Yn) satisfying
m ≥ 0 and n ≥ 0, where each Xi, Yj, i = 0, 1, · · · , m, j = 0, 1, · · · , n denotes a vector in N (the collection of
natural numbers). Then, the lexicographic order of the two vectors is defined as follows:

1. Z1 = Z2, if m = n and Xi = Yi for all 0 ≤ i ≤ m.
2. Z1 < Z2 if and only if either of the following is true.

(a) ∃k, 0 ≤ k ≤ min(m, n), Xi = Yi for i < k, xk < yk.
(b) Xi = Yi for 0 ≤ i ≤ m and m < n.

Definition 5. Suppose G = (V(G), E(G)) is an undirected graph of n vertices with adjacency matrix
A(G) = (ai,j)n×n. To concatenate the rows of the upper triangular part of A(G) in the following order a1,2, a1,3,
· · · , a1,n, a2,3, a2,4, · · · , a2,n, · · · , ai,i+1, ai,i+2, · · · , ai,n, · · · , an−1,n makes a corresponding binary number
a1,2a1,3 · · · a1,n a2,3a2,4 · · · a2,n · · · ai,i+1ai,i+2 · · · ai,n · · · an−1,n, which is a labeling of G, signified by C(G)

(see (1)).

A(G) =



0 →a1,2 →a1,3 · · · · · · · · · · · · →a1,n
a1,2 0 →a2,3 · · · · · · · · · · · · →a2,n

... · · · . . . · · · · · · · · · · · · ↓
...

... · · · · · · . . . · · · · · · · · · ↓
...

a1,i a2,i · · · ai,i−1 0 →ai,i+1 · · · →ai,n
... · · · · · · · · · · · · . . . · · · ↓

...
... · · · · · · · · · · · · · · · . . . →an−1,n

a1,n a2,n a3,n · · · · · · · · · an−1,n 0


(1)

The first row of the upper triangular portion of A(G) is the labeling slice 1 of C(G), signified by
C1(G). Likewise, the second row of the upper triangular portion is the labeling slice 2 of C(G),
signified by C2(G). · · · . The (n− 1)th row of the upper triangular portion is the labeling slice n− 1 of
C(G), signified by Cn−1(G). It is true that C(G) = C1(G)C2(G) · · ·Cn−1(G).

A permutation π of the nodes of G is an order of the n nodes without repeating. The number of
shifts of the nodes of G is n!. Further, each distinct permutation π of the n nodes of V(G) determines a
single adjacency matrix. Therefore, given a permutation π, one can get a labeling C(G) corresponding
to π by Definition 5. The collection of all labeling of G is represented by L(G).

For every C1(G), C2(G) ∈ L(G), Suppose that C1(G) = i1i2 · · · im, C2(G) = j1 j2 · · · jn
with i1, i2, · · · , im, j1, j2, · · · , jn = 0 or 1. Given X = (i1, i2, · · · , im) and Y = (j1, j2, · · · , · · · jn).
By Definition 3, if X > Y, then we set C1(G) > C2(G). Otherwise, if X < Y, then we set C1(G) < C2(G).
Otherwise, if X = Y, then we set C1(G) = C2(G).

Definitely, (L(G), ≤) is a well-ordered set, where ≤ signifies the less-than-or-equal-to binary
relationship on the collection L(G) stated as above. By the well-ordering theorem, it follows that
L(G) has a minimum and maximum element, signifies by Cmin(G) and Cmax(G) and called minimum
canonical labeling of G and maximum canonical labeling of G respectively. We also call maximum
canonical labeling canonical labeling of G.

The two shifts of the n nodes of G associated with Cmin(G) and Cmax(G) are the minimum
and maximum node sequence, signifies by MinQ(G) and MaxQ(G). Furthermore, the two adjacency
matrices of G associated with Cmin(G) and Cmax(G) are the minimum and maximum canonical labeling
matrix, signifies by Amin(G) and Amax(G).

Mathematics 2019, 7, 690 5 of 35

C1(G), C2(G), · · · , Cn−1(G) corresponding to Amin(G) are minimum canonical labeling slice
1, 2, · · · , n− 1 of canonical labeling C(G), signified by C1

min(G), C2
min(G), · · · , Cn−1

min (G), respectively.
Conversely, C1(G), C2(G), · · · , Cn−1(G) corresponding to Amax(G) are maximum canonical
labeling slice 1, 2, · · · , n − 1 of canonical labeling C(G), signified by C1

max(G), C2
max(G), · · · ,

Cn−1
max (G), respectively.

Based on the above definitions, the following equations are established.

Cmin(G) = C1
min(G)C2

min(G) · · ·Cn−1
min (G) (2)

Cmax(G) = C1
max(G)C2

max(G) · · ·Cn−1
max (G) (3)

Theorem 1. Given two undirected graphs G = (V(G), E(G)) and H = (V(H), E(H)) of n vertices
with adjacency matrices A(G) and A(H) respectively. Then G ∼= H if and only if Cmin(G) =Cmin(H) or
Cmax(G)=Cmax(H).

Lemma 1. Suppose G = (V(G), E(G)) is an undirected graph of n vertices whose complement graph is
G = (V(G), E(G)). Then C(G) = C(G) and C(G) = C(G) hold.

Proof. The adjacency matrices of G and G meet the following condition.

A(G) + A(G) = J =



0 1 · · · · · · 1

1 0 1 · · ·
...

... 1 0 1
...

...
... 1

. . . 1
1 · · · · · · 1 0


.

where J is an n× n matrix of zeros and ones whose main diagonal entries are 0 and all other entries are
1. By the complement graph G and A(G) = J − A(G), it can be seen that C(G) = C(G). Furthermore,
by A(G) = J − A(G), it follows that C(G) = C(G) for the complement graph G of G.

Theorem 2. Suppose G = (V(G), E(G)) is an undirected graph of n vertices whose complement graph is
G = (V(G), E(G)). It follows that

Cmin(G) = Cmax(G) (4)

Cmax(G) = Cmin(G) (5)

Cmin(G) = Cmax(G) (6)

Cmax(G) = Cmin(G) (7)

Proof. By Lemma 1, it holds that C(G) = C(G). Definitely, the k-bit of C(G) is 0 if and only if the k-bit
of C(G) is 1. Therefore, one can make the canonical labeling Cmax(G) of G by executing a complement
operation on Cmin(G). Likewise, by Lemma 1, the identity C(G) = C(G) holds. Definitely, the k-bit of
C(G) is 0 if and only if the k-bit of C(G) is 1. Hence, one can make the canonical labeling Cmax(G) of G
by executing a complement operation on Cmin(G).

Since C(Kn) is a constant binary number, one must maximize C(G) to minimize C(G). On the
opposite, one must minimize C(G) to maximize C(G). Likewise, one must maximize C(G) to minimize
C(G). Contrariwise, one must minimize C(G) to maximize C(G). From the above examination,
the following results hold.

Mathematics 2019, 7, 690 6 of 35

Cmin(G) = Cmax(G). Cmax(G) = Cmin(G).

Cmin(G) = Cmax(G). Cmax(G) = Cmin(G).

By Theorem 2, it can be seen that if one has computed the Cmax(G), one can simply make Cmin(G).
Moreover, the computation means of Cmax(G) and Cmax(G) are precisely the same.

Theorem 2 shows the mutual relations between Cmax(G) and Cmin(G). Because of the existence of
the relations, the paper only concentrates on the construction of effective ways to determine Cmax(G).
The TopMost graph of G is a graph whose labeling C(G) is lexicographically largest.

We signify by dG(u) the degree of a node u in G, by d(G) = (dG(u1), dG(u2), · · · , dG(un))

the degree sequence of G, by dG(V1) = (dG(v1), dG(v2), · · · , dG(vm)) the degree series of a subset
V1 ⊆ V(G) with vi ∈ V1, i = 1, 2, · · · , m and by dG(H) = (dH(w1), dH(w2), · · · , dH(ws)) the degree
sequence of a subgraph H ⊆ G with wj ∈ V(H), j = 1, 2, · · · , t and drop the symbol G when no
vagueness can occur. We signify by δ(G) the minimum degree and by ∆(G) the maximum degree
of all vertices of a graph G. Throughout this article, suppose S(G) = {u|u ∈ V(G)∧ d(u) = ∆(G)}.
In the following text, when simultaneously involving two graphs, we always assume that their degree
sequences are the same except specified.

For each u ∈ V(G), the quantity of vertices with degree dG(u) is the degree multiplicity of u,
signified by dmG(u). Unless otherwise specified, throughout this article, the degree sequence is
decreasing. The distance d(u, v) between any two nodes u and v is the number of edges on the shortest
path from u to v.

For every u ∈ V(G), an edge connecting two adjacent vertices of u is a chord edge of u and an
edge connecting u and its an adjacent vertex is an incident edge of u. Given a set S of vertices in G,
let CE(S) signify the set o f chord edges of all nodes in S and IE(S) signify the set o f incident edges
of all vertices in S. Such as in the graph G shown in Figure 1, the edge (3, 8) is a chord edge of the
vertex 7 and each of the edges (3, 7), (7, 8) and (10, 7) are its incident edges. CE({7}) = {(3, 8)} and
IE({7}) = {(3, 7), (7, 8), (10, 7)}.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

8

3

10

7

(a)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

8

3 4

10 12

2

9

7

(b)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2

5 8

3

129

4

6

1

10 11

1613

7

(c)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2

5 8

3

129

6

41

11

1613

10

1514

7

(d)

Figure 1. The 1, 2, 3, 4-neighborhood subgraph of vertex 7 in a graph G. (a) The 1-neighbor subgraph;
(b) The 2-neighbor subgraph; (c) The 3-neighbor subgraph; (d) The 4-neighbor subgraph.

Mathematics 2019, 7, 690 7 of 35

Definition 6. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. The open neighborhood
subgraph of a node u in G is a subgraph of G, signified by N(u) = (V(N(u)), E(N(u))) where V(N(u))
is the set of all nodes adjacent to u (u /∈ V(N(u))) and E(N(u)) is the collection of all edges, each of which
connects two vertices of V(N(u)).

The open k-neighborhood subgraph of u with k ≥ 2 is a subgraph, signified by Nk(u) = (V(Nk
(u)), E(Nk (u))) with V(Nk(u)) = {v | d(u, v) ≤ k ∧ v 6= u ∧ v ∈ V(G)}, E(Nk(u)) = {(v, w)

| v, w ∈ V(Nk(u)), (v, w) ∈ CE(V(Nk−1(u))) ∨ IE(V(Nk−1(u)))}.

Definition 7. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. The open neighborhood
subgraph of a vertices set Q ⊆ V(G) is a subgraph of G, signified by N(Q) = (V(N(Q)), E(N(Q))) where
V(N(Q)) is the set of all nodes each of which is adjacent to at least one node in Q with Q ∩V(N(Q)) = ∅
and E(N(Q)) is the collection of all edges each of which joins two vertices of V(N(Q)).

The open k-neighborhood subgraph of Q with k ≥ 2 is a subgraph, signified by Nk(Q) = (V(Nk
(Q)), E(Nk (Q))) with V(Nk(Q)) = {v | v /∈ Q ∧ v ∈ V(G) ∧ ∃u ∈ Q ∧ d(v, u) ≤ k}, E(Nk (Q))

= {(v, w) | v, w ∈ V(Nk(Q)), (v, w) ∈ CE(V(Nk−1(Q))) ∨ IE(V (Nk−1(Q)))}.

Remark 1. For some graphs, there may be some edges whose two end vertices lie in V(Nk(u)) but do not belong
to Nk(u) by Definition 6. For example, consider the graph G given in Figure 1. Although the vertex 6 and 11
belong to V(N3(7)), (6, 11) /∈ E(N3(7)). In addition, the vertex 14 and 15 belong to V(N4(7)). However,
(14, 15) /∈ E(N4(7)).

Definition 8. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. For each u ∈ V(G), the open
kth neighborhood subgraph of u with k ≥ 0 is a subgraph, signified by Tk(u) = (V(Tk(u)), E(Tk(u))) with
V(Tk(u)) = {v | d(u, v) = k ∧ v 6= u ∧ v ∈ V(G)}, E(Tk(u)) = {(v, w) | v, w ∈ V(Tk(u)) ∧ (v, w)

∈ CE(V(Tk(u)))}. For k = 0, let V(T0(u)) = {u} and E(T0(u)) = ∅.

Definition 9. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. Assume that H ⊆ G and
u ∈ V(H). We signify by Nk

H(u) the open k-neighborhood subgraph of u in H and by Tk
H(u) the open kth

neighborhood subgraph of u in H. For k = 1, we drop the superscript 1 for clarity and write NH(u) = N1
H(u)

and TH(u) = T1
H(u), instead.

Definition 10. Suppose G = (V(G), E(G)) is an undirected connected graph of n vertices. For each
u ∈ V(G), there is a positive integer k meeting conditions Nk−1(u) ⊂ G− u and Nk(u) = G− u. The value
of k is defined as the di f f usion radius of u, signified by ρG(u) and we drop the symbol G when no vagueness
can occur.

By Definition 10, it is explicit that Nρ(u)(u) = G− u for each u in G. For notational convenience,
we sometimes use G− u as a shorthand for Nρ(u)(u).

Here, we discuss the connection between the open k-neighborhood subgraph Nk(u) and d(u) with
u ∈ V(Nk(u)) (see Figure 2). We present some basic properties of the open k-neighborhood subgraph
Nk(u) by the following Lemma 2.

Lemma 2. Let N1(u), N2(u), · · · , Nk(u), · · · , Nρ(u)(u) be the 1, 2, · · · , k, · · · , ρ(u)-neighborhood subgraph
of a vertex u in a graph G. If there exists a node v ∈ V(N1(u)), then

dN2(u)(v) = dN3(u)(v) = · · · = dNk(u)(v) = · · · = dNρ(u)(u)(v) = dG(v)− 1. (8)

Likewise, if there exists a node v /∈ V(Nk(u)) ∧ v ∈ V(Nk+1(u)) with k ≥ 1, then

dNk+2(u)(v) = dNk+3(u)(v) = · · · = dNρ(u)(u)(v) = dG(v). (9)

Proof. (8) and (9) follow directly from Definition 10 (see Figure 2).

Mathematics 2019, 7, 690 8 of 35

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

(a)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

14 16

9

21

15

(b)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

14 16

9

21

8

20

10

22

13 17

3

27

15

(c)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

8

20

10

22

17

27

14 16

9

21

13

3

7

2

26

19

11

4

23

28

18

33

15

(d)

Figure 2. The 1, 2, 3-neighborhood subgraph of vertex 15 in the 6× 6 grid graph G6,6. (a) The 6× 6 grid
graph G6,6; (b) The 1-neighbor subgraph of 15; (c) The 2-neighbor subgraph of 15; (d) The 3-neighbor
subgraph of 15.

By Lemma 2, it is clear that for every v ∈ V(Nk+1(u)), satisfies v ∈ V(Nk (u)) or v /∈ V(Nk (u)).
According to whether v belongs to V(Nk(u)) or not, V(Nk+1(u)) can be partitioned into two disjoint
sets V1

k+1(u) = {v | v ∈ V(Nk(u)) ∧ v ∈ V(Nk+1(u))} and V2
k+1(u) = {w | w /∈ V(Nk (u))

∧w ∈ V(Nk+1(u))}. Observe that V1
k+1(u) = V(Nk(u)) and V2

k+1(u) = V(N(V2
k (u))) hold by

Definitions 6 and 7 (see Figure 1). Therefore V(Nk+1(u)) = V1
k+1(u)∪V2

k+1(u) = V(Nk(u)) ∪V(N (V2
k

(u))). V1
k+1(u) and V2

k+1(u) are the degree stable vertices set and degree unstable vertices set of Nk+1(u)
referred to as the stable vertices set and unstable vertices set. Correspondingly, a vertex v ∈ V1

k+1(u)
is a degree stable vertex referred to as a stable vertex and a vertex w ∈ V2

k+1(u) is a degree unstable
vertex referred to as an unstable vertex.

Further note that E(Nk+1(u)) = E(Nk(u)) ∪ Ek+1 with Ek+1 = CE(N(V2
k (u))) ∪ IE (N(V2

k (u))).
Therefore, E(Nk+1(u)) = E(Nk(u)) ∪ CE(N(V2

k (u))) ∪ IE(N(V2
k (u))). The following Lemma 3 sums

up the above discussion.

Lemma 3. Suppose Nk+1(u) = (V(Nk+1(u)), E(Nk+1(u))) is the open (k + 1)-neighborhood subgraph
of vertex u in a graph G. Then there exist two disjoint sets, the stable vertices set V1

k+1(u) and the unstable
vertices set V2

k+1(u), meeting conditions

V(Nk+1(u)) = V1
k+1(u) ∪V2

k+1(u) = V(Nk(u)) ∪V(N(V2
k (u))), (10)

with V1
k+1(u) = V(Nk(u)), V2

k+1(u) = V(N(V2
k (u))). Further, it follows that

E(Nk+1(u)) = E(Nk(u)) ∪ CE(N(V2
k (u))) ∪ IE(N(V2

k (u))). (11)

Let V(N0(u)) = ∅ and V2
0 (u) = u, then V1

1 (u) = ∅ and V2
1 (u) = V(N1(u)) hold for the

neighborhood subgraph.
For the ρ(u)-neighborhood subgraph, V1

ρ(u)+1(u) = V(Nρ(u)+1 (u)) = V(Nρ(u)) holds with

V2
ρ(u)+1(u) = ∅.

Mathematics 2019, 7, 690 9 of 35

By Lemma 3, it can be seen that the calculation of the open (k + 1)-neighborhood subgraph can be
simplified by means of the open k-neighborhood subgraph for every node v in G.

Definition 11. Assume that G = (V(G), E(G)) is an undirected graph and u is a vertex in G whose open
k-neighborhood subgraph is Nk(u) with k = 1, 2, · · · . A vertex in N(u) is a one di f f usion radius node of
u. For k > 1, a node v in Nk(u) meeting condition v /∈ Nk−1(u) is a k di f f usion radius node of u.

Each vertex v in G is attached a property m_NearestNode whose function is explained in
Section 3.1.2.

Definition 12. Assume that G = (V(G), E(G)) is an undirected graph and u is a node in G whose open
k-neighborhood subgraph is Nk(u) with k = 1, 2, · · · . Suppose H is a connected component of Nk(u) with
k ≥ 1. Suppose that Vm ⊆ V(H) with m = 0, 1, 2, · · · , t, where V0 is in ascending order of attribute
m_NearestNode with

v− > m_NearestNode ≥ 1 for every v ∈ V0 and V1, V2, · · · , Vt contain the 1, 2, · · · , k di f f usion
radius nodes of u respectively, meeting conditions V0 ∪ V1 ∪ · · · ∪ Vt = V(H) and Vi ∩ Vj = ∅ for
i 6= j, i, j = 0, 1, · · · , t.

Let dσ(H) = (dNk(u)(V0), · · · , dNk(u)(Vi), · · · , dNk(u)(Vt)) be defined as the di f f usion degree sequence
of H where dNk(u)(Vi) with i = 0, 1, · · · , t are the degree sequences in non-increasing order induced by all
nodes in Vi respectively.

Definition 13. Assume that G = (V(G), E(G)) is an undirected graph and u is a node in G whose open
k-neighborhood subgraph k is Nk(u) with k = 1, 2, · · · . Assume that Nk(u) has p connected components H1,
H2, · · · , Hp with di f f usion degree sequences dσ(H1), dσ(H2), · · · , dσ(Hp) respectively, meeting conditions
dσ(H1) ≥ dσ(H2) ≥ · · · ≥ dσ(Hp).

We define dσ
G[Nk(u)] = (dσ(H1), dσ(H2), · · · , dσ(Hp)) to be the entire di f f usion degree sequence of

Nk(u) about u in G and drop the symbol G when no vagueness can occur.
We define dmax

G [Nk(u)] = dσ(H1) to be the maximum di f f usion degree sequence of Nk(u) about u in
G and drop the symbol G when no vagueness can occur.

Remark 2. To define di f f usion degree sequences dσ(H) = (dNk(u)(V0), dNk(u)(V1), · · · , dNk(u)(Vt)) and
entire di f f usion degree sequence dσ

G[Nk(u)] = (dσ(H1), dσ(H2), · · · , dσ(Hp)), we pay a great deal of efforts
into software testing and theoretical studies. We used more than 20 different kinds of degree sequences in the
software experiments and compared the results of distinct degree sequences. Built on the preceding works, it is
not difficult to find that performance of the two degree sequences specified by Definitions 12 and 13 is optimal.
With the adoption of the two definitions, the accuracy of our algorithm significantly enhances.

Given a graph G, the entire di f f usion degree sequence dσ
G[Nk(u)] = (dσ(H1), dσ(H2), · · · , dσ(Hp))

can be used in the literature of finance for the jump-diffusion models [29,30].

Definition 14. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. For each u, v ∈ V(G) with
u 6= v and , let N1(u), N2(u), · · · , Nρ(u)(u) be the 1, 2, · · · , ρ(u) neighborhood subgraph of u with entire
di f f usion degree sequences dσ[N1(u)], dσ[N2(u)], · · · , dσ[Nρ(u)(u)], respectively. Let N1(v), N2(v),
· · · , Nρ(v)(v) be the 1, 2, · · · , ρ(v) neighborhood subgraph of v with entire di f f usion degree sequences
dσ[N1(v)], dσ[N2(v)], · · · , dσ[Nρ(v)(v)], respectively. Let Z1 = (dσ[N1(u)], dσ[N2(u)], · · · , dσ[Nρ(u)(u)])
and Z2 = (dσ[N1(v)], dσ[N2(v)], · · · , dσ[Nρ(v)(v)]) . If Z1 > Z2, we call u � v concerning G. Otherwise,
if Z1 < Z2, we call u ≺ v concerning G. Otherwise, if Z1 = Z2, we call u � v concerning G and ignore the
sign G when no vagueness can occur. Signify u � v or u � v by u � v and u ≺ v or u � v by u � v.

Observe that�,≺,�,� are all binary relations on the collection of vertices V(G). By Definition 14,
for each u, v ∈ V(G) with u 6= v, one of the following assertions is true: (1) u � v. (2) u ≺ v. (3) u � v.

Mathematics 2019, 7, 690 10 of 35

It can be noted that (V(G), �) is a well-ordered set, where� signifies the binary relation u � v on
the set V(G). By the well-ordering theorem, it holds that there is a maximum and minimum element in
V(G), signified by G�max and G�min respectively with G�max ∈ V(G) and G�min ∈ V(G). The superscript
� can be ignored if no vagueness can occur. The following Lemmas 4–6 immediately hold from
Definition 14.

Lemma 4. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. For each u, v ∈ V(G) with
u 6= v, if the sign � signifies the binary relation u � v on the collection V(G), then, all of the vertices in G
build a sole linkage L on G: v1 � v2 � · · · � vi � · · · � vn with vi ∈ V(G), i = 1, 2, · · · , n.

Lemma 5. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. Suppose S(G) = {u| u ∈ V(G)

∧d(u) = ∆(G) = s}. For each u, v ∈ S(G) with u 6= v, if the sign � signifies the binary relation u � v on
the set S(G), then, all of the vertices in S(G) build a sole linkage L on G: v1 � v2 � · · · � vi � · · · � vs with
vi ∈ S(G), i = 1, 2, · · · , s.

Lemma 6. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. For each u ∈ V(G), Let Nk(u)
be the open k-neighborhood subgraph of u in G. Suppose S(Nk(u)) = {v| v ∈ V(Nk(u)) ∧d(v) =

∆(Nk(u)) = t}.
For each v, w ∈ S(Nk(u)) with v 6= w, if the sign � signifies the binary relation v � w on the collection

S(Nk(u)), then, all of the vertices in S(Nk(u)) build a single linkage L on Nk(u): v1 � v2 � · · · � vi �
· · · � vt with vi ∈ S(Nk(u)), i = 1, 2, · · · , t.

By Definitions 3, 4 and 14, the outcomes in the following Propositions 1 and 2 are uncomplicated.

Proposition 1. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. For each u, v ∈ V(G)

with u 6= v , let N1(u), N2(u), · · · , Nρ(u)(u) be the 1, 2, · · · , ρ(u) neighborhood subgraph of u with entire
di f f usion degree sequences dσ[N1(u)], dσ[N2(u)], · · · , dσ[Nρ(u)(u)], respectively. Let N1(v), N2(v),
· · · , Nρ(v)(v) be the 1, 2, · · · , ρ(v) neighborhood subgraph of v with entire di f f usion degree sequences
dσ[N1(v)], dσ[N2(v)], · · · , dσ[Nρ(v)(v)], respectively. Let Z1 = (dσ[N1(u)], dσ[N2(u)], · · · , dσ[Nρ(u)(u)])
= (X1, Y1) with X1 = (dσ[N1(u)], dσ[N2(u)], · · · , dσ[Nk(u)]) and Y1 = (dσ[Nk+1(u)], dσ[Nk+2(u)], · · · ,
dσ[Nρ(u)(u)]) . Let Z2 = (dσ[N1(v)], dσ[N2(v)], · · · , dσ[Nρ(v)(v)]) = (X2, Y2) with X2 = (dσ[N1(v)],
dσ[N2(v)], · · · , dσ[Nk(v)]) and Y2 = (dσ[Nk+1(v)], dσ[Nk+2(v)], · · · , dσ[Nρ(v)(v)]) . If X1 = X2,
then Y1 > Y2 leads to Z1 > Z2. Otherwise, Y1 < Y2 leads to Z1 < Z2. Otherwise, Y1 = Y2 leads to Z1 = Z2.
Accordingly, it follows that if X1 = X2, then Y1 > Y2 leads to u � v. Otherwise, Y1 < Y2 leads to u ≺ v.
Otherwise, Y1 = Y2 leads to u � v.

Proposition 2. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. For each u, v ∈ V(G)

with u 6= v , let N1(u), N2(u), · · · , Nρ(u)(u) be the 1, 2, · · · , ρ(u) neighborhood subgraph of u with entire
di f f usion degree sequences dσ[N1(u)], dσ[N2(u)], · · · , dσ[Nρ(u)(u)], respectively. Let N1(v), N2(v),
· · · , Nρ(v)(v) be the 1, 2, · · · , ρ(v) neighborhood subgraph of v with entire di f f usion degree sequences
dσ[N1(v)], dσ[N2(v)], · · · , dσ[Nρ(v)(v)], respectively. If dσ[N1(u)] = dσ[N1(v)], dσ[N2(u)] = dσ[N2(v)],
· · · , dσ[Nk−1(u)] = dσ[Nk−1(v)], dσ[Nk(u)] > dσ[Tk(v)], then u � v concerning G (see Definition 14).

3. Results and Discussion

Suppose G = (V(G), E(G)) is an undirected graph of n vertices. In the section, we will examine
how to determine the canonical labeling Cmax(G) of the graph G. The permutations of G associated
with Cmax(G) are the MaxQ(G). Without loss of generality, let MaxQ(G) = (u1, u2, · · · , ui, · · · , un).
Throughout the article, all algorithms presented use an adjacency list to save the graph G.

Mathematics 2019, 7, 690 11 of 35

3.1. Calculate Cmax(G) for a Connected Graph

In this subsection, we consider how to determine the canonical labeling Cmax(G) of a connected
graph. What method should one take to calculate the canonical labeling Cmax(G)? From the
relationship between Cmax(G) and Amax(G), a way for computing Cmax(G) must first get the
permutation MaxQ(G) associated with the adjacency matrix Amax(G).

3.1.1. Calculate the First Node u1 of MaxQ(G)

In this sub-subsection, we study how to calculate the first vertex u1 of MaxQ(G).
Jianqiang Hao et al. employ the Cen(G) to determine the first node u1 of MaxQ(G) for simple
nonregular graphs [2]. This means that this method is invalid for regular graphs. Suppose that G is a
connected graph with order n > 1. It can be seen that one must let a1,2 = 1 maximize C(G) (see (1)).
a1,2 = 1 can always be taken because G is connected with order n > 1. Besides, to get Cmax(G),
one must choose u1 from S(G). Only by so doing, can there be more “1” s in the high bits of C(G)

such that guarantees maximum C(G). Otherwise, C(G) cannot attain the maximum value. From the
previous analysis, the following Proposition 3 and Lemma 7 hold.

Proposition 3. Assume that G = (V(G), E(G)) is an undirected graph of n vertices and S(G) = {u|u ∈
V(G)∧ d(u) = ∆(G) }. Then the choice of u1 of MaxQ(G) is from S(G) for getting Cmax(G).

Lemma 7. Assume that G = (V(G), E(G)) be an undirected graph of n vertices and S(G) = {u|u ∈ V(G)∧
d(u) = ∆(G) }. If |S(G)| = 1 with v ∈ S(G). Then u1 = v for MaxQ(G).

For |S(G)| > 1, the following Theorem 3 holds.

Theorem 3. Assume that G = (V(G), E(G)) is an undirected connected graph of n vertices and S(G) = {u|
u ∈ V(G) ∧d(u) = ∆(G) = s} with |S(G)| > 1. Let v ∈ S(G) with v1 ∈ V(N(v)) and dN(v)(v1) =

∆(N(v)). For every w ∈ S(G) ∧ w 6= v with w1 ∈ V(N(w)) and dN(w)(w1) = ∆(N(w)), if condition
dN(v)(v1) > dN(w)(w1) holds, then u1 = v for MaxQ(G).

Proof. From (1), it follows that C1
max(G) = a1,2a1,3 · · · a1,n and C2

max(G) = a2,3a2,4 · · · a2,n. Since
4(G) = s, it can be shown that a1,2 = a1,3 = · · · = a1,s+1 = 1 for C1

max(G).
By the conditions of Theorem 3, it is clearly that dN(v)(v1) = 4(N(v)) and dN(w)(w1) =4(N(w)).

For clarity, let us suppose that r = dN(v)(v1), t = dN(w)(w1).
If conditions r = dN(v)(v1) > t = dN(w)(w1) are satisfied for every w ∈ S(G) ∧ w 6= v and

make the u1 = w, then at most C2
max(G)=a2,3a2,4 · · · a2,n with a2,3 = a2,4 = · · · = a2,t+2 = 1 and

a2,t+3 = a2,t+4 = · · · = a2,s+1 = 0 (see (1). Otherwise, if let the u1 = v, then C2
max(G)=a2,3a2,4 · · · a2,n

with a2,3 = a2,4 = · · · = a2,r+2 = 1 and a2,r+3 = a2,r+4 = · · · = a2,r+1 = 0 (see (1)).
Because r > t, Theorem 3 follows by contrasting the above two outcomes of C2

max(G) got.

Theorem 4. Assume that G = (V(G), E(G)) is an undirected connected graph of n vertices and S(G) = {u|
u ∈ V(G) ∧d(u) = ∆(G) = s} with |S(G)| > 1. Let v ∈ S(G) with v1 ∈ V(N(v)) and dN(v)(v1) =

∆(N(v)). For each w ∈ S(G) ∧ w 6= v with w1 ∈ V(N(w)) and dN(w)(w1) = ∆(N(w)), if conditions
dN(v)(v1) = dN(w)(w1) and dG(v1) > dG(w1) hold, then u1 = v for MaxQ(G).

Proof. From (1), it follows that C1
max(G) = a1,2a1,3 · · · a1,n and C2

max(G) = a2,3a2,4 · · · a2,n. Since
4(G) = s, it can be shown that a1,2 = a1,3 = · · · = a1,s+1 = 1 for C1

max(G).
By the conditions of Theorem 4, it is clear that dN(v)(v1) = dN(w)(w1) = 4(N(v)). For clarity,

let us suppose that t = dN(v)(v1) = dN(w)(w1) and l = dG(v1) > m = dG(w1).
If conditions dG(v1) > dG(w1) are satisfied for every w ∈ S(G) ∧ w 6= v and make the u1 = w,

then at most C2
max(G)=a2,3a2,4 · · · a2,n with a2,3 = a2,4 = · · · = a2,t+2 = 1, a2,t+3 = a2,t+4 = · · · =

Mathematics 2019, 7, 690 12 of 35

a2,s+1 = 0, a2,s+2 = a2,s+3 = · · ·=a2,s+m−t = 1, a2,s+m−t+1 = a2,s+m−t+2 = · · ·=a2,n = 0 (see (1)).
Otherwise, if let the u1 = v, then C2

max(G)=a2,3a2,4 · · · a2,n with a2,3 = a2,4 = · · · = a2,t+2 = 1, a2,t+3 =

a2,t+4 = · · · = a2,s+1 = 0, a2,s+2 = a2,s+3 = · · ·=a2,s+l−t = 1, a2,s+l−t+1 = a2,s+l−t+2 = · · ·=a2,n = 0
(see (1)).

Because l > m, then the binary number a2,s+2a2,s+3 · · · a2,s+l−t > the binary number a2,s+2a2,s+3

· · · a2,s+m−t. Hence, Theorem 4 is established.

Conjecture 1. Assume that G = (V(G), E(G)) is an undirected graph of n vertices and S(G) = {u| u ∈
V(G) ∧d(u) = ∆(G) = s} with |S(G)| > 1. If there is a node v ∈ S(G) meeting conditions Cmax(G− v) ≤
Cmax(G− w) for each w ∈ S(G) ∧ w 6= v, then u1 = v for MaxQ(G).

3.1.2. Calculate the Intermediate Nodes of MaxQ(G)

If our algorithm has calculated the first vertex u1 of MaxQ(G), how it determines the subsequent
vertices for computing Cmax(G)? Observe that a side of G corresponds to 1 bit of the upper triangular
part of the adjacency matrix A(G). To maximize C(G) by maximizing C2(G), one must make u2 belong
to N(u1) such that makes a1,2 = 1 (see (1)). Otherwise, if u2 /∈ N(u1), then a1,2 = 0 (see (1)) and
C(G) 6=Cmax(G). The subsequent Proposition 4 captures the essence of the previous discussion.

Proposition 4. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. Given the first vertex u1 of
MaxQ(G), then the choice of u2 is from N(u1) for getting Cmax(G).

Lemma 8. Suppose G = (V(G), E(G)) is an undirected graph of n vertices. Given the first vertex u1 of
MaxQ(G), if there is a single vertex v ∈S(N(u1)) = {u|u ∈ V(N(u1))∧ d(u) = ∆(N(u1)) }, then u2 = v
for MaxQ(G).

Proof. By Proposition 4, it can be seen that the choice of u2 is from N(u1) for obtaining Cmax(G). By the
condition of Lemma 8, we have that v is the only node of S(N(u1). Therefore Lemma 8 holds.

Theorem 5. Assume that G = (V(G), E(G)) be an undirected connected graph of n vertices and S(G) = {u|
u ∈ V(G) ∧d(u) = ∆(G) = s}. For calculating Cmax(G), if MaxQ(G) already includes the first vertex
u1 = v with V(N(v)) = {v1, v2, · · · , vs} meeting condition dN(v)(v1) = ∆(N(v)) and one of the following
conditions is satisfied, then u2 = v1 for MaxQ(G).

1. dN(v)(v1) > dN(v)(vi) for i = 2, · · · , s.
2. dG(v1) > dG(vi) hold for dN(v)(v1) = dN(v)(vi) with i ∈ {2, · · · , t}.

Proof. (1). To maximize C(G) by maximizing C2(G) (see (1)), it follows that u2 must satisfy condition
dN(v)(u2) = ∆(N(v)). By dN(v)(v1) = ∆(N(v)) and the condition (1) of Theorem 5, dN(v)(v1) =

∆(N(v)) > dN(v)(vi) hold for i = 2, · · · , s. Assume that dN(v)(v1) = t. If u2 = v1, it can be seen
that a2,3 = 1, a2,4 = 1, · · · , a2,t+2 = 1 by properly arranging nodes v2, v3, · · · , vs of V(N(v)) (see (1)).
Otherwise, if u2 = vi with i ∈ {2, · · · , s}, regardless of how the nodes in N(v) are arranged such that
there exists at least one 0 among the t elements a2,3, a2,4, · · · , a2,t+2 since dN(v)(vi) < dN(v)(v1) = t for
i = 2, · · · , s (see (1)). Hence, the result (1) of Theorem 5 follows. (2). To maximize C(G) by maximizing
C2(G) (see (1)), it follows that u2 must satisfy condition dN(v)(u2) = ∆(N(v)). By dN(v)(v1) = ∆(N(v))
and the condition (2) of Theorem 5, we have that if u2 = v1, then C2(G) is the largest canonical labeling
slice 2. Otherwise, if u2 = vi with i ∈ {2, · · · , s}, regardless of how the nodes in N(v) are arranged such
that the corresponding C2(G) is not largest (see (1)). Hence, the result (2) of Theorem 5 follows.

Our algorithm uses an adjacency list to store a graph G. To facilitate the calculation of the open
k-neighborhood subgraph of a node v in G, it in advance saves all the adjacent nodes, chord edgesand
incident edges of v into an array, respectively. Moreover v contains three stand alone pointer to point
to the start position of each array.

Mathematics 2019, 7, 690 13 of 35

If our algorithm has calculated the first i nodes u1, u2, · · · , ui of MaxQ(G), how does it decide the
following nodes ui+1, ui+2, · · · , un for computing Cmax(G)? From the previous discussion for getting
u2, it can be noted that the choices of the subsequent nodes ui+1, ui+2, · · · , un of MaxQ(G) are from
N(S) with S = {u1, u2, · · · , ui}.

Each vertex v of G is attached a characteristic m_NearestNode. Once the ith vertex ui is added
into MaxQ(G), it records the index data i of ui in the property field m_NearestNode of every vertex
vj ∈N(ui) = {v1, v2, · · · , vt} with j = 1, 2, · · · , t. If vj− > m_NearestNode = +∞, then let vj− >

m_NearestNode= i for every vj ∈ N(ui) with j = 1, 2, · · · , t.

Lemma 9. Assume that G = (V(G), E(G)) is an undirected connected graph of n vertices and S(G) = {u|
u ∈ V(G) ∧d(u) = ∆(G) = s} with |S(G)| > 1. If u1 = v ∈ S(G) with neighborhood subgraph N(v),
V(N(v)) = {v1, v2, · · · , vs}, then u2, u3, · · · , us, us+1∈{v1, v2, · · · , vs}.

Proof. From (1) and the condition 4(G) = s, it follows that C1
max(G) = a1,2a1,3 · · · a1,n with a1,2 =

a1,3 = · · · = a1,s+1 = 1 and a1,s+2 = a1,s+3 = · · · = a1,n = 0 for obtaining Cmax(G). To ensure
a1,2 = a1,3 = · · · = a1,s+1 = 1 to maximize C1(G) (see (1)), it follows that u2, u3, · · · , us, us+1∈{v1, v2,
· · · , vs}.

Definition 15. Assume that A = (ai,j)n×n and B = (bi,j)n×n are two matrices with ai,j, bi,j = 0, 1 for
i, j = 1, 2, · · · , n. Then, the lexicographic order of the two matrix is defined as follows:

1. A = B, if ai,j = bi,j for all 1 ≤ i, j ≤ n.
2. A < B, if ∃i, j, 1 ≤ i, j ≤ n meeting conditions ak,l = bk,l for all k ≤ i, l ≤ j and ai,j+1 < bi,j+1 with

j < n or ai+1,1 < bi+1,1 with i < n, j = n.

Suppose X is a matrix. If there exists at least one positive entry and the remaining entries are 0, we say
X > 0. Otherwise, if all entries of X are 0, we say X = 0.

Theorem 6 (Diffusion Theorem). Suppose G = (V(G), E(G)) is an undirected connected graph of n vertices.
If MaxQ(G) already includes the first m nodes u1, u2, · · · , um for calculating Cmax(G), then the following two
results follow.

1. the selection of the (m + 1)th vertex for computing Cmax(G) is from the open neighborhood subgraph
N(Q) of the vertices set Q = {u1, u2, · · · , um}.

2. the vertex-induced subgraph of the first m nodes is connected.

Proof. (1). We prove by contradiction. If um+1 /∈ V(N(Q)), without loss of generality let us assume
that π1 = {u1, u2, · · · , um, v1, um+2, · · · , v2, · · · , un} is a permutation of V(G), meeting conditions
v1 = um+1 /∈ V(N(Q)), v2 = ui ∈ V(N(Q)) with m + 2 ≤ i ≤ n.

Further, assume that if condition um+1 /∈ V(N(Q)) is satisfied, the C(G) associated with π1 is
the largest. Assume that the vertex v2 = ui ∈ V(N(Q)) is the vertex whose index i in π1 is the
smallest index in π1 than the indexes of any other vertices belonging to V(N(Q)) in π1. This indicates
that no vertex belonging to V(N(Q)) is between um+2 and ui−1 of π1 such that for each node v ∈
{um+2, um+3, · · · , ui−1}, v /∈ V(N(Q)) is met.

Let A1(G) be the matrix associated with the arrangement π1. Let W1, W2, W3 and W4 be the block
submatrices of A1(G) including the first m rows and the (m + 1)th column, the (m + 2)th to (i− 1)th
columns, the ith column and the (i + 1)th to nth columns, respectively.

Since v1 /∈ V(N(Q)), then W1 = 0 is satisfied. Alike the above consequence acquired, for each
vertex v ∈ {um+2, um+3, · · · , ui−1}, v /∈ V(N(Q)) is true such that W2 = 0. Clearly W3 > 0 for
v2 ∈ V(N(Q)).

By merely swapping v1 and v2 of π1, one can obtain another permutation π2 = {u1, u2, · · · , um,
v2, um+2, · · · , v1, · · · , un} with v1 /∈ V(N(Q)), v2 ∈ V(N(Q)).

Mathematics 2019, 7, 690 14 of 35

Alike A1(G), let A2(G) be the matrix associated with the permutation π2. Let Y1, Y2, Y3 and Y4 be
the block submatrices of A2(G) containing the first m rows and the (m + 1)th column, the (m + 2)th to
(i− 1)th columns, the ith column and the (i + 1)th to nth columns, respectively.

Definitely, Y1 > 0 follows for v2 ∈ V(N(Q)). For each node v ∈ {um+2, um+3, · · · , ui−1},
as v /∈ V(N(Q)) is true, then Y2 = 0. Since v1 /∈ V(N(Q)), then Y3 = 0 holds.

Observe that W4 = Y4 since W4 and Y4 are both the m× (n− i) block submatrices associated with
the same vertices sequence ui+1, ui+2, · · · , un.

It follows from the results discussed above that W1 = W2 = 0, W3 > 0 and Y1 > 0, Y2 = Y3 = 0.
Hence, the new C(G) defined by A2(G) is larger than the C(G) defined by A1(G) such that

makes a contradiction with the former hypothesis that um+1 /∈ N(Q). This contradiction proves that
conclusion (1) is correct.

(2). Conclusion (1) immediately leads to the result.

Theorem 7 (Nearest Node Theorem). Suppose G = (V(G), E(G)) is an undirected connected graph
of n vertices. If MaxQ(G) already includes the first m nodes u1, u2, · · · , um for calculating Cmax(G).
Assume vertices set Q = {u1, u2, · · · , um}.

If there exists a vertex v ∈ V(N(Q)), for every w ∈ V(N(Q)) ∧ w 6= v, meeting conditions v− >

m_NearestNode< w− > m_NearestNode, then the (m + 1)th node in MaxQ(G) is v.

Proof. By Diffusion Theorem 6, we know that the (m + 1)th vertex in MaxQ(G) is from N(Q).
We prove by contradiction. If the (m + 1)th vertex in MaxQ(G) is w ∈ V(N(Q)) ∧ w 6= v, satisfying
condition v− > m_NearestNode < w− > m_NearestNode.

Let V1 = V(G)−Q− v and V2 = V(G)−Q− w. Without loss of generality, let us assume that
π1 = {u1, u2, · · · , um, v, u1

m+2, · · · , u1
n} is a permutation of V(G) corresponding to v with u1

m+2 ∈
V1, · · · , u1

n ∈ V1. Let us assume that π2 = {u1, u2, · · · , um, w, u2
m+2, · · · , u2

n} is a permutation of V(G)

corresponding to w with u2
m+2 ∈ V2, · · · , u2

n ∈ V2.
This means that the C(G) corresponding to π1 is less than the C(G) corresponding to π2.
Let i = v− > m_NearestNode, then v /∈ V(N(u1)), v /∈ V(N(u2)), · · · , v /∈ V(N(ui−1), v ∈

V(N(ui)).
By v− > m_NearestNode < w− > m_NearestNode, there are w /∈ V(N(u1)), w /∈ V(N(u2)), · · · ,

w /∈ V(N(ui−1)), w /∈ V(N(ui)).
Let A1(G) be the matrix associated with the permutation π1. Let W1 and W2 be the block

submatrices of A1(G) defined by the first i row and the (m + 1)th column and the (m + 2)th to nth
columns, respectively.

Let A2(G) be the matrix associated with the permutation π2. Let Y1 and Y2 be the block
submatrices of A2(G) defined by the first i row and the (m + 1)th column and the (m + 2)th to
nth columns, respectively.

Since v ∈ V(N(ui)), then W1 > 0 holds. Clearly Y1 = 0 holds due to w /∈ V(N(ui)). Therefore,
W1 > Y1. Again let T = {u1, u2, · · · , ui−1}.

For π1, ∀x ∈ V1 = V(G)− Q− v, there must be x /∈ V(N(T)). Then v− > m_NearestNode <
x− > m_NearestNode. Therefore W2 = 0.

For π2, ∀x ∈ V2 = V(G)−Q− w, there must be x /∈ V(N(T)) ∨ x = v.
If x /∈ V(N(T))), then v− > m_NearestNode < x− > m_NearestNode. The elements of the

column vector corresponding to x in Y2 are all 0.
Otherwise, if x = v, the elements of the column vector corresponding to x in Y2 are not all 0.
Thus, for π2, the matrix Y2 is such a matrix with only one column vector whose elements are not

all 0 and the remaining column vectors are zero.
Hence, no matter how u1

m+2, · · · , u1
n; u2

m+2, · · · , u2
n is taken, it can be seen that W2 = 0, Y2 6= 0.

Let W = W1W2 be a new matrix by combining W1 and W2.
Let Y = Y1Y2 be a new matrix by combining Y1 and Y2.

Mathematics 2019, 7, 690 15 of 35

From the previous analysis, it follows that W = W1W2 = W1O where O = 0 is i× (n−m− 1)
block submatrix.

Further, it follows that Y = Y1Y2 = OY2 where O = 0 is a column vector of i rows. The block
submatrix Y2 is such a matrix whose only one column vector, denoted by Z, is not 0 and whose
remaining column vectors are all 0. It can be seen that Z = W1.

By the comparison of the matrix W and Y, it holds that W > Y.
Hence, the C(G) defined by A1(G) is larger than the C(G) defined by A2(G). This contradicts

the previous hypothesis that the C(G) corresponding to π1 is less than the C(G) corresponding to π2.
Therefore, the conclusion of Theorem 7 holds.

Suppose G = (V(G), E(G)) is an undirected connected graph of n vertices. For calculating
Cmax(G), assume that MaxQ(G) already includes the first m nodes u1, u2, · · · , um. Let Q =

{u1, u2, · · · , um} with open neighborhood subgraph N(Q)(see Definition 7). Let R = V(G) − Q
with vertex-induced subgraph G[R].

3.2. Calculate Cmax(G) for a Disconnected Graph

Suppose G = (V(G), E(G)) is a disconnected undirected graph of n vertices with p connected
components G1, G2, · · · , Gp. In this subsection, we consider how to determine the canonical labeling
Cmax(G) of G.

If ∆(G1) > ∆(G2) > · · · > ∆(Gp), how does our algorithm proceed to determine the canonical
labeling Cmax(G) of G? It can be seen that to get Cmax(G) one had to order all nodes of every connected
component Gi with i ∈ {1, 2, · · · , p} together when building the adjacency matrix A(G). The outcome
also holds from the proving of Diffusion Theorem 6.

First, we examine the characteristics of the adjacency matrix A(G). When building the adjacency
matrix A(G), we order all nodes of every connected component Gi with i ∈ {1, 2, · · · , p} together.
Observe that the adjacency matrix A(G) is a symmetric block matrix, every block of which is associated
with a connected component. Next, we examine the link between C(G) and A(G). Besides, we present
how to determine the Cmax(G1) associated with the adjacency matrix A(G).

Lemma 10. Suppose G = (V(G), E(G)) is a disconnected undirected graph that have two disjoint connected
components G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) with k and l vertices respectively. Assume that

Cmax(G1) = C1
max(G1)C2

max(G1) · · ·Ck−1
max(G1),

Cmax(G2) = C1
max(G2)C2

max(G2) · · ·Cl−1
max(G2).

If ∆(G1) > ∆(G2), then Cmax(G) meets the following equation:

Cmax(G) = C1
max(G)C2

max(G) · · ·Ck−1
max(G)Ck

max(G)Ck+2
max(G) · · ·Ck+l−1

max (G), (12)

where

C1
max(G) = C1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, C2

max(G) = C2
max(G1)

l︷ ︸︸ ︷
00 · · · 0 ·

Ck−1
max(G) = Ck−1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, Ck

max(G) =

l︷ ︸︸ ︷
00 · · · 0, Ck+1

max(G) = C1
max(G2),

Ck+2
max(G) = C2

max(G2), · , Ck+l−1
max (G) = Cl−1

max(G2).

Proof. If ∆(G1) > ∆(G2) is satisfied, then ∆(G) = ∆(G1). By Proposition 3, it can be seen that to get
Cmax(G), one must pick the node with the maximum degree from G1 as the first node u1 of MaxQ(G).

By Proposition 4, it follows that the second vertex u2 of MaxQ(G) must be from N(u1).
By Diffusion Theorem 6, the following k− 2 nodes of MaxQ(G) must be picked from G1. Furthermore,

Mathematics 2019, 7, 690 16 of 35

by Diffusion Theorem 6, the next l nodes of MaxQ(G) must be chosen from G2. Thoughtfully
considering (1), it is not hard to discover that (12) follows.

Observe that to guarantee the maximization of Cmax(G), one has to add l 0 after C1
max(G1),

C2
max(G1), · · · , Ck−1

max(G1) respectively, so that make Ck
max(G) be equal l 0.

Theorem 8. Suppose G = (V(G), E(G)) is a disconnected undirected graph of n vertices with p
connected components G1, G2, · · · , Gp satisfying |V(G1)| = n1, |V(G2)| = n2, · · · , |V(Gp)| = np.
If Cmax(G1)>Cmax(G2)> · · · >Cmax(Gp), then Cmax(G) meets the following equation:

Cmax(G) = C1
max(G1)

n−n1︷ ︸︸ ︷
0 · · · 0 · · ·Cn1−1

max (G1)

n−n1︷ ︸︸ ︷
0 · · · 0

n−n1︷ ︸︸ ︷
0 · · · 0

C1
max(G2)

n−n1−n2︷ ︸︸ ︷
0 · · · 0 · · ·Cn2−1

max (G2)

n−n1−n2︷ ︸︸ ︷
0 · · · 0

n−n1−n2︷ ︸︸ ︷
0 · · · 0

...

C1
max(Gp−1)

np︷ ︸︸ ︷
0 · · · 0 · · ·Cnp−1−1

max (Gp−1)

np︷ ︸︸ ︷
0 · · · 0

np︷ ︸︸ ︷
0 · · · 0

C1
max(Gp) · · ·C

np−1
max (Gp).

(13)

Proof. We prove (13) by induction on the number p of branches. By the previous definition, it follows
that Cmax(G) = C1

max(G)C2
max(G) · · ·Cn−1

max (G) for p = 1. Hence, (13) in Theorem 8 follows for p = 1.
By Lemma 10, (13) is correct for p = 2.

By induction, assume that (13) is true for p = k. In the following, let us prove that Equation (13)
is also correct for p = k + 1. We can now think of the front k branch graphs as graph H. Therefore,
(13) is also true for graph H.

Cmax(H) =

C1
max(G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0 · · ·Cn1−1

max (G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0

C1
max(G2)

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0 · · ·Cn2−1

max (G2)

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0

...

C1
max(Gk−1)

nk︷ ︸︸ ︷
0 · · · 0 · · ·Cnk−1−1

max (Gk−1)

nk︷ ︸︸ ︷
0 · · · 0

nk︷ ︸︸ ︷
0 · · · 0

C1
max(Gk)C2

max(Gk) · · ·C
nk−1
max (Gk),

(14)

where

C1
max(H) = C1

max(G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0 ,

...

Cn1−1
max (H) = Cn1−1

max (G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0 ,

Cn1
max(H) =

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0 ,

Cn1+1
max (H) = C1

max(G2)

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0 ,

Mathematics 2019, 7, 690 17 of 35

...

Cn1+n2−1
max (H) = Cn2−1

max (G2)

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0 ,

Cn1+n2
max (H) =

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0 ,
...

Cn−nk+1−nk−nk−1+1
max (H) = C1

max(Gk−1)

nk︷ ︸︸ ︷
0 · · · 0,

...

Cn−nk+1−nk−1
max (H) = Cnk−1−1

max (Gk−1)

nk︷ ︸︸ ︷
0 · · · 0,

Cn−nk+1−nk
max (H) =

nk︷ ︸︸ ︷
0 · · · 0,

Cn−nk+1−nk+1
max (H) = C1

max(Gk),

Cn−nk+1−nk+2
max (H) = C2

max(Gk),
...

Cn−nk+1−1
max (H) = Cnk−1

max (Gk).

By Lemma 10, we have

Cmax(G) =

C1
max(H)

nk+1︷ ︸︸ ︷
0 · · · 0 C2

max(H)

nk+1︷ ︸︸ ︷
0 · · · 0 · · ·Cn−nk+1−1

max (H)

nk+1︷ ︸︸ ︷
0 · · · 0

nk+1︷ ︸︸ ︷
0 · · · 0 C1

max(Gk+1)C2
max(Gk+1) · · ·C

nk+1−1
max (Gk+1).

(15)

By (14), substituting C1
max(H) to Cn−nk+1−1

max (H) into (15), we obtain

Cmax(G) =

C1
max(G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0

nk+1︷ ︸︸ ︷
0 · · · 0 C2

max(G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0

nk+1︷ ︸︸ ︷
0 · · · 0 · · ·Cnk−1

max (Gk)
nk+1︷ ︸︸ ︷

0 · · · 0
nk+1︷ ︸︸ ︷

0 · · · 0 C1
max(Gk+1)C2

max(Gk+1) · · ·C
nk+1−1
max (Gk+1).

(16)

Thus, we have

Cmax(G) = C1
max(G1)

n−n1︷ ︸︸ ︷
0 · · · 0 · · ·Cn1−1

max (G1)

n−n1︷ ︸︸ ︷
0 · · · 0

n−n1︷ ︸︸ ︷
0 · · · 0

C1
max(G2)

n−n1−n2︷ ︸︸ ︷
0 · · · 0 · · ·Cn2−1

max (G2)

n−n1−n2︷ ︸︸ ︷
0 · · · 0

n−n1−n2︷ ︸︸ ︷
0 · · · 0

...

C1
max(Gk)

nk+1︷ ︸︸ ︷
0 · · · 0 · · ·Cnk−1

max (Gk)

nk+1︷ ︸︸ ︷
0 · · · 0

nk+1︷ ︸︸ ︷
0 · · · 0

C1
max(Gk+1) · · ·C

nk+1−1
max (Gk+1).

(17)

Therefore, Equation (13) is correct for p = k + 1.

Mathematics 2019, 7, 690 18 of 35

By Theorem 8, it can be observed that for getting Cmax(G), one has to first calculate Cmax(Gi)

of every branch for i = 1, 2, · · · , p, respectively. Besides, one must substitute Cmax(Gi) into (13)
sequentially to obtain Cmax(G) of a disconnected undirected G.

If the above conditions are not met, how does one determine Cmax(G) of a disconnected undirected
G? Based on an examination of the previous outcomes, the following Theorem 9 that is more useful
than Lemma 10 is established.

Theorem 9. Suppose G = (V(G), E(G)) is a disconnected undirected graph that have two disjoint connected
components G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) with k and l vertices respectively. Let S(G1) =

{u|u ∈ V(G1)∧ d(u) = ∆(G1) } and S(G2) = {u|u ∈ V(G2)∧ d(u) = ∆(G2) } meeting condition
∆(N(u)) > ∆(N(v)) for ∀u ∈ S1 and ∀v ∈ S2. Assume that

Cmax(G1) = C1
max(G1)C2

max(G1) · · ·Ck−1
max(G1), (18)

Cmax(G2) = C1
max(G2)C2

max(G2) · · ·Cl−1
max(G2), (19)

If ∆(G1) = ∆(G2), then Cmax(G) satisfies the following equation:

Cmax(G) = C1
max(G)C2

max(G) · · ·Ck−1
max(G)Ck

max(G)Ck+2
max(G) · · ·Ck+l−1

max (G), (20)

where

C1
max(G) = C1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, C2

max(G) = C2
max(G1)

l︷ ︸︸ ︷
00 · · · 0 ·

Ck−1
max(G) = Ck−1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, Ck

max(G) =

l︷ ︸︸ ︷
00 · · · 0, Ck+1

max(G) = C1
max(G2),

Ck+2
max(G) = C2

max(G2), · , Ck+l−1
max (G) = Cl−1

max(G2).

Proof. By the condition of Theorem 9, it follows that for ∀u ∈ S(G1) and ∀v ∈ S(G2) inequality
∆(N(u)) > ∆(N(v)) holds. By Theorem 3, one has to pick the first node u1 of MaxQ(G) from G1 so
that get Cmax(G).

By Diffusion Theorem 6, one must choose u2, u3, · · · , uk into MaxQ(G) from G1 to get Cmax(G).
Besides, by Diffusion Theorem 6, one has to pick the following l nodes into MaxQ(G) from G2. By (18)
and (19), it can be seen that (21) is correct.

Cmax(G) = C1
max(G)C2

max(G) · · ·Ck−1
max(G)Ck

max(G)Ck+2
max(G) · · ·Ck+l−1

max (G), (21)

where

C1
max(G) = C1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, C2

max(G) = C2
max(G1)

l︷ ︸︸ ︷
00 · · · 0, · ,

Ck−1
max(G) = Ck−1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, Ck

max(G) =

l︷ ︸︸ ︷
00 · · · 0, Ck+1

max(G) = C1
max(G2),

Ck+2
max(G) = C2

max(G2), · , Ck+l−1
max (G) = Cl−1

max(G2).

It can be observed that to guarantee the maximization of Cmax(G), one has to add l 0 after
C1

max(G1), C2
max(G1), · · · , Ck−1

max(G1) respectively and make Ck
max(G) be equal l 0.

4. Our Algorithms for Calculating the Canonical Labeling

In the Section, based on the outcomes of the previous sections, we offer our algorithms for
calculating canonical labelings of graphs. We describe the main steps required for calculating the
canonical labeling Cmax(G) of G. When our algorithm has computed the vertex u1 of MaxQ(G), then,

Mathematics 2019, 7, 690 19 of 35

it builds the neighborhood subgraph N(u1) of the vertex u1 (see Figures 3a and 4a), from which
it chooses a few nodes into MaxQ(G). For the convenience of description, we name this process
Procedure 1. Then once more, it constructs the neighborhood subgraph N(S2) of the vertices set
S2 = {u1, u2} (see Figures 3b and 4b), from which it chooses a few nodes into MaxQ(G). We name
this process Procedure 2. · · · . Then once more, it constructs the neighborhood subgraph N(Sr) of
the vertices set Sr = {u1, u2, · · · , ur} (see Figures 3c and 4c), from which it chooses a few nodes into
MaxQ(G). We name this process Procedure r. · · · . This process lasts until it places all nodes in G into
MaxQ(G) (see Figures 3d and 4d).

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

2
61014

18
22 26 30

1

(a)

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

1014
18

22 26

6

30
31 2

(b)

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

14
18

22 26

10

30
3

7

1 2
6

(c)

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

14
18

22
3

10

26

7

31

1 2
6

30

(d)

Figure 3. The 1-neighborhood subgraphs for the different nodes sets of a wheel graph G. (a) A wheel
graph G and the 1-neighborhood subgraph N(1) of the node 1; (b) The 1-neighborhood subgraph N(S1)

of the nodes set S1 = {1, 2}; (c) The 1-neighborhood subgraph N(S2) of the nodes set S2 = {1, 2, 6};
(d) The 1-neighborhood subgraph N(S3) of the nodes set S3 = {1, 2, 6, 30}.

For Procedure 1, after computing N(S1), by Lemma 4, our algorithm orders all vertices of N(S1)

into a sole linkage L1 (observe Algorithm 1). For clarify, make V1 = V(N(S1)). If there are two vertices
vi, vj ∈ L1 meeting condition vi � vj concerning N(S1), then it proceeds to decide whether vi � vj or
vi ≺ vj concerning G. If vi � vj, it repositions vi in front of the vj in L1. Otherwise, it repositions vi in
back of the vj in L1.

For every Procedure r, r = 2, 3, · · · , when computing N(Sr), our algorithm successively calculates
V2 = V(N(Sr−1)∩N(ur)) (see Figure 5d), V3 = V(N(Sr−1)−N(ur)) (see Figure 5e), V4 = V(N(ur)−
N(Sr−1)) (see Figure 5f) and the degree sequences dN(Sr)(V1), dN(Sr)(V3), dN(Sr)(V4) in decreasing
order respectively, where Sr−1 = {u1, u2, · · · , ur−1}. It can be shown that V2 ∪ V3 ∪ V4 = V(N(Sr))

and Vi ∩ Vj = ∅ for i 6= j, i, j = 2, 3, 4. By Lemma 4, it orders all vertices of Vi into a sole linkage Li
(observe Algorithm 1) for the neighborhood subgraph N(Sr) with i = 2, 3, 4, respectively.

Next, our algorithm successively executes the following processing paces for the vertices of Li
with i = 2, 3, 4:

1. Beginning from the front of L2, it, in turn, decides whether every vertex u ∈ L2 meets the degree
multiplicity condition dmN(Sr)(u)= 1. If the number of nodes meeting condition dmN(Sr)(u)= 1 is
less than 2 in L2, it places u into MaxQ(G). If there are two vertices vi, vj ∈ L2 meeting condition
vi � vj concerning N(Sr), then it proceeds to decide whether vi � vj or vi ≺ vj concerning

Mathematics 2019, 7, 690 20 of 35

G. If vi � vj, it repositions the vi in front of the vj in L2 (observe Algorithm 1). Otherwise,
it repositions the vi in back of the vj in L2 (view Algorithm 1).

2. Excluding the vertices added into MaxQ(G), it utilizes a queue Q to save the middle vertices of
MaxQ(G). After executing Step 1, it consecutively decides whether or not each node u ∈ L2 is
in Q. If u is in Q and the number of vertices added into MaxQ(G) is less than 2 in the previous
process, it inserts u on the tail of MaxQ(G) and concurrently deletes u from the head of Q.
Otherwise, it places u on the back of Q.

3. For L3, if the number of nodes of L2, added into MaxQ(G), is 0 and the number of nodes
meeting condition dmN(Sr)(u)= 1 with u ∈ L3 is less than 2, it inserts u on the back of MaxQ(G).
The remaining procedure steps are the same as for L2.

4. For L4, if the number of nodes of L2 and L3, added into MaxQ(G), is 0 and the number of
nodes meeting the condition dmN(Sr)(u)= 1 with u ∈ L4 is less than 2, it places u on the back of
MaxQ(G). The remaining procedure steps are the same as for L2.

Algorithm 1: Order all vertices of Vi into a sole linkage Li for a neighborhood subgraph N(Sr)

with i = 1, 2, 3, 4, respectively where V1 = V(N(S1).

Input :

1. An undirected connected graph G of n vertices and the neighborhood subgraph
N(Sr) = (V(N(Sr)), E(N(Sr))) of a vertices set Si ⊆ V(G).

2. A vertices set Vi = {v1, v2, · · · , vt} deposited in an array VertexArray.

Output : A list L utilized to save and order all vertices of the linkage Li.

1 l ← 1; j← 1; sign← 0 ;

2 Set the initial values of local parameters VertexMax, Vertex ;

3 Rank the degree sequence dN(Sr)(Vi) = (dN(Sr)(v1), dN(Sr)(v2), · · · , dN(Sr)(vt)) in non-increasing
order;

4 for (l ← 0 to t− 2){

5 VertexMax ← VertexArray[l];

6 for (j← l + 1 to t− 1){

7 Vertex ← VertexArray[j];

8 sign← 0;

9 Contrast_Two_Vertices(N(Sr), VertexMax, Vertex, sign); // observe Algorithm 2;

10 if (sign == 0)then // VertexMax � Vertex regarding N(Sr)

11 move back to the start of the for-loop;

12 else if (sign == 1)then // VertexMax ≺ Vertex regarding N(Sr)

13 VertexMax ← Vertex;

14 else if (sign == 2)then // VertexMax � Vertex regarding N(Sr)

15 sign← 0;

16 Contrast_Two_Vertices(G, VertexMax, Vertex, sign); // observe Algorithm 2;

17 if (sign == 0 or 2)then // VertexMax � Vertex regarding G

18 move back to the start of the for-loop;

19 else if (sign == 1)then // VertexMax ≺ Vertex regarding G

20 VertexMax ← Vertex;

21 Attach the VertexMax to the tail of the list L;

Mathematics 2019, 7, 690 21 of 35

Algorithm 2: Contrast the entire di f f usion degree sequences dσ
H [N1(v)], dσ

H [N2(v)], · · · ,
dσ

H [Nρ(v)(v)] and dσ
H [N1(w)], dσ

H [N2(w)], · · · , dσ
H [Nρ(w)(w)] of two vertices v and w in H.

1 void Contrast_Two_Vertices(Graph H, CNode v, CNode w, int &sign)

2 {

3 r ← 0; k← 0; sign← 0;

4 while (r <= ρ(v) and r <= ρ(w)){ // r <= di f f usion radius ρ(v) and ρ(w)

5 r ← r + 1; k← 1;

6 Determine the r neighborhood subgraph Nr(v) of v in H;

7 Determine the p connected components H1, H2, · · · , Hp of Nr(v);

8 Work out the entire di f f usion degree sequence dσ
H [Nr(v)] = (dσ(H1), dσ(H2), · · · ,

dσ(Hp)), meeting conditions dσ(H1) ≥ dσ(H2) ≥ · · · ≥ dσ(Hp);

9 Determine the r neighborhood subgraph Nr(w) of w in H;

10 Determine the l connected components J1, J2, · · · , Jl of Nr(w);

11 Work out the entire di f f usion degree sequence dσ
H [Nr(w)] = (dσ(J1), dσ(J2), · · · , dσ(Jl)),

meeting conditions dσ(J1) ≥ dσ(J2) ≥ · · · ≥ dσ(Jl);

12 while (k <= p and k <= l){

13 sign← 0;

14 // Contrast two di f f usion degree sequences (observe Algorithm 3)
Contrast_Two_Di f f usion_Degree_Sequences(H, Nr(v), Nr(w), dσ(Hk), dσ(Jk),
sign);

15 if (sign == 0 or sign == 1)then // v � w or v ≺ w regarding H

16 return;

17 k← k + 1;

18 if (k <= p and k > l)then

19 sign← 0; return; // v � w regarding H;

20 else if (k > p and k <= l)then

21 sign← 1; return; // v ≺ w regarding H;

22 if (r <= ρ(v) and r > ρ(w))then

23 sign← 0; return; // v � w regarding H;

24 else if (r > ρ(v) and r <= ρ(w))then

25 sign← 1; return; // v ≺ w regarding H;

26 else

27 sign← 2; return; // v � w regarding H;

28 }

Mathematics 2019, 7, 690 22 of 35

Algorithm 3: Contrast two di f f usion degree sequences dσ(Hk) and dσ(Jk) of two vertices v and
w in H.

1 void Contrast_Two_Diffusion_Degree_Sequences(Graph H, Graph Nr(v), Graph Nr(w),
QueueArray dσ(Hk), QueueArray dσ(Jk), int &sign)

2 {

3 d1 ← 0; d2 ← 0; m← 0; l ← 1;

4 Assume di f f usion degree sequences dσ(Hk) = (dNr(v)(V0), dNr(v)(V1), · · · , dNr(v)(Vs));
// Meet V0 ∨V1 ∨ · · · ∨Vs = V(Hk) and Vi ∩Vj = ∅ for i 6= j, i, j = 0, 1, · · · , s;

5 Assume di f f usion degree sequences dσ(Jk) = (dNr(w)(U0), dNr(w)(U1), · · · , dNr(w)(Ut));
// Meet U0 ∨U1 ∨ · · · ∨Ut = V(Jk) and Ui ∩Uj = ∅ for i 6= j, i, j = 0, 1, · · · , t;

6 while (m <= s and m <= t){ // m <= s and m <= t

7 Assume the degree sequence dNr(v)(Vm) = (dNr(v)(a1), dNr(v)(a2), · · · , dNr(v)(aj), · · · ,
dNr(v)(aλ)) in non-increasing order;// Meet Vm = {a1, a2, · · · , aλ};

8 Assume the degree sequence dNr(w)(Um) = (dNr(w)(b1), dNr(w)(b2), · · · , dNr(w)(bj), · · · ,
dNr(w)(bµ)) in non-increasing order;// Meet Um = {b1, b2, · · · , bµ};

9 while (l <= λ and l <= µ){

10 d1 ← dNr(v)(al); d2 ← dNr(w)(bl);

11 // Contrast d1 and d2 (observe Algorithm 4);

12 Contrast_d1_and_d2(m, d1, d2, sign);

13 if (sign == 0 or sign == 1)then

14 return; // dσ(Hk) 6= dσ(Jk) regarding H;

15 l ← l + 1;

16 if (l <= λ and l > µ)then

17 sign← 0; return; // dσ(Hk) > dσ(Jk) regarding H;

18 else if (l > λ and l <= µ)then

19 sign← 1; return; // dσ(Hk) < dσ(Jk) regarding H;

20 m← m + 1; l ← 1;

21 if (m <= s and m > t)then

22 sign← 0; return; // dσ(Hk) > dσ(Jk) regarding H;

23 else if (m > s and m <= t)then

24 sign← 1; return; // dσ(Hk) < dσ(Jk) regarding H;

25 else

26 sign← 2; return; // dσ(Hk) == dσ(Jk) regarding H;

27 }

Mathematics 2019, 7, 690 23 of 35

Algorithm 4: Contrast d1 and d2.

1 void Contrast_d1_and_d2(int m, int d1, int d2, int &sign)

2 {

3 sign← 0;

4 if (m == 0)then

5 if (d1 < d2)then

6 sign← 0; return;

7 else if (d1 > d2)then

8 sign← 1; return;

9 else

10 if (d1 > d2)then

11 sign← 0; return;

12 else if (d1 < d2)then

13 sign← 1; return;

14 sign← 2; return;

15 }

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

24 26

18

32

25

(a)

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

18

32

17

31

2623 2524

(b)
1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

26

3231

19

23

17

11

2524

18

(c)

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

26

19

33

23

17

31

11

39

2524

18

32

(d)

Figure 4. The 1-neighborhood subgraphs for the different nodes sets of the 7× 7 grid graph G7,7. (a) A
graph G and the 1-neighborhood subgraph N(25) of the node 25; (b) The 1-neighborhood subgraph
of the nodes set S1 = {24, 25}; (c) The 1-neighborhood subgraph of the nodes set S2 = {24, 25, 18};
(d) The 1-neighborhood subgraph of the nodes set S3 = {24, 25, 18, 32}.

Mathematics 2019, 7, 690 24 of 35

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

(a)

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

2
61014

18
22 26 30

1

(b)

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

1
6

30
32

(c)

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

6

30
2

(d)

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

14
18

22

10

26

22

(e)

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

1 31

(f)
Figure 5. A wheel graph G, the 1-neighborhood subgraphs N(1) and N(2) and the three related
vertices sets produced by the boolean operations of N(1) and N(2). (a) A wheel graph G; (b) The
neighborhood subgraph N(1); (c) The neighborhood subgraph N(2); (d) V(N(1))∩V(N(2)) = {6, 30};
(e) V(N(1))−V(N(2)) = {10, 14, 18, 22, 26}; (f) V(N(2))−V(N(1)) = {3}.

Our algorithm utilizes an array MaxQ to save the vertices of MaxQ(G) and an array Q to store
the vertices to be added to MaxQ(G) briefly. Our algorithm has been optimized by Lemmas 2 and 3.

The results of experiments show that our method is a new approach by which one can precisely
determine TopMost graphs (defined in Section 2) for many classes of graphs, including trees,
grid graphs, wheel graphs, hypercube graphs, king graphs, triangular graphs and so on. Figures 6–23
given by our software display the accuracy of our software for computing TopMost graphs of these
graph classes aforesaid.

1 2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

(a)

1 2
3

4

5

6

7

8
9 10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

(b)

2 3 4 5
6

7
8

9

10

11

12

13

14
15

16
17

18192021
22

23
24

25

26

27

28

29

30
31

32
33

(c)

1 2

3

4

5

6

7

8
9

10

11

12

1314

1516

17
18

19
20

21

22

23

24

25
26

27

28

29

30

3132

(d)

Figure 6. The TopMost graphs of two graphs, including a wheel graph G and the graph G− u with
u = 1 ∈ V(G). (a) A wheel graph G with 33 nodes and 64 edges; (b) The TopMost graph of G; (c) The
graph G− u of 32 vertices and 56 edges; (d) The TopMost graph of G− u.

Mathematics 2019, 7, 690 25 of 35

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

(a)

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99 100

(b)

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

44

45

46

47

48

51

52

53

56

57

60

61

64

65

68

69

7279

8288

40

41

42

43

49

50

54

55

58

59

62

63

66

67

70

71

73

74

75

76

77

78

80

81

83

84

85

86

87

89

90

91

92

93

95

96

9497

9899

(c)

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

9697

(d)

Figure 7. The TopMost graphs of three graphs, including the 10× 10 grid graph G10,10, G10,10 − u,
G10,10 − u− v− w with u = 73, v = 88, w = 97 ∈ V(G10,10). (a) A 10× 10 grid graph G10,10 of 100
vertices and 180 edges; (b) The TopMost graph of G10,10; (c) The TopMost graph of G10,10 − u; (d) The
TopMost graph of G10,10 − u− v− w.

39

38
37

36

35

34

33

32

31

30

29

28

27

26

2524

23

22

21 20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5
4

3

2

1

(a)

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28
29

30

31 32

33

34

35

36

37

38

39

(b)

42

41

40

39

38

37

36 35
34

33

32

31

30

29

28

27
26

25

24

23 22
21

20
19

18

17 16

15

14

13

12

11

10

98

7

6
5

43

2

1

(c)

1

2

3

4

5

6

7 8
9

10

11

12

13

14

15

16
17

18

19

20 21
22

23
24

25

26 27

28

29

30 31

32

33

34
35

36

37

38

39

40
41

42

(d)
Figure 8. The TopMost graphs of two trees T1 and T2. (a) A tree T1 of 39 vertices and 38 edges; (b) The
TopMost graph of T1; (c) A tree T2 of 42 vertices and 41 edges; (d) The TopMost graph of T2.

Mathematics 2019, 7, 690 26 of 35

1

12

2

11

3

10

4

9

5
6

7

8

1716

181920

15

21

1413

22

(a)

53

52

33

31

30

23

51

25

28

21

13

47

38

27

16

50

26

24

32 20

12
11

49

48

45

4342

41

36

35 34

17

15

14

10

9

7

22

19

5

4

46

44

40
39

18

8

6

2

37
29

3
1

(b)

49

48

42

40

34

33

20

41

3837
27

28

26

23

22

14

15

7

47
39

36

35

25
2119

24
18

17

1613
9 3

5 2

46
44

45

32
31

30

29
1

8

11

10
6

4

43

12

(c)

1

2

3

4

56

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

(d)

1

23

24

27

45

2

52

3

26

22

32

25

51
53

4

5

6 7

89

10

1112

13 14
15

16

17

18

19 20

21
28

29

30

31

33
34

35

36

37 38

39

40

41

42
43

44

46

47

48

49

50

(e)

1

2

8

10

16

17

31

9

1214
24

23

22

28

29

37

36

44

3
11

13

15

26
3034

27
32

33

3538
41 47

48 49

4
5

6

18
19

20

21
25

42

43

40
45

46

7

39

(f)

Figure 9. The TopMost graphs of three graphs G1, G2 and G3. (a) A graph G1 of 22 vertices and
37 edges; (b) A graph G2 of 53 vertices and 80 edges; (c) A graph G3 of 49 vertices and 78 edges; (d) The
TopMost graph of G1; (e) The TopMost graph of G2; (f) The TopMost graph of G3.

20

24

22

21

16

12

6

26

25

23

18

17

14

13

10

8

7

4

2

27

19

15

11

9

5

3

1

(a)

57

53

45

43

29

27

23

22

61

59

58

55

54

49

47

46

44

41

37

35

31

30

28

25

24

21

19

18

13

11

7

6

63

62

60

56

51

50

48

42

39

38

36

33

32

26

20

17

15

14

12

9

8

5

3

2

64

52

40

34

16

10

4

1

(b)

75 74
71 70

69 68
67 66

65 64
63 62

61 60
59 58

56
54

53
52

51
50

49
48

46
44

43
42

41
40

39
38

26

25

24

23 22 21 20

72 55 45

34

32

30

17

16

15

13 12 11

76
73

57 47

36
35

33

31

28

27

19

18

14 10

8

7

6

4 3 2

77 37

29

9

5 1

(c)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1617

18

19

20

21

22

23

24

25

26

27

(d)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

(e)

1
2

3

4

5
6

7

8

9

10 11

12

13

14

15

16

17
18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
38

39

40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
62

63

64

65

66
67

68

69

70

71

72

73
74

75

76

77

(f)

Figure 10. The TopMost graphs of three graphs G3,3,3, G4,4,4 and G4. (a) The 3× 3× 3 grid graph G3,3,3

of 27 vertices and 54 edges; (b) The 4× 4× 4 grid graph G4,4,4 of 64 vertices and 144 edges; (c) A
graph G4 of 77 vertices and 196 edges; (d) The TopMost graph of G3,3,3; (e) The TopMost graph of G4,4,4;
(f) The TopMost graph of G4.

Mathematics 2019, 7, 690 27 of 35

10099

98

97

96

9594

9392

91

90 89

88

87

86 85

84

83

82

81

80

79

7877

76

75

74

7372

71

70

69

68

67

66

65

64

63

62

6160

59

58

57

56 55

54

53

5251

50

49

4847

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32

31

3029

28 27 26

25

24

23

22

21

20 19

18

17

16

15

14

13

12 11

10

9 8

7

6

5

4 3

2 1

(a)

24
23

22

21

20

19

18

17

16

15

14
13

12
11

10

9

8

7

6

5

4

3

2
1

(b)

38 37 36
35 34 33

32 31 30 29
28 27

26 25 24 23
22 21 20 19 18 17

16 15 14 13

12 11
10 9

8 7
6 5 4 32 1

(c)

1 2

3 4

5 6

7

8

9

10

11

12

13 1415 16

17 1819 20

21

22

23

24

25

26

27

28

29

30

31 3233 3435 36

37 3839 4041 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 5859 6061 6263 64

65 6667 6869 7071 72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91 9293 9495 9697 9899 100

(d)

1
2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23
24

(e)

1

2

3
4

5

6

7
8

9

10 11

12

13
14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30
31

32

33

34
35

36

37
38

(f)

Figure 11. The TopMost graphs of three graphs G5, G6 and G7. (a) The 10 × 10 king graph G5

of 100 vertices and 342 edges; (b) The musical graph G6 of 24 vertices and 60 edges; (c) The
Barnette-Bosák-Lederberg graph G7 of 38 vertices and 57 edges; (d) The TopMost graph of G5; (e) The
TopMost graph of G6; (f) The TopMost graph of G7.

16

15

14

13

12

11

10

9

8

7
6

5

4

3

2

1

(a)

10

9

87

6

5

4

3 2

1

(b)

16
15

14

13

12

11

10

9

8

7 6

5
4

3

2

1

(c)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(d)

1

2

3

4

5

6

7

8

9

10

(e)

1

2 3

4

5

6

7

8

9

10 11

12

13

14

15

16

(f)

Figure 12. The TopMost graphs of three regular graphs G8, G9 and G10. (a) The 4-hypercube graph G8

of 16 vertices and 32 edges; (b) The triangular graph G9 of 10 vertices and 30 edges; (c) The Clebsch
graph G10 of 16 vertices and 40 edges; (d) The TopMost graph of G8; (e) The TopMost graph of G9;
(f) The TopMost graph of G10.

Mathematics 2019, 7, 690 28 of 35

12

11

10

9

8

7

6

5

43

21

(a)

10096 99

97

98

90

92

94

95

93

9182

85

87

86 77

88

89

78

79

81

84

83

80

72

71

73

74

76

75

69

68

70

66

67

65

6463 60

62

61

59

58

56

54

57

55

49

46

52

53

51

50

48

45

42

43

47

44

38

39

37

36

41

40

3534

33

32 31

30 27

28

29 26

24

25

23

21

20

22 19

18 17

16 15

14 11

12

13 10

8

9

7

5

4

6 3

2 1

(b)

10097 99

9894 96

95

93

8784 86

83

85

78

79

77

82

81

80

73

75

76

74

72

42

39

4046

3843

4449 48

4147 45

92

91

90

89

88

66 70

65

71

68

69

63

61

62

64

58

59

57

56

60

67

31

30

33

3428

27

32

29

36

3537

55

53

54 52

51 50

26

21 24

25

19

18

22

17

23

20

1612 15

8

9

14

4

11

10

6

13

357

2

1

(c)

1

2

3

4

5

6

7

8

910

1112

(d)

15 2

4

3

11

9

7

6

8

1019

16

14

15 24

13

12

23

22

20

17

18

21

29

30

28

27

25

26

32

33

31

35

34

36

3738 41

39

40

42

43

45

47

44

46

52

55

49

48

50

51

53

56

59

58

54

57

63

62

64

65

60

61

6667

68

69 70

71 74

73

72 75

77

76

78

80

81

79 82

83 84

85 86

87 90

89

88 91

93

92

94

96

97

95 98

99 100

(e)

14 3

27 6

10

14

511 9

12

8

16

15

19

13

17

18

22

21

20

23

25

24

26

2728

2930

3132 35

3334 36

37

38

45

52 56

40 39

41

43 42

44 47

49

50

53

57

55

58

62

61

59

46

48 51

54

60

63

67

6664

6568

69 70

72

71 73

76

74

75 77

79 80

78

82

81

83

84

85 87

86

89

88

91

90

93

92

95

94

97

9698

99

100

(f)

Figure 13. The TopMost graphs of three unconnected graphs G11, G12 and G13. (a) A disconnected
graph G11 with 12 nodes and 12 edges; (b) A disconnected graph G12 that has four connected
components and a total of 100 vertices and 160 edges; (c) A disconnected graph G13 that has four
connected components and a total of 100 vertices and 131 edges; (d) The TopMost graph of G11; (e) The
TopMost graph of G12; (f) The TopMost graph of G13.

20
1918

17

16

1514
13

12

11

10

9

8

7

6

5 4

3

2

1

(a)

17

16

15

14
1312

11

10

9

8

7

6
5 4

3

2

1

(b)

14

13

12

11

10

9

8

7

6

5

4

3

2

1

(c)

1
2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

1920

(d)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(e)

1

2

3

4

5

6

7

8

9

10

11

12

13
14

(f)

Figure 14. The TopMost graphs of three graphs G14, G15 and G16. (a) A Hamiltonian Graph G14 of 20
vertices and 30 edges; (b) The 6-Andrásfai graph G15 of 17 vertices and 51 edges; (c) The 7-antiprism
graph G16 of 14 vertices and 28 edges; (d) The TopMost graph of G14; (e) The TopMost graph of G15;
(f) The TopMost graph of G16.

Mathematics 2019, 7, 690 29 of 35

10

9

87

6

5

4

3 2

1

(a)

24 23

22

2120

19

18

17

16

15

14

13

1211

10

9 8

7

6

5

4

3

2

1

(b)

24 23

22

21

20

19

1817

16

15
14

13

1211

10

9

8

7

6 5

4

3
2

1

(c)

1

2

3

4

5

6

7

8

9

10

(d)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

(e)

1

6

13

14

15

16

17

18

19

20

22

24

2

3

8

10

11

12

4

5

7

9

21

23

(f)

Figure 15. The TopMost graphs of three graphs K(5,5), G17 and G18. (a) The complete bipartite graph
K(5,5) of 10 vertices and 25 edges; (b) The 12-crossed prism graph G17 of 24 vertices and 36 edges;
(c) The 6th order cube-connected cycle graph G18 of 24 nodes and 36 edges; (d) The TopMost graph of
K(5,5); (e) The TopMost graph of G17; (f) The TopMost graph of G18.

30 29

28
27

26

25

24

23

22

21

20
19

18
1716

1514

13
12

11

10

9

8

7

6

5
4

3
2 1

(a)

24
23

22

21

20

1918

17

16

15

14

13

12
11

10

9

8

7 6

5

4

3

2

1

(b)

48 4746

45
44

4342

41

40

39

38

37

36

35

34

33

32

31

30
29

28

27

2625

2423 22

21
20

19 18

17

16

15

14

13

12

11

10

9

8

7

6
5

4

3

2 1

(c)

1

2

30

45

3

19

20
21

6

7

8

9

10

11

12

13

14

15

16

17

18

22

23

2425

26

27

2829

(d)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2324

(e)

12

3

4

5

6

7

8 9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

(f)

Figure 16. The TopMost graphs of three graphs G19, G20 and G21. (a) The Icosidodecahedral Graph
G19 with 30 nodes and 60 edges; (b) The truncated octahedron graph G20 with 24 nodes and 36 edges;
(c) The great rhombicuboctahedron graph G21 of 48 nodes and 72 edges; (d) The TopMost graph of G19;
(e) The TopMost graph of G20; (f) The TopMost graph of G21.

Mathematics 2019, 7, 690 30 of 35

2827

26
2524

23

22

21

20

19

18
17

16

15
1413

12
11

10

9
8

7

6

5

4

3
2 1

(a)

24

23

22

21

20

19

18

17

16

15

14

13

12 11

10

9

8

7

6 5

4

3

2

1

(b)

32
31

30
29

28

27

26

25

24

23

22

21

20
19

18
17

16
15

14
13

12

11

10

9

8

7

6

5

4
3

2
1

(c)

1

2
3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19

20
21

2223

24

25

26
27

28

(d)

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

(e)

1
2

3

4 7

8 9

10
12

14

26
28

32

5

6

11

13

15

16

17

18

1920

21

22

23

24

25

27

29

30

31

(f)

Figure 17. The TopMost graphs of three graphs G22, G23 and G24. (a) The coxeter graph G22 of 28
vertices and 42 edges; (b) The Nauru graph G23 with 24 nodes and 36 edges; (c) The Dyck graph G24 of
32 nodes and 48 edges; (d) The TopMost graph of G22; (e) The TopMost graph of G23; (f) The TopMost
graph of G24.

5

15

6

11

7

17
16

14

13

12

10

9 8

4 3

2 1

(a)

20 19 18

17

16

15

1413

12

11

10

9
8

7

6

5

4

3

2

1

(b)

24 23
22

21

20

19

18

17
16

15

14
13

1211
10

9

8

7

6

5
4

3

2
1

(c)

12

3

4

5 6

7

89

10

11

12

13

14
15

16

17

(d)

1

23

4

5

6

7

8

9

10
11

12

13

14

1516

17

18
19

20

(e)

1
17

19
23

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

18

20

21

22

24

(f)

Figure 18. The TopMost graphs of three graphs G25, G26 and G27. (a) The Errera graph G25 of 17
vertices and 45 edges; (b) The Folkman graph G26 with 20 nodes and 40 edges; (c) A fullerene graph
G27 of 24 nodes and 36 edges; (d) The TopMost graph of G25; (e) The TopMost graph of G26; (f) The
TopMost graph of G27.

Mathematics 2019, 7, 690 31 of 35

15

14

13
1211

10

9

8

7

6
5 4

3

2

1

(a)

38

30

26

18

13

6

37

36 35 34 33

32 31 29 28

27 25 24 23 22

21 20 19 17 16 15

14 12

11 10 9

8 7 5 4

3 2 1

(b)

16

15
14

13

12

11

10

9

8

7
6

5

4

3

2

1

(c)

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

(d)

1

33

35

2

3

4

5

9

11

22

23

24

25

26

27

28

29

34

6

7

8

10

12

13

14

15

16 17

18 19

20

21

30

31

32

36

3738

(e)

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

(f)

Figure 19. The TopMost graphs of three graphs G28, G29 and G30. (a) A generalized quadrangle graph
G28 with 15 nodes and 45 edges; (b) A pentagonal icositetrahedral graph G29 with 38 nodes and
60 edges; (c) A Shrikhande graph G30 of 16 nodes and 48 edges; (d) The TopMost graph of G28; (e) The
TopMost graph of G29; (f) The TopMost graph of G30.

38

35

30

29

21

18

13

12

42

41
40

39

37
36

34

33
32

31

28
27

26

25

24
23

22

20
19

17

16
15

14

11
10

9

8

7

65

4

3

2

1

(a)

47

40

35

28

23

16

11

4

48 46
45

4443

42
41

39
38

37

36

34

33

32

31

30
2927

26
25

2422
21

20 19

18
17

15
14

13

12

10

9

8

7

6
5 3

2
1

(b)

46

45

44 43 42 41 40 39

37 36 35 34 33 32 31 30 29 28

27 26 25 24

23 22 21 20 19 18 17 16 15 14

13 12 11 10 9 8

7 5

2 1

(c)
12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25
26

27

28

29

30
31

32

33
34

3536

37

38

39

404142

(d)

12

3

3640

42

4445

46
47

48

4

5

9

10

12
29

32

35

37
38

39

41

43

6

7

8

11

13

14

15

16

17

18

19

20

21
22

23 24

25
26

27
28

30
31

33 34

(e)

12

3

4

5

6

7 8

9 10

11

12

13 14

15 16

17

18

19

20

21

23

24

2526

27

28

3031

32

33

34 35

36

3738

39

40

41

42

22 29

(f)

Figure 20. The TopMost graphs of three graphs G31, G32 and G33. (a) The Wiener-Araya graph G31

of 42 vertices and 67 edges; (b) The Zamfirescu graph G32 with 48 nodes and 76 edges; (c) The
Faulkner-Younger graph G33 of 42 nodes and 62 edges; (d) The TopMost graph of G31; (e) The TopMost
graph of G32; (f) The TopMost graph of G33.

Mathematics 2019, 7, 690 32 of 35

30 29
28 2726

25

24

23

22

21

20

19

18

17

1615

1413

12

11
10

9

8

7

6

5

4
3

2

1

(a)

7

1011

6

16 15 14 13

12 9

8 5

4 3 2 1

(b)

22 21

16 15

28 27

23 20

17 14

10 9

34 33

29 26

24 19

18 13

11 8

4 3

35 32

30 25

12 7

5 2

36 31

6 1

(c)

1 2

3

4

5

6

7
8

9

10

1112

13

14

15

16

17

18

19

20
2122

23
24

25

26

27
28

29

30

(d)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(e)

1

2

3

4

5

67

8

9

10

11

12

1314

15

16

17

1819

20

21

22

23

24

25

26

27

2829 30

31 32

3334

3536

(f)

Figure 21. The TopMost graphs of three graphs G34, G35 and G36. (a) A triangle-replaced graph G34

with 30 nodes and 45 edges; (b) The 4-dimensional Keller graph G35 of 16 vertices and 46 edges; (c) The
6× 6 knight graph G36 of 36 nodes and 80 edges; (d) The TopMost graph of G34; (e) The TopMost graph
of G35; (f) The TopMost graph of G36.

20

19
18

17
16

15

14
13

12
11

10
9

8
7

6

5
4

3
2

1

(a)

24
23

22

21

20
19

18
17

16

15

14

13 12

11

10

9 8

7

65

4
3

2

1

(b)

3417
33

32

31

30

2928
27

26

25

24

2322

21

20
19

18

16

15

14

13

12 11
10

9

8

7

6 5

4

3
2

1

(c)

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(d)

1

2
3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

(e)

134

18

19

20

21

22

23

26

27

2

3

4

5

10
11

8
9

12

13

24
25

28
29

6

7

14

15

16

17

30

31

32

33

(f)

Figure 22. The TopMost graphs of three graphs G37, G38 and G39. (a) The Folkman graph G37 of 20
vertices and 40 edges; (b) The 24-cell graph G38 with 24 nodes and 96 edges; (c) The Thomassen graph
G39 of 34 nodes and 52 edges; (d) The TopMost graph of G37; (e) The TopMost graph of G38; (f) The
TopMost graph of G39.

Mathematics 2019, 7, 690 33 of 35

1

14

17

15

16

4
3

2

13

12
11

5

6

7

8

9

10

24

25

26 21
22

23
1819

20

(a)

1

8

3

9

6

10

4 5

7

2

1615

17

182019

14 12 1311

24

22

2321

2729 3028

2625

36

35

37

38

39

40

32

34

3331

(b)

31

10

2

9

24

32

30

33 39

17

6

13

1

22

14

5

37 36

27

40

23

44

29

34

16

12

7

19

3

4

20

21

8

18

15

11

43

28

35

2625

42

38

41

(c)

1

2

3

4

5

6
7

8

9

10
11

13

12

14

15

17

16

19

18

20 21
23

22
2625

24

(d)

1 2

3

4

5

6

7 8

9

10

1112

1314 1516

18

17

20 19

22 2124 23

25

27 26 28

2930

3132

3334 3536

383740 39

(e)

1

2

3

4

8

9

6

7 5

10

11

12

14

13

16

15

17 18

19

20

22

21

24

23

25

26

27

28

31

32

29

30

35

36

34

33

37

38

39

4042

41

44

43

(f)

Figure 23. The TopMost graphs of three graphs G40, G41 and G42. (a) The projective plane graph
G40 of 26 vertices and 52 edges; (b) The Miyazaki graph G41 with 40 nodes and 60 edges; (c) The
Cubic Hypohamiltonian graph G42 of 44 vertices and 75 edges; (d) The TopMost graph of G40; (e) The
TopMost graph of G41; (f) The TopMost graph of G42.

5. Software Implementation

Utilizing the theory specified in the previous sections, we made a kit of software means called
GraphLabel to calculate canonical labelings of graphs. Our experimental conditions included an
Intel(R) Core(TM)2 Quad CPU Q6600 @2.40 GHz with 4.00 GB of RAM. The operating system
was Microsoft Windows 8.1 Professional Edition. The graphics card was an NVIDIA GeForce
9800 GT. The display resolution was 1024× 768× 32 bits (RGB). The internal hard drive was 500 GB.
The programming environment was Microsoft Visual C++ 2012.

The software utilized object-oriented technique to construct many related classes, including CNode,
CNodeNeighbor, CEdge, CEdgeNeighbor, CGraph and so on. A complete explanation of the software
functions is beyond the range of this paper. We will fully describe it in the other articles. All figures
displayed in this article were created by employing our software system.

We chose a graph collection to check the correctness of our algorithms. We used our
own software program to generate a large number of graphs randomly as the test cases,
including Figures 7c,d, 8, 9 and 10c. Besides, for enhancing the depth and breadth of experimentation,
we also adopted many test cases from the online library [31] and library of benchmarks [32],
including Figures 6, 7a, 10a,b and 11–23.

We applied our algorithms to as many classes of graphs as potential. These graphs presented here
are only a small portion of the check graphs since the length of the paper is restricted. For comparing
entirely, we offer both the initial and the resulting graph.

6. Summary and Future Work

In short, we get the following results: by Theorems 2–9, the paper has built a comparatively entire
theoretical frame for computing the canonical labelings and TopMost graphs of graphs. Algorithms 1–4
are unique and can correctly determine TopMost graphs for many classes of graphs, including trees,
grid graphs, wheel graphs, hypercube graphs, king graphs, triangular graphs and so on (see
Figures 6–23). Algorithms 1–4 are also valid for detached undirected graphs. For every vertex

Mathematics 2019, 7, 690 34 of 35

in a graph G, the definition of the property m_NearestNode enhances the accuracy of computing
canonical labeling . By software evaluating, the accuracy of our algorithms is elementarily established.
Our approach can be employed to excavate the frequent subgraph. Additionally, it proposes
Conjecture 1.

Nevertheless, there are still many aspects we need to progress, including verifying the conjectures
suggested by us, improving our software platform and employing more test cases to check our program.
Specifically, we need to reinforce our algorithms so that they can determine the canonical labelings for
more classes of graphs.

Currently, we are considering how to stretch our method to dig the frequent subgraphs and
determine the canonical labelings of weighted graphs. We will present further research in other papers.

Author Contributions: Conceptualization, J.H., Y.G., J.S. and L.T.; Methodology, J.H.; Software, J.H.; Validation,
J.H., Y.G., J.S. and L.T.; Writing—original draft, J.H.; and Writing—review and editing, J.H.

Funding: The work described in this paper was supported by the National Natural Science Foundation of China
(grant numbers 61702020); Beijing Natural Science Foundation (grant numbers 4172013); and Beijing Natural
Science Foundation-Haidian Primitive Innovation Joint Fund (grant numbers L182007).

Acknowledgments: We would also like to thank all anonymous reviewers for their inspiring and constructive
comments which helped to improve the presentation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hao, J.; Gong, Y.; Wang, Y.; Tan, L.; Sun, J. Using k-Mix-Neighborhood Subdigraphs to Compute Canonical
Labelings of Digraphs. Entropy 2017, 19, 79. [CrossRef]

2. Hao, J.; Gong, Y.; Tan, L.; Duan, D. Apply Partition Tree to Compute Canonical Labelings of Graphs. Int. J.
Grid Distrib. Comput. 2016, 9, 241–264.

3. McKay, B. Computing Automorphisms and Canonical Labellings of Graphs Combinatorial Mathematics; Lecture
Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 686, pp. 223–232.

4. Piperno, A. Search space contraction in canonical labeling of graphs. arxiv 2008, arXiv:0804.4881.
5. Junttila, T.; Kaski, P. Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs.

In Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop
on Analytic Algorithmics and Combinatorics, New Orleans, LA, USA, 6 January 2007; Siam: Philadelphia,
PA, USA, 2007; pp. 135–149.

6. Shah, Y.J.; Davida, G.I.; McCarthy, M.K. Optimum Featurs and Graph Isomorphism. IEEE Trans. Syst.
Man Cybern. 1974, SMC-4, 313–319. [CrossRef]

7. Ivanciuc, O. Canonical Numbering and Constitutional Symmetry. In Handbook of Chemoinformatics;
Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. 139–160. [CrossRef]

8. Babai, L.; Luks, E.M. Canonical Labeling of Graphs. In Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, Boston, MA, USA, 25–27 April 1983; ACM: New York, NY, USA, 1983; pp. 171–183.
[CrossRef]

9. Jantschi, L.; Bolboaca, S.D. Conformational study of C-24 cyclic polyyne clusters. Int. J. Quantum Chem.
2018, 118, e25614. [CrossRef]

10. Joiţa, D.M.; Jäntschi, L. Extending the Characteristic Polynomial for Characterization of C20 Fullerene
Congeners. Mathematics 2017, 5, 84. [CrossRef]

11. Bolboaca, S.; Jantschi, L. How good can the characteristic polynomial be for correlations? Int. J. Mol. Sci.
2007, 8, 335–345. [CrossRef]

12. Kuramochi, M.; Karypis, G. Finding Frequent Patterns in a Large Sparse Graph*. Data Min. Knowl. Discov.
2005, 11, 243–271. [CrossRef]

13. Kuramochi, M.; Karypis, G. An efficient algorithm for discovering frequent subgraphs. IEEE Trans. Knowl.
Data Eng. 2004, 16, 1038–1051. [CrossRef]

14. Huan, J.; Wang, W.; Prins, J. Efficient mining of frequent subgraphs in the presence of isomorphism.
In Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, FL, USA,
22 November 2003; pp. 549–552.

http://dx.doi.org/10.3390/e19020079
http://dx.doi.org/10.1109/TSMC.1974.5409142
http://dx.doi.org/10.1002/9783527618279.ch7a
http://dx.doi.org/10.1145/800061.808746
http://dx.doi.org/10.1002/qua.25614
http://dx.doi.org/10.3390/math5040084
http://dx.doi.org/10.3390/i8040335
http://dx.doi.org/10.1007/s10618-005-0003-9
http://dx.doi.org/10.1109/TKDE.2004.33

Mathematics 2019, 7, 690 35 of 35

15. Kashani, Z.; Ahrabian, H.; Elahi, E.; Nowzari-Dalini, A.; Ansari, E.; Asadi, S.; Mohammadi, S.; Schreiber, F.;
Masoudi-Nejad, A. Kavosh: A new algorithm for finding network motifs. BMC Bioinform. 2009, 10, 318.
[CrossRef] [PubMed]

16. He, P.R.; Zhang, W.J.; Li, Q. Some further development on the eigensystem approach for graph isomorphism
detection. J. Frankl. Inst.-Eng. Appl. Math. 2005, 342, 657–673. [CrossRef]

17. Arvind, V.; Das, B.; Köbler, J. A Logspace Algorithm for Partial 2-Tree Canonization. In Computer
Science-Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5010, pp. 40–51.
[CrossRef]

18. Babai, L.; Kucera, L. Canonical labelling of graphs in linear average time. In Proceedings of the 20th Annual
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29–31 October 1979; pp. 39–46.
[CrossRef]

19. Arnborg, S.; Proskurowski, A. Canonical Representations of Partial 2- and 3-Trees. In Proceedings of the 2nd
Scandinavian Workshop on Algorithm Theory, Bergen, Norway, 11–14 July 1990; Lecture Notes in Computer
Science 477; Springer: Berlin, Germany, 1990; pp. 197–214.

20. McKay, B. Practical Graph Isomorphism; Department of Computer Science, Vanderbilt University: Nashville,
TN, USA, 1981.

21. McKay, B.D. Isomorph-Free Exhaustive Generation. J. Algorithms 1998, 26, 306–324. [CrossRef]
22. Practical graph isomorphism, {II}. J. Symb. Comput. 2014, 60, 94–112. [CrossRef]
23. Yan, X.; Han, J. gSpan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE

International Conference on Data Mining, ICDM 2003, Maebashi City, Japan, 9–12 December 2002;
pp. 721–724. [CrossRef]

24. Miyazaki, T. The Complexity of McKay’s Canonical Labeling Algorithm; Citeseer: University Park, PA, USA, 1997.
25. Tener, G.; Deo, N. Efficient isomorphism of miyazaki graphs. Algorithms 2008, 5, 7.
26. Junttila, T.; Kaski, P. Conflict Propagation and Component Recursion for Canonical Labeling Theory and Practice of

Algorithms in (Computer) Systems; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2011; Volume 6595, pp. 151–162.

27. López-Presa, J.L.; Anta, A.F.; Chiroque, L.N. Conauto-2.0: Fast Isomorphism Testing and Automorphism
Group Computation. arXiv 2011, arXiv:1108.1060.

28. Katebi, H.; Sakallah, K.; Markov, I. Graph Symmetry Detection and Canonical Labeling: Differences and
Synergies. arXiv 2012, arXiv:1208.6271.

29. Habtemicael, S.; SenGupta, I. Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard
process driven financial markets. Int. J. Financ. Eng. 2016, 3, 1650027. [CrossRef]

30. Mariani, M.C.; SenGupta, I.; Bezdek, P. Numerical solutions for option pricing models including transaction
costs and stochastic volatility. Acta Appl. Math. 2012, 118, 203–220. [CrossRef]

31. Weisstein, E.W. Simple Graphs–from Wolfram MathWorld; Wolfram Research: Champaign, IL, USA, 2015.
32. ALENEX 2007 Submission: Source Code, Benchmark Instances, and Summary Results. Available online:

http://www.tcs.hut.fi/Software/benchmarks/ALENEX-2007/ (accessed on 30 June 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1471-2105-10-318
http://www.ncbi.nlm.nih.gov/pubmed/19799800
http://dx.doi.org/10.1016/j.jfranklin.2005.04.006
http://dx.doi.org/10.1007/978-3-540-79709-8_8
http://dx.doi.org/10.1109/SFCS.1979.8
http://dx.doi.org/10.1006/jagm.1997.0898
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1109/ICDM.2002.1184038
http://dx.doi.org/10.1142/S2424786316500274
http://dx.doi.org/10.1007/s10440-012-9685-3
http://www.tcs.hut.fi/Software/benchmarks/ALENEX-2007/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Results and Discussion
	Calculate Cmax(G) for a Connected Graph
	1
	Calculate the Intermediate Nodes of MaxQ(G)

	Calculate Cmax(G) for a Disconnected Graph

	 Our Algorithms for Calculating the Canonical Labeling
	Software Implementation
	Summary and Future Work
	References

