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Abstract: Recently, type 2 degenerate Euler polynomials and type 2 q-Euler polynomials were studied,
respectively, as degenerate versions of the type 2 Euler polynomials as well as a q-analog of the
type 2 Euler polynomials. In this paper, we consider the type 2 degenerate q-Euler polynomials,
which are derived from the fermionic p-adic q-integrals on Zp, and investigate some properties
and identities related to these polynomials and numbers. In detail, we give for these polynomials
several expressions, generating function, relations with type 2 q-Euler polynomials and the expression
corresponding to the representation of alternating integer power sums in terms of Euler polynomials.
One novelty about this paper is that the type 2 degenerate q-Euler polynomials arise naturally
by means of the fermionic p-adic q-integrals so that it is possible to easily find some identities of
symmetry for those polynomials and numbers, as were done previously.
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1. Introduction

We would like to introduce the type 2 degenerate q-Euler polynomials and numbers by making
use of the fermionic p-adic q-integrals, as a degenerate version as well as a q-analog of the type 2 Euler
polynomials and derive some basic results for them.

Studying degenerate versions and q-analogs of some known special polynomials and numbers
are both very good ways of naturally introducing new special polynomials and numbers. In these
two ways of constructing new polynomials and numbers, the Volkenborn integrals (also called p-adic
invariant integrals), the fermionic p-adic integrals, the bosonic p-adic q-integrals, and the fermionic
p-adic q-integrals have played very important roles and they will continue to do so.

For those polynomials and numbers, we derive several expressions, generating function, relations
with type 2 q-Euler polynomials and the expression corresponding to the representation of alternating
integer power sum in terms of Euler polynomials.

Motivation for introducing the type 2 degenerate q-Euler polynomials and numbers is to study
their number-theoretic and combinatorial properties, and their applications in mathematics, science
and engineering. One novelty about this paper is that they arise naturally by means of the fermionic
p-adic q-integrals so that it is possible to easily find some identities of symmetry for those polynomials
and numbers, as it done, for example, in [1]. We spend the rest of this section in recalling what are
needed in the sequel.

Let p be a fixed odd prime number. Throughout this paper, Zp,Qp, and Cp will denote the ring
of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of
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Qp, respectively. The p-adic nom | · |p is normalized as |p|p = 1
p . It is known that the ordinary Euler

numbers are defined by the recurrence relation (see [2–9])

(E∗ + 1)n + E∗n =

{
2, if n = 0,

0, if n > 0,
(1)

with the usual convention about replacing E∗i by E∗i . The Euler polynomials of degree n are given
either by (see [1,10–19])

E∗n(x) = (E∗ + x)n =
n

∑
l=0

(
n
l

)
E∗l xn−l , (n ≥ 0),

or by
2

et + 1
ext =

∞

∑
n=0

E∗n(x)
tn

n!
. (2)

From Equations (1) and (2), we note that

2
n−1

∑
l=0

(−1)lelt =
2

et + 1
(ent + 1), (n ≡ 1 (mod 2))

=
∞

∑
k=0

(E∗k (n) + E∗k )
tk

k!
.

(3)

Thus, by Equation (3), we get (see [12–14])

n−1

∑
l=0

(−1)l lk =
1
2
(E∗k (n) + E∗k ) , (4)

where n ∈ N with n ≡ 1 (mod 2).
The type 2 Euler numbers are the sequence En, (n ≥ 0), of integers defined by (see [1])

sech t =
2

et + e−t =
∞

∑
n=0

En
tn

n!
, (5)

where sech t is the hyperbolic secant function.
Then, we have (see [1]):

En = 2nE∗n

(
1
2

)
, (n ≥ 0). (6)

Let f be a continuous function on Zp. Then, the fermionic p-adic integral of f on Zp is defined by
Kim as (see [18])

∫
Zp

f (x)dµ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x)µ−1(x + pNZp)

= lim
N→∞

pN−1

∑
x=0

f (x)(−1)x.

(7)

Here, the continuity is the usual one. It means that it is continuous at every point of Zp.
The continuity at a point in Zp can be given, for example, as the usual ε− δ definition.

From Equation (7), we have the following lemma.
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Lemma 1. Let f be a continuous function on Zp. Then, we have∫
Zp

f (x + 1)dµ−1(x) +
∫
Zp

f (x)dµ−1(x) = 2 f (0). (8)

Proof.

∫
Zp

f (x + 1)dµ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x + 1)(−1)x

= lim
N→∞

−
pN−1

∑
x=0

f (x + 1)(−1)x+1

= lim
N→∞

−
pN

∑
x=1

f (x)(−1)x

= lim
N→∞

(
f (pN)−

pN−1

∑
x=0

f (x)(−1)x + f (0)
)

= 2 f (0)−
∫
Zp

f (x)dµ−1(x).

By Equation (8), we easily get (see [18])∫
Zp

e(2x+1)tdµ−1(x) =
2

et + e−t

=
∞

∑
n=0

En
tn

n!
.

(9)

From Equation (9), we have (see [13])∫
Zp
(2x + 1)ndµ−1(x) = En, (n ≥ 0). (10)

The type 2 Euler polynomials are given by the generating function (see [1]):

2
et + e−t ext =

∞

∑
n=0

En(x)
tn

n!
. (11)

Here, we remind the reader of the fact that generating functions are important tools with many
applications not only in mathematics but also in physics. For this, we let the reader refer to [20,21].

From Equation (8), we can derive the following integral equation.

∫
Zp

e(2y+x+1)tdµ−1(y) =
2

et + e−t ext =
∞

∑
n=0

En(x)
tn

n!
. (12)

Thus, by Equation (12), we get∫
Zp
(2y + x + 1)ndµ−1(y) = En(x), (n ≥ 0). (13)

We need the following generalization of Equation (8):
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Lemma 2. For any positive integer n, we have

∫
Zp

f (x + n)dµ−1(x) + (−1)n−1
∫
Zp

f (x)dµ−1(x) = 2
n−1

∑
l=0

(−1)n−1−l f (l). (14)

Proof. We show Equation (14) by induction on n. It holds for n = 1 by Equation (8). Assume that
Equation (14) holds. Then, we have∫

Zp
f (x + n + 1)dµ−1(x) = −

∫
Zp

f (x + n)dµ−1(x) + 2 f (n)

= −
(
(−1)n

∫
Zp

f (x)dµ−1(x) + 2
n−1

∑
l=0

(−1)n−1−l f (l)
)
+ 2 f (n)

= −(−1)n
∫
Zp

f (x)dµ−1(x) + 2
n

∑
l=0

(−1)(n+1)−1−l f (l).

From Equations (10), (13) and (14), we obtain that (see [1]),

Em(2n) + Em = 2
n−1

∑
l=0

(−1)l(2l + 1)m,

where n ≡ 1 (mod 2), and m ≥ 0.
The degenerate exponential function is defined by (see [3])

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t).

Recently, the type 2 degenerate Euler polynomials were defined in [1] by the following:

∫
Zp

e2y+x+1
λ (t)dµ−1(y) =

2
eλ(t) + e−1

λ (t)
ex

λ(t) =
∞

∑
n=0

En,λ(x)
tn

n!
. (15)

From Equation (15), we have (see [1])∫
Zp
(2y + x + 1)n,λdµ−1(y) = En,λ(x), (n ≥ 0), (16)

where (x)n,λ = x(x− λ)(x− 2λ) · · · (x− (n− 1)λ), (x)0,λ = 1.
Let q be an indeterminate in Cp (or C). We assume that q ∈ Cp with |1 − q|p < p−1/p−1.

The q-analog of the number x is defined as [x]q = 1−qx

1−q , usually called q − bracket or q − number
(see [12,19]).

Let f be a continuous function on Zp. Then, the fermionic p-adic q-integral of f on Zp is defined
by Kim as (see [18])

∫
Zp

f (x)dµ−q(x) = lim
N→∞

pN−1

∑
x=0

f (x)µ−q(x + pNZp)

= lim
N→∞

1 + q
1 + qpN

pN−1

∑
x=0

f (x)(−q)x.

(17)

From Equation (17), we have the next lemma.
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Lemma 3. For any positive integer n, we have

qn
∫
Zp

f (x + n)dµ−q(x) = (−1)n
∫
Zp

f (x)dµ−q(x) + [2]q
n−1

∑
l=0

(−1)n−1−lql f (l). (18)

In particular, we have

q
∫
Zp

f (x + 1)dµ−q(x) +
∫
Zp

f (x)dµ−q(x) = [2]q f (0), (19)

Proof. First, we prove Equation (19).

q
∫
Zp

f (x + 1)dµ−q(x) = q lim
N→∞

1 + q
1 + qpN

pN−1

∑
x=0

f (x + 1)(−q)x

= − lim
N→∞

1 + q
1 + qpN

pN−1

∑
x=0

f (x + 1)(−q)x+1

= − lim
N→∞

1 + q
1 + qpN

pN

∑
x=1

f (x)(−q)x

= − lim
N→∞

1 + q
1 + qpN

(
− f (0) +

pN−1

∑
x=0

f (x)(−q)x + f (pN)(−q)pN
)

= −1 + q
2

(
− f (0) +

∫
Zp

f (x)dµ−q(x)− f (0)
)

.

Next, we show Equation (18) by induction on n. Observe that Equation (18) holds true for n = 1
by Equation (19). Assume that Equation (18) is true. Then, we have

qn+1
∫
Zp

f (x + n + 1)dµ−q(x) = qn
(
−
∫
Zp

f (x + n)dµ−q(x) + [2]q f (n)
)

= −
(
(−1)n

∫
Zp

f (x)dµ−q(x) + [2]q
n−1

∑
l=0

(−1)n−1−lql f (l)
)
+ [2]qqn f (n)

= (−1)n+1
∫
Zp

f (x)dµ−q(x) + [2]q
n

∑
l=0

(−1)(n+1)−1−lql f (l).

The Carlitz’s q-Euler polynomials can be represented by the p-adic q-integral on Zp as (see [18]).∫
Zp
[x + y]nq dµ−q(x) = En,q(x), (n ≥ 0). (20)

When x = 0, En,q = En,q(0) are called the Carlitz q-Euler numbers.
From Equation (19), we get that (see [12])

q(qEq + 1)n + En,q =

{
[2]q, if n = 0,

0, if n > 0,
(21)

with the usual convention about replacing En
q by En,q.

In 2015, Dolgy et al. [14] introduced the degenerate Carlitz’s q-Euler polynomialsm which are
given by

[2]q
∞

∑
m=0

(−q)me
[x+m]q
λ (t) =

∞

∑
n=0

En,q(x|λ) tn

n!
. (22)
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From Equation (22), we have that (see [14])

En,q(x|λ) = [2]q
∞

∑
m=0

(−1)mqm([x + m]q)n,λ. (23)

Motivated by Equations (12) and (15), we would like to consider the type 2 degenerate q-Euler
polynomials and investigate some properties for these polynomials in the following section.

This paper is organized as follows. In Section 1, we review some known results. To be specific, we
recall type 2 Euler polynomials and type 2 degenerate Euler polynomials in connection with fermionic
p-adic integrals, and Carlitz’s q-Euler polynomials and degenerate Carlitz’s q-Euler polynomials in
relation to fermionic p-adic q-integrals. In Section 2, by virtue of fermionic p-adic q-integrals, we
introduce type 2 degenerate q-Euler polynomials. Then, we present for these polynomials several
expressions, generating function, relations with type 2 q-Euler polynomials and the expression
corresponding to the representation of alternating integer power sums in terms of Euler polynomials.
In Section 3, we give the conclusion of this paper.

2. Type 2 Degenerate q-Euler Polynomials

In this section, we assume that q ∈ Cp with |1− q|p < p−1/p−1 and λ ∈ Cp with |λ|p < p−1/p−1.
We now consider the type 2 degenerate q-Euler polynomials given by the fermionic p-adic q-integral

on Zp ∫
Zp

e
[x+1+2y]q
λ (t)dµ−q(y) =

∞

∑
n=0
En,q(x|λ) tn

n!
. (24)

By Equation (24), we get∫
Zp

(
[x + 1 + 2y]q

)
n,λ dµ−q(y) = En,q(x|λ), (n ≥ 0). (25)

We observe here that

lim
q→1

lim
λ→0

∫
Zp

(
[x + 1 + 2y]q

)
n,λ dµ−q(y) =

∫
Zp
(x + 1 + 2y)ndµ−1(y)

= En(x), (n ≥ 0).

When x = 0, En,q(0|λ) = En,q(λ) are called the type 2 degenerate q-Euler numbers.
In [4], the degenerate Stirling numbers of the first kind, denoted by S1,λ(n, k), are defined as

(x)n,λ =
n

∑
k=0

S1,λ(n, k)xk, (n ≥ 0). (26)

From Equation (25) and (26), we have

En,q(x|λ) =
n

∑
k=0

S1,λ(n, k)
∫
Zp
[x + 2y + 1]kqdµ−q(y). (27)

Recall that the type 2 q-Euler polynomials and the type 2 q-Euler numbers are, respectively,
given by ∫

Zp
[x + 2y + 1]nq dµ−q(y) = En,q(x), (k ≥ 0),

∫
Zp
[2y + 1]nq dµ−q(y) = En,q, (n ≥ 0). (28)

Therefore, by Equations (27) and (28), we obtain the following theorem.
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Theorem 1. For n ≥ 0, we have

En,q(x|λ) =
n

∑
l=0

S1,λ(n, l)El,q(x).

We observe that∫
Zp

(
[x + 2y + 1]q

)
n,λ dµ−q(y) =

n

∑
k=0

S1,λ(n, k)
∫
Zp
[x + 2y + 1]kqdµ−q(y)

=
n

∑
k=0

S1,λ(n, k)
(q− 1)k

k

∑
m=0

(
k
m

)
qm(x+1)(−1)k−m

∫
Zp

q2mydµ−q(y)

=
[2]q

2
lim

N→∞

pN−1

∑
y=0

(−q)y
n

∑
k=0

S1,λ(n, k)
(q− 1)k

k

∑
m=0

(
k
m

)
qm(x+1)(−1)k−mq2my

= [2]q
n

∑
k=0

S1,λ(n, k)
(q− 1)k

k

∑
m=0

(
k
m

)
qm(x+1)(−1)k−m 1

1 + q2m+1

= [2]q
n

∑
k=0

S1,λ(n, k)
(1− q)k

k

∑
m=0

(
k
m

)
(−qx+1)m 1

1 + q2m+1 .

(29)

Therefore, by Equation (29), we obtain the following theorem.

Theorem 2. For n ≥ 0, we have

En,q(x|λ) = [2]q
n

∑
k=0

S1,λ(n, k)
(1− q)k

k

∑
m=0

(
k
m

)
(−qx+1)m 1

1 + q2m+1 .

From Equation (24), we see that

∞

∑
n=0
En,q(x|λ) tn

n!
=
∫
Zp
(1 + λt)

[x+2y+1]q
λ dµ−q(y)

=
∫
Zp

e
[x+2y+1]q

λ log(1+λt)dµ−q(y)

=
∞

∑
k=0

λ−k
∫
Zp
[x + 2y + 1]kqdµ−q(y)

1
k!

(log(1 + λt))k

=
∞

∑
k=0

λ−kEk,q(x)
∞

∑
n=k

S1(n, k)λn tn

n!

=
∞

∑
n=0

(
n

∑
k=0

λn−kEk,q(x)S1(n, k)

)
tn

n!
.

(30)

By comparing the coefficients on both sides of Equation (30), we obtain the following theorem.

Theorem 3. For n ≥ 0, we have

En,q(x|λ) =
n

∑
k=0

λn−kS1(n, k)Ek,q(x),

where S1(n, k) are the Stirling numbers of the first kind.
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From Equation (24), we obtain that

∫
Zp

e[x+2y+1]q tdµ−q(y) =
∞

∑
k=0
Ek,q(x|λ) 1

k!

(
eλt − 1

λ

)k

,

where

∞

∑
k=0
Ek,q(x|λ) 1

k!

(
eλt − 1

λ

)k

=
∞

∑
k=0
Ek,q(x|λ)

∞

∑
n=k

S2(n, k)λn−k tn

n!

=
∞

∑
n=0

(
n

∑
k=0

S2(n, k)λn−kEk,q(x|λ)
)

tn

n!
,

(31)

where S2(n, k) are the Stirling numbers of the second kind.
On the other hand, ∫

Zp
e[x+2y+1)]q tdµ−q(y) =

∞

∑
n=0
En,q(x)

tn

n!
. (32)

Therefore, by Equations (31) and (32), we obtain the following theorem.

Theorem 4. For n ≥ 0, we have

En,q(x) =
n

∑
k=0

S2(n, k)λn−kEk,q(x|λ).

Using Theorem 2, we can derive Equation (33).

∞

∑
n=0
En,q(x|λ) tn

n!
= [2]q

∞

∑
n=0

(
n

∑
k=0

S1,λ(n, k)
(1− q)k

k

∑
m=0

(
k
m

)
(−qx+1)m 1

1 + q2m+1

)
tn

n!

= [2]q
∞

∑
n=0

∞

∑
l=0

(−q)l
n

∑
k=0

S1,λ(n, k)
(1− q)k (1− qx+2l+1)k tn

n!

= [2]q
∞

∑
n=0

∞

∑
l=0

(−q)l
n

∑
k=0

S1,λ(n, k)[x + 2l + 1]kq
tn

n!

= [2]q
∞

∑
l=0

(−q)l
∞

∑
n=0

(
[x + 2l + 1]q

)
n,λ

tn

n!

= [2]q
∞

∑
l=0

(−q)l(1 + λt)
[x+2l+1]q

λ

= [2]q
∞

∑
l=0

(−q)le
[x+2l+1]q
λ (t).

(33)

Therefore, by Equation (33), we obtain the generating function for the type 2 degenerate q-Euler
polynomials.

Theorem 5. Let F(t) = ∑∞
n=0 En,q(x|λ) tn

n! . Then, we have

F(t) = [2]q
∞

∑
m=0

(−q)me
[x+2m+1]q
λ (t).
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From Equation (19), we have that

qn
∫
Zp
[2x + 2n + 1]mq dµ−q(x)

= −
∫
Zp
[2x + 1]mq dµ−q(x) + [2]q

n−1

∑
l=0

(−q)l [2l + 1]mq ,
(34)

where n ∈ N, with n ≡ 1 (mod 2).
Thus, we have shown the following result.

Theorem 6. For m ≥ 0, and n ∈ N, with n ≡ 1 (mod 2), we have

qnEm,q(2n) + Em,q = [2]q
n−1

∑
l=0

(−q)l [2l + 1]mq .

Let us take f (x) =
(
[2x + 1]q

)
m,λ , (m ≥ 0) in Equation (19). Then, we get

qn
∫
Zp

(
[2x + 2n + 1]q

)
m,λ dµ−q(x)

= (−1)n
∫
Zp

(
[2x + 1]q

)
m,λ dµ−q(x) + [2]q

n−1

∑
l=0

(−1)n−1−lql ([2l + 1]q
)

m,λ ,
(35)

where n ∈ N.
Thus, we obtain the following theorem.

Theorem 7. For m ≥ 0, and n ∈ N, we have

qnEm,q(2n|λ) + (−1)n−1Em,q(λ) = [2]q
n−1

∑
l=0

(−1)n−1−lql ([2l + 1]q
)

m,λ .

For d ∈ N, with d ≡ 1 (mod 2), we have

∫
Zp

f (y)dµ−q(y) =
d−1

∑
a=0

(−q)a
∫
Zp

f (a + dy)dµ−qd(y) (36)

Let us take f (y) =
(
[2y + x + 1]q

)
n,λ , (n ≥ 0). Then, we have

En,q(x|λ) =
∫
Zp

(
[2y + x + 1]q

)
n,λ dµ−q(y)

=
d−1

∑
a=0

(−q)a
∫
Zp

(
[2(a + dy) + x + 1]q

)
n,λ dµ−qd(y)

=
d−1

∑
a=0

(−q)a[d]nq
∫
Zp

([
2a + x + 1

d
+ 2y

]
qd

)
n, λ

[d]q

dµ−qd(y)

= [d]nq
d−1

∑
a=0

(−q)aEn,qd

(
2a + x + 1− d

d
∣∣ λ

[d]q

)
,

where d ∈ N, with d ≡ 1 (mod 2). Therefore, we have

En,q(x|λ) = [d]nq
d−1

∑
a=0

(−q)aEn,qd

(
2a + x + 1− d

d
∣∣ λ

[d]q

)
,
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where d ∈ N, with d ≡ 1 (mod 2), and n ≥ 0.

3. Conclusions

There are various ways of introducing new special polynomials and numbers.
One way of introducing new special polynomials and numbers is to study various degenerate

versions of some known special polynomials and numbers. This idea traces at least back to Carlitz [11].
It is noteworthy that degenerate versions can be investigated not only for some polynomials but also
for some transcendental functions. The reader may refer to the work in [3] for this instance.

Another way of introducing new special polynomials and numbers is to study various q-analogs
of some known special polynomials and numbers. It turns out that the fermionic p-adic q-integrals,
together with the bosonic p-adic q-integrals, are very powerful and fruitful tools in naturally
constructing such q-analogs.

In this paper, the type 2 degenerate q-Euler polynomials and numbers are introduced and
investigated as a degenerate version as well as a q-analog of type 2 Euler polynomials by using
the fermionic p-adic q-integrals [17–19,22,23]. In this paper, some results about those polynomials and
numbers are obtained. In detail, we give for them several expressions, generating function, relations
with type 2 q-Euler polynomials and the expression corresponding to the representation of alternating
integer power sums in terms of Euler polynomials.

We are planning to study more detailed results relating to those polynomials and numbers in
a forthcoming paper. More generally, the fermionic p-adic integrals, the bosonic p-adic q-integrals,
the fermionic p-adic q-integrals and the Vokenborn integrals (also called the bosonic p-adic integrals)
have been very useful and fruitful in naturally introducing special polynomials and numbers and in
studying various properties of them, for example in discovering symmetric identities relating to such
polynomials and numbers. Anyone is invited to join this fascinating pursuit of research.
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