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Abstract: The flexible job shop scheduling problem (FJSP) is a difficult discrete combinatorial
optimization problem, which has been widely studied due to its theoretical and practical significance.
However, previous researchers mostly emphasized on the production efficiency criteria such as
completion time, workload, flow time, etc. Recently, with considerations of sustainable development,
low-carbon scheduling problems have received more and more attention. In this paper, a low-carbon
FJSP model is proposed to minimize the sum of completion time cost and energy consumption cost
in the workshop. A new bio-inspired metaheuristic algorithm called discrete whale optimization
algorithm (DWOA) is developed to solve the problem efficiently. In the proposed DWOA, an
innovative encoding mechanism is employed to represent two sub-problems: Machine assignment
and job sequencing. Then, a hybrid variable neighborhood search method is adapted to generate a
high quality and diverse population. According to the discrete characteristics of the problem, the
modified updating approaches based on the crossover operator are applied to replace the original
updating method in the exploration and exploitation phase. Simultaneously, in order to balance the
ability of exploration and exploitation in the process of evolution, six adjustment curves of a are
used to adjust the transition between exploration and exploitation of the algorithm. Finally, some
well-known benchmark instances are tested to verify the effectiveness of the proposed algorithms for
the low-carbon FJSP.

Keywords: low-carbon flexible job shop scheduling; extended whale optimization algorithm;
crossover operator; adjustment curves; variable neighborhood search

1. Introduction

Nowadays, manufacturing enterprises are facing more and more pressures with the continuous
development of the economy, among which cost saving and pollution reduction are two critical issues.
Therefore, as an important part of the production system, scheduling is no longer limited to only
consider the traditional objective function factors, i.e., time, efficiency, cost and quality. In this case,
it is required to seriously consider the environmental criteria, i.e., energy consumption and carbon
footprint. In former studies, the scheduling objectives mainly focused on the production efficiency, i.e.,
makespan, workload, etc. However, environmental aspects were still ignored. In the last ten years,
scientists have realized the significance of reducing energy consumption in scheduling. As a result,
some environmental criteria are considered in conjunction with traditional production objectives in the
low-carbon scheduling problems.
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A significant number of research studies on energy efficiency in the workshop have been conducted
based on low carbon scheduling. Dai et al. [1] designed a modified genetic simulated annealing
algorithm for solving an energy efficient scheduling problem in a flexible flow shop. Ding et al. [2]
established an energy-saving scheduling model for flow shop with two objectives to minimize
completion time and carbon emissions. Mansouri et al. [3] developed a multi-objective genetic
algorithm (MOGA) for solving scheduling problems on two machines in a flow shop to minimize the
makespan and total energy consumption. Luo et al. [4] proposed an ant colony algorithm (ACO) to
solve the hybrid flow shop scheduling problem with two objectives to minimize production cost and
power consumption cost. Zhang and Chiong [5] proposed a MOGA with double neighborhood search
mode for solving job shop scheduling (JSP) to optimize the total carbon footprint and the total weighted
delay time. Liu et al. [6] developed an energy efficient scheduling problem in a permutation flow shop
and proposed a branch and bound algorithm to optimize total wasted energy consumption. Li et al. [7]
constructed a hybrid flow shop scheduling problem model with two objectives of completion time and
total energy consumption, and proposed a multi-objective optimization algorithm based on energy
perception technology to solve the model. Salido et al. [8] presented a multi-objective genetic algorithm
to solve the JSP with two objectives, i.e., energy consumption and makespan.

As a typical scheduling problem, the classical job shop scheduling problem (JSP) has drawn much
attention in various fields because of its wide applicability in real-world applications. In the classical
JSP, a group of jobs need to be processed by some machines, in which each job contains a sequence of
operations fixed in advance, and the jobs must be processed on a specified machine. In addition, all
operations have a fixed processing time, given in advance. All machines are available at time zero and
can execute only one operation each time. Each operation executed on the machines is not allowed
to be interrupted. The decision makers concentrate on a method for sequence permutation for all
operations on the machines in order to optimize a predefined objective. Makespan is a typical criterion
for the JSP, i.e., the time point at which all the jobs are required to be completed. Flexible job shop
scheduling problem (FJSP) is an extension of the classical JSP, where each operation can be executed by
one machine in an alternative machine set and it has been proved that the FJSP is strongly NP-hard.

Since Brucker and Schlie [9] first studied the FJSP, many exact methods have been proposed to
solve the problem. Kaskavelis and Caramanis [10] proposed an improved job specific decomposition
Lagrangian relaxation algorithm and applied it to solve industry size job shop scheduling problems
with a large number of resource constraints. Chen et al. [11] presented an efficient pseudo-polynomial
time dynamic programming algorithm which improves the solution efficiency of the Lagrangean
relaxation for the job shop scheduling problem. Ríos-Mercado and Bard [12] proposed a branch and
cut (B&C) algorithm for the flow shop scheduling problem to optimize the makespan. Karimi-Nasab
and Modarres [13] presented a job shop scheduling problem model with lot sizing, they established
the problem model as an integer linear program, and then a set of valid inequalities were designed
and added to the model with a “cut and branch” method, so that the search speed of the algorithm is
accelerated. However, because of its highly complex characteristics, it is very hard for exact methods
to find an exact solution in the FJSP, and thus they are limited to solving small problems. As a
result, more works have been concentrated on finding high quality solutions by a metaheuristic
method in recent years. Dauzere-Peres and Paulli [14] proposed a tabu search (TS) algorithm with
a novel neighborhood structure to solve the FJSP. Li et al. [15] proposed an improved tabu search
(TS) algorithm and developed a fast public critical block neighborhood structure. Wang et al. [16]
designed a novel local search based on the critical path, and presented an artificial bee colony (ABC)
algorithm for solving the FJSP. Liouane et al. [17] developed a hybrid approach that combined the ant
colony optimization (ACO) with tabu search algorithms for the FJSP. Yuan and Xu [18] pronounced a
hybrid harmony search (HHS) with a new transition method to implement the conversion between
the individual position vector and the scheduling solution, a meaningful initialization to generate the
initial population with certain quality, and a local search engine to improve the ability of the local
exploration. Li and Gao [19] pronounced a new hybrid algorithm (HA), which combined genetic



Mathematics 2019, 7, 688 3 of 17

algorithm (GA) with tabu search (TS) for the FJSP to minimize the makespan. Yin et al. [20] established
a mathematical model of the FJSP to optimize three objectives, productivity, noise reduction and
energy efficiency, in which processing times are controllable. Inspired by the similarities between the
FJSP and humoral immunity, Xiong and Fu [21] introduced a novel immune multi-agent scheduling
system for the FJSP. Piroozfard et al. [22] proposed a modified multi-objective genetic algorithm for
FJSP to optimize two criteria, i.e., the total carbon emission footprint and total late work. Mokhtari
and Hasani [23] constructed a green scheduling model for a flexible job shop and developed an
improved evolutionary algorithm to solve the model with three objectives, the total completion time,
the total availability of the system and the total energy cost. Shen et al. [24] designed a tabu search
algorithm with a novel neighborhood structure for solving the FJSP with sequence-dependent setup
times. Zandieh et al. [25] presented a modified imperialist competitive algorithm for solving the FJSP
with condition-based maintenance to minimize the makespan. For the FJSP, Nouiri et al. [26] designed
a modified particle swarm optimization (PSO) algorithm to minimize the makespan. Wu and Wu [27]
pronounced an elitist quantum evolutionary algorithm for the FJSP with a criterion for makespan.
Jiang and Deng [28] presented a discrete cat swarm optimization algorithm (DCSO) for solving the
FJSP with the consideration of energy consumption.

According to their inherent advantages, it has been proved that metaheuristics are effective to
solve large optimization problems [29–31]. As a new metaheuristic algorithm, the whale optimization
algorithm (WOA), which was originally designed by Mirjalili and Lewis [32], has been applied to solve
different optimization problems, i.e., power systems [33], feature selection [34], image segmentation [35],
photovoltaic cells [36], energy efficient JSP [37], 0–1 knapsack problem [38], and permutation flow
shop scheduling problem [39]. As far as we know, the WOA has not been developed to solve the
FJSP. As mentioned above, the original WOA is developed to solve continuous optimization problems.
However, FJSP is a typical discrete combinatorial optimization problem. Therefore, the WOA needed to
be redesigned based on a discrete encoding approach for the problems. A discrete individual updating
method was designed to ensure the algorithm works directly in a discrete domain. Meanwhile, a
hybrid variable neighborhood search method was adapted to generate the population with high
quality, and six adjustment curves of a were used to adjust the transition between exploration and
exploitation of the algorithm. To further improve the performance of the proposed algorithm, an
improved variable neighborhood search was combined into the algorithm and performed on the
current optimal individual.

The remaining contents of this paper is organized as follows. The low-carbon FJSP is defined and
formulated in Section 2. The original WOA is illustrated in Section 3. A discrete WOA is proposed
in Section 4. The experimental results are reported in Section 5. Section 6 concludes this study and
discusses future research directions.

2. Problem Definition and Formulation

2.1. Problem Definition

The classical FJSP is concerned with how to arrange jobs executed by a group of machines. In the
FJSP, each job has a set of operations with a fixed processing order. The FJSP aims at finding the
best scheduling scheme by solving the appropriate machine assignment and operation sequence.
The original criteria of the FJSP include the cost of completion time, machine workload and total
completion time, etc. However, low-carbon FJSP is a problem that adds an objective of carbon emissions
to the classical FJSP. The purpose of the proposed low-carbon FJSP is to minimize carbon emissions
while optimizing other objectives. In this paper, the cost of processing and energy consumption are
selected as the two main objectives. In our paper, the machines have two statuses in the workshop:
Processing and no-load. Thus, their corresponding energy consumption includes processing and
no-load consumption. Because the energy consumption per unit time is different when an operation is
processed on a different machine, the machine assignment should be considered in the low-carbon FJSP.
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In addition, to reduce the energy consumption of machines on standby, the operation sequence on
each machine needs to be optimized. To simplify the problem, a number of assumptions are supposed
as follows.

(1) All jobs and machines are available at the initial time.
(2) Any machine that can process more than one job at the same time is not permitted.
(3) Interruption of processing process of any operation is not permitted.
(4) Setup times of the machines and transportation time of the jobs are ignored.
(5) Jobs are mutually independent.

2.2. Problem Formulation

To describe the problem, some parameters are given and a mathematical programming model of
the low-carbon FJSP is formulated as follows.

n: Number of jobs.
m: Number of machines.
Ji: Number of operations of job i.
Oi j: The jth operation of job i.
pi jk: Processing time of operation Oi j on machine k.

si jk: Processing cost per unit time of operation Oi j on machine k.

ci jk: Energy consumption cost per unit time of operation Oi j on machine k.

θk: Energy consumption cost per unit time of machine k on the standby mode.
CTk: Completion time of machine k.
Wk: Workload of machine k.
STi j: Start time of operation Oi j.
CTi j: Completion time of operation Oi j.
η: A big constant.
xi jk: A 0–1 variable, if Oi j is processed on machine k, xi jk = 1; otherwise, xi jk = 0.

zi ji′ j′k: A 0–1 variable, if Oi j is processed on machine k prior to Oi′ j′ , zi ji′ j′k = 1; otherwise, zi ji′ j′k = 0.

minF =
n∑

i=1

Ji∑
j=1

m∑
k=1

xi jkpi jksi jk +
n∑

i=1

Ji∑
j=1

m∑
k=1

xi jkpi jkci jk +
m∑

k=1

θk(CTk −Wk) (1)

s.t. CTi j − STi j =
m∑

k=1

xi jkpi jk, i = 1, 2, . . . n, j = 1, 2, . . . Ji; (2)

STi( j+1) ≥ CTi j, i = 1, 2, . . . n, j = 1, 2, . . . Ji − 1; (3)

CTi′ j′ −CTi j + η(1− zi ji′ j′k) ≥
m∑

k=1

pi jkxi jk, i, i′ = 1, 2, . . . n, j, j′ = 1, 2, . . . Ji; k = 1, 2, . . .m; (4)

m∑
k=1

xi jk = 1, i = 1, 2, . . . n, j = 1, 2, . . . Ji; (5)

xi jk ∈ {0, 1}, i = 1, 2, . . . n, j = 1, 2, . . . Ji, k = 1, 2, . . .m; (6)

zi ji′ j′k ∈ {0, 1}, i, i′ = 1, 2, . . . n, j, j′ = 1, 2, . . .m (7)

Equation (1) defines the objective of the low-carbon FJSP, where the first item denotes the processing
cost, the second item is the total useful energy consumption cost when machines are processing jobs,
and the third item is the total wasted energy consumption cost for no-load running. Constraint (2)
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means that preemption is not allowed, i.e., for one job, each operation must be completed once it
starts. Constraint (3) represents that the operations of each job have precedence constraints, i.e., for
one job, if the pre-operation is not finished, then it is not allowed to start processing the post-operation.
Constraint (4) defines that each machine can process only one operation at each time, i.e., one machine
is not allowed to process two operations simultaneously. Constraint (5) means that each operation
must be completed on one machine once it starts, it is not allowed to move the operation to another
machine. Constraints (6) and (7) declare binary variables.

3. Whale Optimization Algorithm

The whale optimization algorithm (WOA) is inspired by the foraging behavior of humpback
whales [28]. The whales hunt the prey by swimming around them in a spiral way, emitting bubbles in
a circle shape. In the WOA, there are two searching phases for exploitation and exploration. In the
exploitation phase, the method of bubble-net attacking is employed to present the phase, which is based
on the current optimal search agent, and includes two approaches, namely the prey and swimming in
a spiral shape path. In the exploration phase, based on a randomly selected search agent, each whale
updates its position individually.

3.1. Exploitation and Exploration

Whales first discover the prey and encircle them in the hunting process. It is assumed that the
current optimal whale is the closest individual to the prey. The other whales update their positions
based on the current optimal whale, this behavior is represented as follows:

→

X(t + 1) =
→

X
∗

(t) −
→

A ·
→

D (8)

→

D =

∣∣∣∣∣→C ·→X∗(t) −→X(t)
∣∣∣∣∣ (9)

→

A = 2
→
a ·
→
r −

→
a (10)

→

C = 2
→
r (11)

where t represents the current iteration,
→

X
∗

(t) denotes the position vector of the current optimal

individual, and
→

X(t) defines the position vector of an individual whale.
→

A and
→

C denote the coefficient
vectors, when |A|< 1 , a whale individual can move to any place around the current optimal individual

from the current position by adjusting the value of the
→

A and
→

C vectors, when |A|≥ 1 , it can make
a whale individual move far away from the reference whale. | | defines the absolute value, and ·
represents an element by element multiplication.

→
r is a random vector inside [0,1]. The elements in

a linearly decreased from 2 to 0 according to Equation (12) over the course of iterations, where tmax

denotes the maximum of the iteration.
a = 2−

2t
tmax

(12)

In this mechanism, the distance between the whale and the prey is first established, and then a
spiral path is created to simulate the helix shaped movement of the humpback whales, described by
Equations (14)–(16).

→

X(t + 1) =
→

D′ · ebl
· cos(2πl) +

→

X
∗

(t) (13)

→

D
′

=

∣∣∣∣∣→X∗(t) −→X(t)
∣∣∣∣∣ (14)

where b defines a constant value for denoting the shape of the logarithmic spiral, l represents a
random number in the range [−1,1]. In the exploitation phase, the two predation behaviors of the
spiral updating mechanism and encircling the prey are conducted simultaneously, so there is a 50%
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probability of selecting the shrinking encircling or the spiral movement path in Equation (15), where p
is a random number inside [0-1].

→

X(t + 1) =


→

X
∗

(t) −
→

A ·
→

D p < 0.5
→

D′ · ebl
· cos(2πl) +

→

X
∗

(t) p ≥ 0.5
(15)

3.2. Exploration Phase

The humpback whales also search for the prey randomly. Such a mechanism is formulated by the
variation of the vector A. When |A| < 1, the exploitation is obtained by updating the positions towards
the current optimal individual. When |A| ≥ 1, the exploration is employed to search for the global

optimum by updating the positions towards a randomly chosen individual
→

Xrand(t), as formulated by
Equations (16)–(17).

→

X(t + 1) =
→

Xrand(t) −
→

A ·
→

D (16)

→

D =

∣∣∣∣∣→C ·→Xrand(t) −
→

X(t)
∣∣∣∣∣ (17)

4. Discrete Whale Optimization Algorithm

4.1. Encoding Mechanism

The low-carbon FJSP can be decomposed into two sub-problems: Machine selection and process
sequencing. According to these characteristics, a two-segment coding method with equal lengths is
used to represent it. Taking a FJSP with 3 jobs and 5 machines, for example, we assume that each job
contains two operations. The scheduling solution is shown in Figure 1. In the first string, each element
represents the selected machine number for each operation, which is stored in a fixed order. In the
second string, each element equals the job code, where the elements represent different operations of
the same job. In addition, Oik presents the kth operation of the job i.
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For each solution, the following procedure is adopted as the decoding method:

(1) Read the operation sequence from left to right, and determine the machine number for
each operation.

(2) The first operation in the operation sequence string is processed first at the earliest available
time on the assigned machine. The second operation is scheduled in the same way, and so on.
Repetition of this procedure and a scheduling scheme can be achieved.

4.2. Population Initialization

In the first phase, the machine assignment is achieved by using a hybrid search method, in
which 60% of the initial population is generated by the global search, 30% by a local search and 10%
by a random search. Once the machine assignment is generated, the operation sequence should
be generated in the second phase. For each machine assignment, a set of operation sequences are
generated at random and combine with the machine assignment in turn. A combination of the two
components which have the best fitness value is selected as an initial solution, and then the initial
population can be obtained by repeating this procedure. The detailed description of the method can be
found in [40].
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4.3. Discrete Encircling of the Prey

The original WOA was developed to solve continuous problems. However, as the low-carbon
FJSP contains discrete characteristics, it means the original WOA cannot directly be applied to solve
the problem. Therefore, some discrete individual updating methods were designed to make the WOA
solve the problem directly.

In the encircling prey phase, individuals update their positions according to the information of
the current optimal individuals. In our paper, the discrete individual updating approach based on
the crossover operator f1 is designed to replace the original update mode. If h is smaller than 0.5, the
crossover operator f1 is executed between each individual and the current optimal individual, which is
shown by Equation (18), where h is a random number in the range [0,1]. In this study, the improved
precedence preserving order-based crossover (IPOX) scheme is adopted for the operation sequence
while the multi-point crossover (MPX) scheme is used for the machine assignment [41].

X(t + 1) = f1(X(t), X∗(t)) if h < 0.5 (18)

The steps of the MPX scheme are described as follows, and illustrated in Figure 2.
Step 1. Randomly generate a 0–1 set S.
Step 2. Copy the machine number corresponding to the places with ‘1’ in set S from P1 to C1 and

from P2 to C2.
Step 3. Copy the rest machine numbers corresponding to the places with ‘0’ in set S from P1 to C2

and from P2 to C1.
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The steps of the IPOX scheme are described below and illustrated in Figure 3.
Step 1. Create two subsets K1 and K2.
Step 2. Copy some jobs into K1, the rest of the jobs are copied into K2.
Step 3. Choose the jobs in K1 from P1 to C1 and ensure that their positions remain immobile;

choose the jobs in K2 from P2 to C1 and maintain their sequence.
Step 4. Choose the jobs in K2 from P2 to C2 and maintain their positions; choose the jobs in K1

from P1 to C2 and keep their sequence unchanged.

K1 = {1}, K2 = {2, 3}
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4.4. Discrete Spiral Updating Mechanism

In the exploitation phase, the whale individuals update their positions in a helix shaped movement
when encircling the prey. The other crossover operator f2 is designed to replace the original spiral
updating mechanism. If h is bigger than 0.5, the crossover operator f2 is executed between each
individual and the current optimal individual, as shown in Equation (19). In this case, the random
order-based crossover (ROX) scheme is employed for the operation sequence, and the two-point
crossover (TPX) scheme is used for the machine assignment [42].

X(t + 1) = f2(X(t), X∗(t)) if h < 0.5 (19)

The TPX scheme is illustrated in Figure 4 and described as follows.
Step 1. Choose two positions from parent individuals P1 and P2.
Step 2. Exchange the elements between the two chosen positions in P1 and P2 with each other to

generate two children C1 and C2.
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The steps of the ROX are represented by Figure 5 and illustrated as follows:
Step 1. Randomly generate two integers i1, i2 ∈ [1, n], n is the number of jobs.
Step 2. Copy the job with serial number i1 from P1 to C1, and copy the rest of the jobs from P2 to

C1 with their sequence unchanged.
Step 3. Copy the job with serial number i2 from P2 to C2, and copy the rest of jobs from P1 to C2

with their sequence unchanged.
Step 4. Terminate the procedure.

i2 = 1, i1 = 2
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4.5. Discrete Searching for the Prey

In the exploration phase, to search for the global optimum, we make the whale individual move
far away from a reference whale by the random coefficient vector A, with its value less than −1 or
greater than 1. At the same time, the whale individual updates their position by another whale
individual randomly chosen from the population which defined by Xrand(t), instead of the current

optimal individual
→

X
∗

(t), so that the WOA can perform a global search ability. In this paper, a discrete
individual updating approach based on the crossover operator f3 is designed in Equation (20) to
replace the original update mode, where Xrand(t) is a scheduling solution randomly chosen from the
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current population, and f3 represents the crossover operation between the randomly chosen individual
and other individuals. Here, f3 executes the same operations associated with f1 in Equation (18).

X(t + 1) = f3(X(t), Xrand(t)) (20)

4.6. Dynamic Adjustment Strategy of a

As mentioned above, transitions between exploration and exploitation mainly depend on the
search vector A. By adjusting the value of A, some iterations are performed on exploration (|A|≥ 1),
and the others are implemented on exploitation (|A|< 1). According to Equation (10), the value of
A is dependent on the variation of a. However, a linearly decreases over the course of iterations by
Equation (13) in original WOA, which cannot effectively adjust the transition between exploration
and exploitation. Therefore, a sequence of adjustment curves of a is employed, by which whales can
explore the optimum in a large space at the early stage of iterations, and exploit the local optimum
to gain the global optimum at the latter stage. To execute it, six dynamic adjustment curves of a are
adopted in Equations (21)–(26), where amin and amax are the minimum and maximum values of a,
tmax is the maximum iteration. The corresponding algorithms are named as LDWOA, SinDWOA,
CosDWOA, TanDWOA, LnDWOA and SquareDWOA.

a = amax − (amax − amin)t/tmax (21)

a = amax − (amax − amin) sin(tπ/2tmax) (22)

a = amax − (amax − amin) cos(tπ/2tmax) (23)

a = amax − (amax − amin) tan(tπ/2tmax) (24)

a = amax − (amax − amin) ln(1 + t(e− 1)/tmax) (25)

a = amax − (amax − amin)(t/tmax)
2 (26)

4.7. Variable Neighborhood Search

In the local exploration phase, the whale individuals update their positions toward the current
optimal solution X∗. Therefore, X∗ determines the accuracy of the local exploration to some extent.
To gain the global optimal solution with high quality, a variable neighborhood search (VNS) strategy is
introduced into the algorithm to improve the quality of the current optimal scheduling solution X∗,
which executes on the current optimal solution in each iteration and terminates after the fixed number
of iterations. At the same time, an “iterative counter” with the value of 0 at the time zero is set for
X∗. If X∗ remains unchanged, the value of “iterative counter” increases by 1, otherwise, it remains the
same. When the value of the “iterative counter” is equal to 10, as the individuals reach the steady
state, the variable neighborhood search operation is executed on X∗, which makes X∗ escape from the
local optimum.

In the VNS, three types of neighborhood structures are employed as follows.
The neighborhood structure N1. Two random positions with different jobs in the second

segment are chosen, then insert the job of the first random position in the position behind the second
random position.

The neighborhood structure N2. Randomly choose two positions, and then exchange the order of
the elements of the two selected positions.

The neighborhood structure N3. An operation which has more than one alternative machine is
randomly selected in the first segment. Then, a machine with the shortest processing time in alternative
machines is selected to replace the original one.

Based on the above neighborhood structures, the steps of the VNS are described in detail in
the following.
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Step 1. Set X′ ← X∗ , ϕ > 0, µ = 1, κ = 1 and maximum iteration µmax.
Step 2. If κ = 1, then X′′ ← N1(X′)∪N3(X′) ; else if κ = 0, then X′′ ← N2(X′)∪N3(X′) . Here,

N1(X′)∪N3(X′) represents the execution of the operations of the neighborhood structure N1 and N3

on X′, simultaneously.
Step 3. If F(X′′ ) − F(X′) ≤ ϕ, then X′ ← X′′ ; otherwise, κ←|κ − 1|.
Step 4. Set µ← µ+ 1 , if µ > µmax, then X′ ← X′′ , go to Step 5; otherwise, go to Step 2.
Step 5. End and output X′.

4.8. Procedure of Discrete Whale Optimization Algorithm

The detailed steps of the proposed DWOA are described below.
Step 1. Set parameters and generate the initial population by utilizing a hybrid search method.
Step 2. Evaluate the fitness value of each individual, and then find out the current

optimal individual.
Step 3. Judge whether the value of the “iterative counter” is equal to 10. If yes, go to Step 4;

otherwise, go to Step 5.
Step 4. Execute the local search operation on X∗ in VNS, and update X∗.
Step 5. Execute the individual updating procedure below for each individual.
Step 6. Check whether the maximum iteration is met. If yes, go to Step 7; otherwise, set t = t + 1,

go to Step 2.
Step 7. When the algorithm terminates save the final output X∗.

5. Computational Experiment

5.1. Experimental Settings

To evaluate the performance of the proposed DWOA, the algorithm was coded in Matlab 2016b and
run on a computer configured with an Intel Core i5-8250 central processing unit (CPU) with 1.80 GHz
frequency, 8 GB random access memory (RAM), and a Windows 10 operating system. We established
the instances based on the well-known benchmark flexible job shop instances MK01–MK10 from
Brandimarte [43], KA01–KA05 from Kacem et al. [44] and five random instances (RM01–RM05).
The processing cost per unit time of all operations on any machine was 50. In the benchmark instances,
the energy consumption cost per unit time of machine for processing all jobs was generated at random
in (0,1), and the energy consumption cost per unit time of machine on the standby mode was also
generated at random in (0,1). Of the random instances, five instances were generated in terms of the
number of machines and the number of jobs. The processing times of operations were generated
randomly following a discrete uniform distribution in (0,100), and the processing sequence of each job
was also generated at random. In addition, the energy consumption cost per unit time of machines
for processing all jobs and the energy consumption cost per unit time of the machines on the standby
mode was also generated at random in (0,1).

5.2. Effectiveness of Dynamic Adjustment of the Parameter a

We first compared the performance of the six algorithms with different adjustment curves of a
in Figures 6–9. Parameters of the algorithms were set as follows: The population size was 50, the
maximum iteration tmax was 500, the maximum iteration of variable neighborhood search and local
search were 10 and 20, respectively. For each algorithm, ten independent runs were executed for each
instance. In Figure 6, ‘Avg’ defines the average values of the ten runs. In Figure 7, ‘Best’ means the
best value obtained in the ten runs.In Figure 8, ‘Time’ is the average computation time (in seconds).
In Figure 9, ‘ARPD’ denotes the average relative percent difference, as shown in Equation (27), where
‘R’ is the number of runs. ‘Min’ is the minimum solution in the ten runs. ‘Aolr’ is the obtained value in
the rth run by the algorithm for each instance. ‘Mean’ denotes the average results obtained by each
algorithm for the nineteen instances.
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For the ‘Best’ value, CosDWOA obtained 16 optimal values out of 19 instances. The second best
algorithms, LDWOA and LnDWOA, obtained two optimal values. In addition, CosDWOA obtained
the optimal mean value compared to the other algorithms.

For the ‘Avg’ value, CosDWOA obtained nine optimal values out of 19 instances. The second
best algorithm, SquareDWOA, obtained three optimal values. The next best algorithms, SinDWOA,
LnDWOA and TanDWOA obtained two optimal values. In addition, LnDWOA obtained a better mean
value compared to those of the other algorithms.

For the ‘ARPD’ value, LDWOA obtained six optimal values out of 19 instances. The second
best algorithm, CosDWOA, obtained five optimal values. The third best algorithm, SquareDWOA,
obtained 4 optimal values. In addition, LDWOA obtained a better mean value than the mean values of
the other algorithms.

For the ‘Time’ value, LnDWOA obtained 14 optimal values out of 19 instances. The second best
algorithm, TanDWOA, obtained 13 optimal values. The third best algorithm, SinDWOA, obtained 10
optimal values. In addition, LnDWOA obtained the optimal mean value compared to the mean values
of the other algorithms.

From the above, we can see that CosDWOA obtained the most optimal solution in a relative
reasonable time.

ARPD =
R∑

r=1

100× (Aolr −Min)
Min

/R (27)

To analyze the results in Figures 6–9 using a statistical method, a statistical result obtained by an
analysis of variance (ANOVA) test is shown in Table 1, where ARPD is considered as the response
variable and each algorithm is viewed as a factor.‘DF’ is the degree of freedom. ’SS’ means the sum of
squares. ‘MS’ represents mean square. ‘F’ is F-ratio. ‘p-Value’ is the presumed value The statistical
results show that the p-value obtained is very close to zero, which means there is an obvious distinction
between the algorithms.
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Table 1. ANOVA table for ARPD of six different DWOAs.

Source DF SS MS F p-Value

Factor 4 17.99411 4.49853 0.67969 0.60748
Error 109 721.41302 6.61847
Total 113 739.40713

5.3. Effectiveness Analysis of Improvement Strategies

In this study, some improvement strategies are implemented to improve the performance of the
proposed DWOA. The hybrid search method is applied to improve the quality of the initial population,
and a dynamic adjustment strategy for a is employed to adjust the transition between exploration
and exploitation. As shown in Figures 10–13, the effectiveness of two improvement strategies are
tested, where ‘DWOA’ represents the algorithm where nonlinear convergence factor a of CosDWOA
is replaced by the original Equation (12). ‘CosDWOA-RR’ presents the algorithm where the initial
populations are generated at random. ‘GA’ presents the original genetic algorithm.

For the ‘Best’ value, CosDWOA obtained 16 optimal values out of 19 instances. For the ‘Avg’
value, CosDWOA obtained 10 optimal values out of 19 instances. For the ‘ARPD’ value, DWOA and
CosDWOA-RR obtained seven optimal values out of 19 instances. For the ‘Time’ value, CosDWOA
and DWOA obtained 11 optimal values out of 19 instances. The effectiveness analysis demonstrated
that CosDWOA was able to obtain the most satisfactory solution in a reasonable time.

To analyze the results in Figures 10–13 in a statistical method, a statistical result obtained by an
analysis of variance (ANOVA) test is shown in Table 2, where ARPD is considered as the response
variable and each algorithm is viewed as a factor. The statistical results show that the p-value obtained
is very close to zero, which means there is an obvious distinction between the algorithms.
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Table 2. ANOVA table for ARPD of five compared algorithms.

Source DF SS MS F p-Value

Factor 2 1175.80737 587.90368 13.31722 1.17311 × 10−5

Error 73 3222.66733 44.14613 - -
Total 75 4398.47469 - - -

6. Conclusions

In this paper, an extended whale optimization algorithm (DWOA) is developed to solve
the low-carbon FJSP with the objective of minimizing the sum of energy consumption cost and
processing cost.

The job shop scheduling problems and its variants still receive abundant attention in the
literature, as they are being implemented into many real-life applications such as in food, chemical,
automation, railway, robotics, aviation, healthcare and mining industries [45–54]. In this framework, a
two-component encoding method was designed to represent the problem, and a hybrid search method
was employed to generate the initial population with high quality and diversity. By considering the
discrete characteristics of the problem, the modified updating approaches based on the crossover
operator were proposed to replace the original updating method in the exploration and exploitation
phase, by which the WOA can work directly in a discrete domain. In addition, in order to balance
the ability of exploration and exploitation in the process of evolution, six adjustment curves were
used to adjust the transition between exploration and exploitation. Extensive experiments based
on benchmark instances and randomly generated instances were executed. Computational results
demonstrated that among the proposed six DWOA algorithms associated with different adjustment
curves, the CosDWOA obtained the best result within a reasonable computational time. It is verified
that the hybrid variable neighborhood search based on a population initialization method and an
adjustment mechanism is effective for improving the optimality performance of the proposed DWOA.

Regarding future work, the low-carbon FJSP should be further studied by considering some
practical constraints, e.g., adjustable speeds of machines, machine breakdown, arrival of new jobs,
blocking and no-wait constraints [55–57]. For the DWOA, some effective neighborhood structures
for the low-carbon FJSP should be designed to further improve the quality of the optimal solution.
Finally, it would be a promising research direction to apply the DWOA to solve other combinatorial
optimization problems.
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