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Abstract: We investigate a Cauchy problem of the modified Helmholtz equation with nonhomogeneous
Dirichlet and Neumann datum, this problem is ill-posed and some regularization techniques are
required to stabilize numerical computation. We established the result of conditional stability under
an a priori assumption for an exact solution. A generalized Tikhonov method is proposed to solve
this problem, we select the regularization parameter by a priori and a posteriori rules and derive the
convergence results of sharp type for this method. The corresponding numerical experiments are
implemented to verify that our regularization method is practicable and satisfied.

Keywords: ill-posed problem; Cauchy problem; modified Helmholtz equation; generalized Tikhonov
regularization method; convergence estimate

1. Introduction

In some practical and theoretical application fields, such as Debye–Huckel theory, implicit
marching strategies of the heat equation, the linearization of the Poisson–Boltzmann equation, etc.,
modified Helmholtz equation has many important applications (please see [1–4]). It is also because
of this, in the past century the forward problem for it caused extensive attention and has been
studied deeply. However, in some science research, there exist some inverse problems for this equation.
For instance, we usually do not know the data of the entire boundary, the data of the partial boundary,
or certain internal spots of one domain can merely be received. The Cauchy problem of the modified
Helmholtz equation belongs to this kind of inverse problem. In the present article, the Cauchy problem,
outlined in Equation (1), of the modified Helmholtz equation is studied.

∆w(y, x)− k2w(y, x) = 0, x ∈ (0, π), y ∈ (0, T),

w(0, x) = ϕ(x), x ∈ [0, π],

wy(0, x) = ψ(x), x ∈ [0, π],

w(y, 0) = w(y, π) = 0, y ∈ [0, T],

(1)
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where k is a positive real number. Since (1) is a linear problem, we can divide it into two problems,
i.e., the Cauchy problem with nonhomogeneous Dirichlet data

∆u(y, x)− k2u(y, x) = 0, x ∈ (0, π), y ∈ (0, T),

u(0, x) = ϕ(x), x ∈ [0, π],

uy(0, x) = 0, x ∈ [0, π],

u(y, 0) = u(y, π) = 0, y ∈ [0, T],

(2)

and the Cauchy problem with inhomogeneous Neumann data
∆v(y, x)− k2v(y, x) = 0, x ∈ (0, π), y ∈ (0, T),

v(0, x) = 0, x ∈ [0, π],

vy(0, x) = ψ(x), x ∈ [0, π],

v(y, 0) = v(y, π) = 0, y ∈ [0, T].

(3)

From the principle of linear superposition, we know that the solution of (1) can be expressed as
w = u + v. Based on this, we only require to investigate (2) and (3), respectively.

Problems (2) and (3) are both the ill-posed problems, where a small disturbance on the given data
can produce a considerable error in the solution [5–7], so some regularization techniques are required to
overcome its ill-posedness and stabilize numerical computations, please see some regularized strategies
in [8,9]. In the past years, we notice that many papers have researched the Cauchy problem of the
modified Helmholtz equation and designed some meaningful regularization methods and numerical
techniques, such as quasi-reversibility type method [10–14], filtering method [15], iterative method [16],
mollification method [17,18], spectral method [19,20], alternating iterative algorithm [21,22], modified
Tikhonov method [20,23], Fourier truncation method [12,24], novel trefftz method [25], weighted
generalized Tikhonov method [26], and so on.

This paper establishes the conditional stabilities of problems (2) and (3), and constructs a kind of
generalized Tikhonov regularization method to solve these two problems (see Section 3). Our work is
not only an extension for the boundary (or revised) Tikhonov method [20], but also is a supplement
for the one in [27]. In [27], the author presented a generalized Tikhonov method to solve an abstract
Cauchy problem with inhomogeneous Dirichlet and Neumann datum in bounded domain, and derive
the a priori convergence results for regularized solutions, the author has not established the a posteriori
convergence estimates. In this work, we shall derive some a priori and a posteriori sharp convergence
results for our regularization solutions, and give an a posteriori selection rule for the regularization
parameter which is relatively rare in solving the Cauchy problem of modified Helmholtz equation.

The paper is organized as follows: Section 2 derives the conditional stabilities for (2) and (3).
Sections 3 constructs the regularization methods, Sections 4 states some preparation knowledge.
In Section 5, the a priori and a posteriori convergence estimates of sharp type are established.
The numerical experiments are done to verify the computation effect of regularized solution in
Section 6. Section 7 makes some conclusions and the corresponding discussion.

2. Conditional Stability

We know that (2) and (3) are all ill-posed in the sense of Hadamard, their solutions discontinuity
depends on the given Cauchy data. However in the research of inverse problems, by assuming certain
a priori condition on the solution, we can often obtain the stability of the considered problem, i.e., the
conditional stability (see [28–30]). Below, we give and proof of the conditional stabilities for problems
(2) and (3). Define

Dξ
γ =

{
ξ ∈ L2(0, π);

∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2 |< ξ, Xn >|2 < +∞

}
, γ ≥ 1, (4)
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where 〈·, ·〉 denotes the inner product in L2(0, π), Xn := Xn(x) =
√

2
π sin(nx) is the eigenfunctions of

the space L2(0, π). According to (4), we define the norm for the space Dξ
γ as

‖ξ‖Dξ
γ
=

(
∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2 |< ξ, Xn >|2
)1/2

, γ ≥ 1. (5)

Using the separation of variables, the solutions of (2) and (3) can be expressed as

u(y, x) =
∞

∑
n=1

cosh
(√

n2 + k2y
)

ϕnXn, ϕn = 〈ϕ, Xn〉. (6)

v(y, x) =
∞

∑
n=1

sinh(
√

n2 + k2y)√
n2 + k2

ψnXn, ψn = 〈ψ, Xn〉.. (7)

Theorem 1. Let E > 0, K = 1 + k2, u(T, x) satisfy an a priori bound condition

‖u(T, x)‖Du
γ
≤ E, (8)

then for each fixed 0 < y ≤ T, it holds that

‖u(y, x)‖L2(0,π) ≤ 2
y

2T

(
Kγe

√
KT
)− y

2T E
y

2T ‖ϕ‖1− y
2T

L2(0,π)
. (9)

Proof of Theorem 1. Note that, for 0 < y ≤ T, n ≥ 1, e
√

n2+k2y/2 ≤ cosh(
√

n2 + k2y) ≤ e
√

n2+k2y,
n2 + k2 ≥ 1 + k2, then from (6), (8) and Hölder inequality, we have

‖u(y, x)‖L2(0,π) =

∥∥∥∥∥ ∞

∑
n=1

cosh
(√

n2 + k2y
)

ϕnXn

∥∥∥∥∥
L2(0,π)

≤
√

∞

∑
n=1

cosh2(
√

n2 + k2y)ϕ2
n

=

√
∞

∑
n=1

cosh2(
√

n2 + k2y)ϕ
y
T
n ϕ

2− y
T

n ≤

√√√√( ∞

∑
n=1

(cosh(
√

n2 + k2y))
4T
y ϕ2

n

) y
2T
(

∞

∑
n=1

ϕ2
n

)1− y
2T

≤

√√√√( ∞

∑
n=1

(e
√

n2+k2y)
4T
y ϕ2

n

) y
2T
(

∞

∑
n=1

ϕ2
n

)1− y
2T

=

√√√√( ∞

∑
n=1

e4T
√

n2+k2
ϕ2

n

) y
2T
(

∞

∑
n=1

ϕ2
n

)1− y
2T

=

√√√√( ∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2 cosh2(
√

n2 + k2T)ϕ2
n

(n2 + k2)2γ cosh2(
√

n2 + k2T)

) y
2T
(

∞

∑
n=1

ϕ2
n

)1− y
2T

=

√(
4

K2γe2
√

KT

) y
2T
×

√√√√( ∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2 | < u(T, x), Xn(x) > |2
) y

2T
(

∞

∑
n=1

ϕ2
n

)1− y
2T

≤
(

2

Kγe
√

KT

) y
2T

E
y

2T ‖ϕ‖1− y
2T

L2(0,π)
.

Theorem 2. Suppose that v(T, x) satisfies the a priori condition

‖v(T, x)‖Dv
γ
≤ E, (10)
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then for the fixed 0 < y ≤ T, we have

‖v(y, x)‖L2(0,π) ≤ 2
y

2T

(
K(

1
2−γ)− T

y

) y
2T (

e
√

KT
(

1− e−2
√

KT
))− y

2T E
y

2T ‖ψ‖1− y
2T

L2(0,π)
. (11)

Proof of Theorem 2. For n ≥ 1, we notice that sinh(
√

n2 + k2y) ≤ e
√

n2+k2y, and n2 + k2 ≥ 1+ k2 := K,
sinh(

√
n2 + k2y) ≥ e

√
Ky(1− e−2

√
Ky)/2, then from (7), (10) and Hölder inequality, we have

‖v(y, x)‖L2(0,π) ≤
∥∥∥∥∑∞

n=1
sinh(

√
n2+k2y)√

n2+ k2 ψnXn

∥∥∥∥
L2(0,π)

≤
√

∑∞
n=1

sinh2(
√

n2+k2y)
(
√

n2+ k2)2 ψ2
n

=

√
∑∞

n=1
sinh2(

√
n2+k2y)

(
√

n2+ k2)2 ψ
y
T
n ψ

2− y
T

n

≤

√√√√√(∑∞
n=1

(
sinh(

√
n2+k2y)√

n2+ k2

) 4T
y

ψ2
n

) y
2T

(∑∞
n=1 ψ2

n)
1− y

2T

≤

√√√√√(∑∞
n=1

(
e
√

n2+k2y√
n2+k2

) 4T
y

ψ2
n

) y
2T

(∑∞
n=1 ψ2

n)
1− y

2T

=

√√√√(
∑∞

n=1 e4T
√

n2+k2
ψ2

n

(
1√

n2+k2

) 4T
y
) y

2T

(∑∞
n=1 ψ2

n)
1− y

2T

=

√√√√(∑∞
n=1

(
√

n2+k2)
2·(n2+k2)2γe4T

√
n2+k2

(n2+k2)2γ sinh2(
√

n2+k2T)
sinh2(

√
n2+k2T)

(
√

n2+k2)2 ψ2
n

(
1√

n2+k2

) 4T
y

) y
2T

×
√
(∑∞

n=1 ψ2
n)

1− y
2T

≤

√√√√(∑∞
n=1

4(
√

K)2− 4T
y

K2γe2T
√

K
(

1−e−2T
√

K
)2 (n2 + k2)2γe4T

√
n2+k2 | < v(T, x), Xn(x) > |2

) y
2T

×
√
(∑∞

n=1 ψ2
n)

1− y
2T

≤

√√√√( 2(
√

K)
1− 2T

y

KγeT
√

K
(

1−e−2T
√

K
)
) y

T (
∑∞

n=1(n2 + k2)2γe4T
√

n2+k2 | < v(T, x), Xn(x) > |2
) y

2T ×
√
(∑∞

n=1 ψ2
n)

1− y
2T

≤ 2
y

2T

(
K(

1
2−γ)− T

y

) y
2T (

e
√

KT
(

1− e−2
√

KT
))− y

2T E
y

2T ‖ψ‖1− y
2T

L2(0,π)
.

From the inequality above, we can derive the conditional stability result (11).

In considering an inverse problem, it is very necessary to research the conditional stability, and it
has important theoretical significance. For instance, by the result of stability, we can often obtain the
uniqueness of a solution and the convergence estimate of one regularization method. The common
stability result is ‖ f ‖ ≤ ω(‖g‖), here ω is called the stability function, it is monotonically increasing
nonnegative, and satisfies ω(δ)→ 0(δ→ 0), and the form of stability result mainly have two types:
(1) Hölder type (ω(δ) = δθ , θ ∈ (0, 1)), (2) logarithmic type (ω(δ) = (ln(1/δ))−1). We know that the
stability result of Hölder type can tend to zero quickly as δ → 0, but the logarithmic type result is
relatively slow.

Now, we interpret the conditional stability results of Theorems 1 and 2 in details. We point out that,
in establishing a result of conditional stability, the a priori assumption should be imposed appropriately.
This is because: if the a priori condition is too strong, then the derived result extremely depends on the
a priori information of the solution; if it is too weak, then we cannot derive the estimate of condition
stability easily. From (9) we notice that, by imposing the a priori assumption (8), the solution u depends
continuously on the Cauchy data ϕ; (11) indicates that the solution v depends continuously on the
data ψ under the a priori condition (10); meanwhile the occurring constants are in relation to γ, y, K, T.
According the description of the preceding paragraph, we know that the stability results (9) and (11)
both belong to the Hölder type, and based on these two estimates we will derive the a-posterior
convergence estimates for regularization methods in Section 5.
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3. Regularization Method

We found that there is a large amount of recent papers on conditional stability estimates in
combination with variational regularization methods based more or less on reference [29]. In recent
years, there have been some new works and results in this field, such as in Hilbert spaces, Hilbert
scales, and Banach space settings, please see [31–35], etc.

From (6) and (7), we know that cosh(
√

n2 + k2y), sinh(
√

n2+k2y)√
n2+k2 are unbounded as n→ ∞, which

can enlarge the errors of measured datum, so problems (2) and (3) are both ill-posed problems. In the
following, we design the regularized methods to restore the stability of solutions given by (6) and (7).
Our method focuses on the generalized Tikhonov regularization under conditional stability estimates.

3.1. Regularization Method for Problem (2)

For all k > 0, based on the mentality of [27], we can transform (2) into the operator equation
equivalently

A1(y)u(y, x) = ϕ(x), (12)

here, A1(y) = 1/ cosh(
√

Lxy) : L2(0, π) → L2(0, π) is a linear self-adjoint and bounded compact
operator, its eigenvalue is 1/ cosh(

√
n2 + k2y), the eigenfunction is Xn, Lx : L2(0, π) → L2(0, π)

is a linear self-adjoint positive defined operator, the eigenvalue and eigenfunction are n2 + k2 and
Xn, respectively.

Let uδ(0, x) = ϕδ(x) be the error data, setting γ ≥ 1, we solve the following minimization problem
to construct a generalized Tikhonov regularized solution uδ

α(y, x)

min
u∈L2(0,π)

Jα(u), Jα(u) =
∥∥∥A1(y)u− ϕδ(x)

∥∥∥2

L2(0,π)
+ α

∥∥∥∥L
γ
2
x

cosh(
√

LxT)
cosh(

√
Lxy)

u
∥∥∥∥2

L2(0,π)

, (13)

hence uδ
α(y, x) is the solution of Euler equation(

1
cosh2(

√
Lxy)

+ αLγ
x

cosh2(
√

LxT)
cosh2(

√
Lxy)

)
uδ

α(y, x) =
1

cosh(
√

Lxy)
ϕδ(x). (14)

From (14), the regularization solution of (2) can be written as

uδ
α(y, x) =

∞

∑
n=1

cosh(
√

n2 + k2y)ϕδ
nXn(x)

1 + α(n2 + k2)γ cosh2(
√

n2 + k2T)
, (15)

where ϕδ
n = 〈ϕδ, Xn〉L2(0,π), the error data ϕδ satisfies

‖ϕδ − ϕ‖L2(0,π) ≤ δ, (16)

δ denotes the bound of measured error, α is the regularization parameter. Note that, as γ = 0,
(15) is a boundary (or revised) Tikhonov solution (see [20], etc.), so our work is an extension on
predecessors’ ones.

3.2. Regularization Method for Problem (3)

As in Section 3.1, for all k > 0, we can convert (3) into the operator equation below

A2(y)v(y, x) = vy(0, x) = ψ(x), (17)

where A2(y) =
√

Lx/ sinh(
√

Lxy), A2(y) : L2(0, π) → L2(0, π) is a linear self-adjoint and bounded
compact operator, whose eigenvalue is

√
n2 + k2/ sinh(

√
n2 + k2y), the eigenfunction is Xn.
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Now let vδ
y(0, x) = ψδ(x) be the noisy data, and γ ≥ 1. We solve the minimization problem below

to design a generalized Tikhonov regularized solution of (3)

min
v∈L2(0,π)

Jβ(v), Jβ(v) =
∥∥∥A2(y)v− ψδ(x)

∥∥∥2

L2(0,π)
+ β

∥∥∥∥L
γ
2
x

sinh(
√

LxT)
sinh(

√
Lxy)

v
∥∥∥∥2

L2(0,π)

, (18)

using the first order essential condition, we can obtain that the regularization solution vδ
β(y, x) satisfies

Euler equation (
Lx

sinh2(
√

Lxy)
+ βLγ

x
sinh2(

√
LxT)

sinh2(
√

Lxy)

)
vδ

β(y, x) =
√

Lx

sinh(
√

Lxy)
ψδ(x), (19)

from (19), we can define the regularization solution of (3) as

vδ
β(y, x) =

∞

∑
n=1

sinh(
√

n2 + k2y)ψδ
nXn(x)

√
n2 + k2

(
1 + β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

) , (20)

here, ψδ
n = 〈ψδ, Xn〉L2(0,π), the error data ψδ satisfies

‖ψδ − ψ‖L2(0,π) ≤ δ, (21)

δ denotes the bound of measured error, and β is the regularization parameter.

4. Preparation Knowledge

Let α, β, k > 0, γ ≥ 1, K = 1 + k2, n ≥ 1, for each fixed 0 < y ≤ T, we define

H1(n) =
e−(2T−y)

√
n2+k2

α
4 (n

2 + k2)γ + e−2T
√

n2+k2
, (22)

H2(n) =
e−(2T−y)

√
n2+k2

√
K
(

β(n2 + k2)γ−1
(

1−e−2
√

KT

2

)2
+ e−2T

√
n2+k2

) . (23)

We need the following function that is given in [36]

H(ζ) =

{
ζζ(1− ζ)1−ζ , ζ ∈ (0, 1),

1, ζ = 0, 1,
(24)

it can easily be verified that H(ζ) ≤ 1.

Lemma 1. [36] Suppose that 0 ≤ r ≤ s < ∞, s 6= 0, ν > 0, then there holds that

νe−r

ν + e−s ≤ H
( r

s

)
ν

r
s . (25)

Theorem 3. Let α > 0, H1(n) is defined in (22), then for each 0 < y ≤ T, we can get that

H1(n) ≤ 2α−
y

2T . (26)
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Proof of Theorem 3. Apply Lemma 1 with ν = α(n2+k2)γ

4 , r = (2T − y)
√

n2 + k2, s = 2T
√

n2 + k2,
and from H(η) ≤ 1, we have

H1(n) = e−(2T−y)
√

n2+k2

α
4 (n

2+k2)γ+e−2T
√

n2+k2 = 1
α
4 (n

2+k2)γ

α
4 (n

2+k2)γ ·e−(2T−y)
√

n2+k2

α
4 (n

2+k2)γ+e−2T
√

n2+k2

≤
(

α(n2+k2)γ

4

)−1
· H
(

2T−y
2T

) (
α(n2+k2)γ

4

) 2T−y
2T

=
(
1− y

2T
)1− y

2T
( y

2T
) y

2T
(

α(n2+k2)γ

22

)− y
2T

= 2
y
T ((n2 + k2)γ)−

y
2T
(
1− y

2T
)1− y

2T
( y

2T
) y

2T α−
y

2T ≤ 2((n2 + k2)γ)−
y

2T α−
y

2T .

Note that, ((n2 + k2)γ)−
y

2T ≤ (Kγ)−
y

2T , K = 1 + k2 > 1, (Kγ)−
y

2T < 1, thus H1(n) ≤ 2α−
y

2T .

Theorem 4. Let β > 0, H2(n) is defined by (23), then for each fixed 0 < y ≤ T, we can obtain that

H2(n) ≤ 2C1β−
y

2T , C1 = K
y

2T−
1
2

(
1− e−2

√
KT
)− y

T . (27)

Proof of Theorem 4. We take ν = β(n2 + k2)γ−1
(

1−e−2
√

KT

2

)2
, r = (2T− y)

√
n2 + k2, s = 2T

√
n2 + k2

in Lemma 1, and from H(η) ≤ 1, the inequality (27) can be derived.

5. Convergence Estimate

This section respectively selects the regularization parameter by the a priori and a posteriori rules,
and derives the convergence estimates of sharp type for our method.

5.1. Convergence Estimate for the Method of Problem (2)

5.1.1. a priori Convergence Estimate

Theorem 5. Let the exact solution of (2) be given by (6), and the regularized solution uδ
α is defined by

Equation (15), ϕδ is the measured data and satisfies (16). We assume that

‖u(T, ·)‖2
Du

γ
=

∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2 |〈u(T, ·), Xn〉|2 ≤ E2, (28)

the regularized parameter α is selection as
α = δ/E, (29)

then, it can be obtained the following convergence result

‖uδ
α(y, ·)− u(y, ·)‖ ≤ 4E

y
2T δ1− y

2T . (30)

Proof of Theorem 5. Using triangle inequalities, we get that

‖uδ
α − u‖ ≤ ‖uδ

α − uα‖+ ‖uα − u‖, (31)
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where uα is the solution of (15) for the exact data ϕ. For 0 < y ≤ T, as n ≥ 1, e
√

n2+k2y/2 ≤
cosh(

√
n2 + k2y) ≤ e

√
n2+k2y, from (15), (16) and (26), we note that

‖uδ
α(y, ·)− uα(y, ·)‖

≤

√√√√ ∞

∑
n=1

(
cosh(

√
n2 + k2y)

1 + α(n2 + k2)γ cosh2(
√

n2 + k2T)

)2 (
ϕδ

n − ϕn
)2

≤

√√√√ ∞

∑
n=1

(
e−(2T−y)

√
n2+k2

α(n2+k2)γ

4 + e−2T
√

n2+k2

)2 (
ϕδ

n − ϕn
)2 (32)

≤ 2δα−
y

2T .

On the other hand, by (6), (15), (26) and (28), we have

‖uα(y, ·)− u(y, ·)‖ =
∥∥∥∥∥ ∞

∑
n=1

α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

cosh(
√

n2 + k2y)ϕnXn

∥∥∥∥∥
≤

√√√√ ∞

∑
n=1

(
α(n2 + k2)γ cosh2(

√
n2 + k2T)

1 + α(n2 + k2)γ cosh2(
√

n2 + k2T)

)2 (
cosh(

√
n2 + k2T)ϕn

)2

≤ α

√√√√ ∞

∑
n=1

(
e−(2T−y)

√
n2+k2

α(n2+k2)γ

4 + e−2T
√

n2+k2

)2

(n2 + k2)2γe2
√

n2+k2(2T−y)|〈u(T, ·), Xn〉|2 (33)

≤ α

√
∞

∑
n=1

H2
1(n)(n

2 + k2)2γe4T
√

n2+k2 |〈u(T, ·), Xn〉|2

≤ 2α1− y
2T E.

Finally, the proof can be completed by (29) and (31)–(33).

5.1.2. A Posteriori Convergence Estimate

In Theorem 5, the regularized parameter α is selected by (29), this is an a priori selection rule
that needs to know a bound E of exact solution. But in practice we can not acquire the a priori
bound easily, so it is unrealistic. Below, we adopt a kind of a posteriori rule to select α, and this
method need not know a bound of the solution, and the parameter α depend on the measured data
ϕδ and measured error bound δ. The reference [37] describes the a posteriori rule in selecting the
regularization parameter.

We select the regularization parameter α by the following equation

‖uδ
α(0, x)− ϕδ(x)‖ = τδ, (34)

here, the constant τ > 1. We give and proof two Lemmas, which are necessary in establishing the
convergence results of a posteriori form.

Lemma 2. Define ρ(α) = ‖uδ
α(0, x)− ϕδ(x)‖, then we have the following conclusions:

(a) The function ρ(α) is continuous;
(b) limα→0 ρ(α) = 0;
(c) limα→+∞ ρ(α) = ‖ϕδ‖;
(d) For α ∈ (0,+∞), the function ρ(α) is strictly monotonous increasing.
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Proof of Lemma 2. It can be easily proven by setting

ρ(α) =

 ∞

∑
n=1

(
α(n2 + k2)γ cosh2(

√
n2 + k2T)

1 + α(n2 + k2)γ cosh2(
√

n2 + k2T)

)2 (
ϕδ

n

)2
1/2

. (35)

According to the intermediate value theorem of continuous function on closed interval, we know
that (34) has a unique solution when ‖ϕδ‖ > τδ > 0.

Lemma 3. For τ > 1, the regularized solution (15) together with a posteriori rule (34) determine that the

regularization parameter α = α(δ, ϕδ) satisfies α ≥ (τ−1)e
√

KT

2
δ
E .

Proof. From (34), there holds

τδ =

∥∥∥∥∥ ∞

∑
n=1

α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

ϕδ
nXn(x)

∥∥∥∥∥
≤
∥∥∥∥∥ ∞

∑
n=1

α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

(ϕδ
n − ϕn)Xn(x)

∥∥∥∥∥ (36)

+

∥∥∥∥∥ ∞

∑
n=1

α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

ϕnXn(x)

∥∥∥∥∥
≤ δ +

∥∥∥∥∥ ∞

∑
n=1

α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

ϕnXn(x)

∥∥∥∥∥ ,

and ∥∥∥∥∥ ∞

∑
n=1

α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

ϕnXn(x)

∥∥∥∥∥
≤

 ∞

∑
n=1

(
α(n2 + k2)γ cosh2(

√
n2 + k2T)

1 + α(n2 + k2)γ cosh2(
√

n2 + k2T)

)2

ϕ2
n

1/2

≤
(

∞

∑
n=1

α2(n2 + k2)2γ cosh4(
√

n2 + k2T)ϕ2
n

)1/2

(37)

≤
(

∞

∑
n=1

α2

cosh2(
√

n2 + k2T)
· (n2 + k2)2γe4T

√
n2+k2

cosh2(
√

n2 + k2T)ϕ2
n

)1/2

≤
(

∞

∑
n=1

4α2

e2
√

n2+k2T
· (n2 + k2)2γe4T

√
n2+k2 |〈u(T, ·), Xn〉|2

)1/2

≤ (2/e
√

KT)αE,

from (36) and (37), we get that (τ − 1)δ ≤ (2/e
√

KT)αE. The proof is completed.

Theorem 6. Let the exact solution u of (2) be given by (6), the regularization solution uδ
α is defined by (15),

the noisy data ϕδ satisfies (16). Suppose that u satisfies the a priori bound (28), the parameter α is chosen by
(34), then we can obtain the following convergence result

‖uδ
α(y, ·)− u(y, ·)‖ ≤ CE

y
2T δ1− y

2T , (38)
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where C = max
{

2
(
(τ − 1)e

√
KT/2

)− y
2T , 2

y
2T

(
Kγe

√
KT
)− y

2T
(τ + 1)1− y

2T

}
.

Proof of Theorem 6. Similar to (31), we have

‖uδ
α(y, ·)− u(y, ·)‖ ≤ ‖uδ

α(y, ·)− uα(y, ·)‖+ ‖uα(y, ·)− u(y, ·)‖. (39)

By (32) and Lemma 3, we get

‖uδ
α(y, ·)− uα(y, ·)‖ ≤ 2δα−

y
2T ≤ 2

(
(τ − 1)e

√
KT/2

)− y
2T E

y
2T δ1− y

2T . (40)

On the other hand, for fixed 0 < y ≤ T, note that

A1(y)(uα(y, ·)− u(y, ·)) (41)

= A1(y)
∞

∑
n=1

−α(n2 + k2)γ cosh2(
√

n2 + k2T) cosh(
√

n2 + k2y)ϕnXn(x)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

=
∞

∑
n=1

−α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

ϕnXn(x)

=
∞

∑
n=1

α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

(ϕδ
n − ϕn)Xn(x)

+
∞

∑
n=1

−α(n2 + k2)γ cosh2(
√

n2 + k2T)
1 + α(n2 + k2)γ cosh2(

√
n2 + k2T)

ϕδ
nXn(x),

using (16), (34) and (41), we can obtain that

‖A1(y) (uα(y, ·)− u(y, ·)) ‖ ≤ δ + τδ = (τ + 1)δ. (42)

Meanwhile, according to the definition in (5) and a priori condition (28), we have

‖uα(y, ·)− u(y, ·)‖Duα−u
γ

= ∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2

(
α(n2 + k2)γ cosh2(

√
n2 + k2T)

1 + α(n2 + k2)γ cosh2(
√

n2 + k2T)

)2

cosh2(
√

n2 + k2y)ϕ2
n

 1
2

≤
(

∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2
cosh2(

√
n2 + k2T)ϕ2

n

) 1
2

≤ E, (43)

then, using the result of conditional stability in (9), we can derive that

‖uα(y, ·)− u(y, ·)‖ ≤ 2
y

2T

(
Kγe

√
KT
)− y

2T
(τ + 1)1− y

2T E
y

2T δ1− y
2T . (44)

Finally, combining (40) with (44), we can obtain the convergence estimate (38).
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5.2. Convergence Estimate for the Method of Problem (3)

5.2.1. A Priori Convergence Estimate

Theorem 7. Let the exact solution of (3) is given in (7), the regularization solution vδ
β is defined by (20),

the error data ψδ satisfies (21). We suppose that v satisfies

‖v(T, ·)‖2
Dv

γ
=

∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2 |〈v(T, ·), Xn〉|2 ≤ E2, (45)

and β is taken as
β = δ/E, (46)

then, for 0 < y ≤ T, we can establish the error estimate

‖vδ
β(y, ·)− v(y, ·)‖ ≤ 2C1

(
1 + 1/(

√
Ke
√

Ky)
)

E
y

2T δ1− y
2T , (47)

where C1 is given in Theorem 4.

Proof of Theorem 7. We know that

‖vδ
β − v‖ ≤ ‖vδ

β − vβ‖+ ‖vβ − v‖. (48)

For 0 < y ≤ T, as n ≥ 1, sinh(
√

n2 + k2y) ≤ e
√

n2+k2y, sinh(
√

n2 + k2y) ≥ e
√

n2+k2y(1 −
e−2
√

Ky)/2, from (20), (21) and (27), we note that

‖vδ
β(y, ·)− vβ(y, ·)‖ ≤ (49)√√√√√ ∞

∑
n=1

 sinh(
√

n2 + k2y)
√

n2 + k2
(

1 + β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
)
2 (

ψδ
n − ψn

)2

≤

√√√√√√√ ∞

∑
n=1

 e−(2T−y)
√

n2+k2

√
K
(

β(n2 + k2)γ−1
(

1−e−2
√

KT

2

)2
+ e−2T

√
n2+k2

)


2 (
ψδ

n − ψn
)2

≤ 2C1δβ−
y

2T .
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On the other hand, by (7), (20), (27) and (45), we have

‖vβ(y, ·)− v(y, ·)‖ (50)

≤

√√√√ ∞

∑
n=1

(
β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

1 + β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)

)2(
sinh(

√
n2 + k2T)√

n2 + k2
ψn

)2

≤ β

√√√√√ ∞

∑
n=1

 e
√

n2+k2y

(n2 + k2)e
√

n2+k2y
(

1 + β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
)
2

×

√√√√(n2 + k2)2γe4T
√

n2+k2

(
sinh(

√
n2 + k2T)√

n2 + k2
ψn

)2

≤ β

√√√√√ ∞

∑
n=1

 e
√

n2+k2y(n2 + k2)γe2T
√

n2+k2 |〈v(T, ·), Xn〉|
Ke
√

Ky
(

1 + β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
)
2

≤ βE
√

Ke
√

Ky

√√√√√√√ ∞

∑
n=1

 e−(2T−y)
√

n2+k2

√
K
(

β(n2 + k2)γ−1
(

1−e−2
√

KT

2

)2
+ e−2T

√
n2+k2

)


2

≤ 2
√

Ke
√

Ky
C1β1− y

2T E.

From (46), (48)–(50), the convergence result (47) can be derived.

5.2.2. A Posteriori Convergence Estimate

We find β such that
‖(vδ

β)y(0, x)− ψδ(x)‖ = τδ, (51)

here, τ > 1 is a constant.

Lemma 4. Let $(β) = ‖(vδ
β)y(0, x)− ψδ(x)‖, then,

(a) The function $(β) is continuous;
(b) limβ→0 $(β) = 0;
(c) limβ→+∞ $(β) = ‖ψδ‖;
(d) For β ∈ (0,+∞), the function $(β) is strictly monotonous increasing.

Proof of Lemma 4. We can easily proof this Lemma by setting

$(β) =

 ∞

∑
n=1

(
β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

1 + β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)

)2 (
ψδ

n

)2
1/2

. (52)

According to the intermediate value theorem of continuous function on closed interval, we know
that (51) exists a unique solution as ‖ψδ‖ > τδ > 0.

Lemma 5. For τ > 1, Equation (20) together with a posteriori rule (51) determine that the regularization
parameter β = β(δ, ψδ) satisfies β ≥

√
K sinh(

√
KT)(τ − 1) δ

E .
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Proof of Lemma 5. From (51), there holds

τδ =

∥∥∥∥∥ ∞

∑
n=1

β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
1 + β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

ψδ
nXn(x)

∥∥∥∥∥
≤
∥∥∥∥∥ ∞

∑
n=1

β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
1 + β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

(ψδ
n − ψn)Xn(x)

∥∥∥∥∥ (53)

+

∥∥∥∥∥ ∞

∑
n=1

β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
1 + β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

ψnXn(x)

∥∥∥∥∥
≤ δ +

∥∥∥∥∥ ∞

∑
n=1

β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
1 + β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

ψnXn(x)

∥∥∥∥∥ ,

and ∥∥∥∥∑∞
n=1

β(n2+k2)γ−1 sinh2(
√

n2+k2T)
1+β(n2+k2)γ−1 sinh2(

√
n2+k2T)

ψnXn(x)
∥∥∥∥ ≤

(
∑∞

n=1

(
β(n2+k2)γ−1 sinh2(

√
n2+k2T)

1+β(n2+k2)γ−1 sinh2(
√

n2+k2T)

)2
ψ2

n

)1/2

≤
(

∑∞
n=1 β2(n2 + k2)2γ−2 sinh4(

√
n2 + k2T)ψ2

n

)1/2
≤
(

∑∞
n=1

β2(n2+k2)2γe4T
√

n2+k2

(n2+k2) sinh2(
√

n2+k2T)
· sinh2(

√
n2+k2T)

(
√

n2+k2)2 ψ2
n

)1/2

≤
(

∑∞
n=1

β2

K sinh2(
√

KT)
· (n2 + k2)2γe4T

√
n2+k2 |〈v(T, ·), Xn〉|2

)1/2
≤ (1/(

√
K sinh(

√
KT)))βE,

combing with (53) and the estimate above, we obtain that (τ − 1)δ ≤ (1/(
√

K sinh(
√

KT)))βE.

Theorem 8. Let the exact solution of (3) is given in (7), the regularization solution vδ
β is defined in (20),

the error data ϕδ satisfies (21). We assume v satisfies the a priori bound (45), and the regularization parameter is
chosen by an a posteriori rule (51), then we have

‖vδ
β(y, ·)− v(y, ·)‖ ≤ C2E

y
2T δ1− y

2T , (54)

where

C2 = max

{
2C1

(√
K sinh(

√
KT)(τ − 1)

)− y
2T ,
(

2K(
1
2−γ)− T

y e−
√

KT(1− e−2
√

KT)−1
) y

2T
(τ + 1)1− y

2T

}
,

C1 is given in Theorem 4.

Proof of Theorem 8. Notice that

‖vδ
β(y, ·)− v(y, ·)‖ ≤ ‖vδ

β(y, ·)− vβ(y, ·)‖+ ‖vβ(y, ·)− v(y, ·)‖. (55)

By (49) and Lemma 5, we get

‖vδ
β(y, ·)− vβ(y, ·)‖ ≤ 2C1δβ−

y
2T ≤ 2C1

(√
K sinh(

√
KT)(τ − 1)

)− y
2T E

y
2T δ1− y

2T . (56)
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Below, we do the estimate for the second term of (55). For fixed 0 < y ≤ T, we have

A2(y)
(
vβ(y, ·)− v(y, ·)

)
(57)

= A2(y)
∞

∑
n=1

−β(n2 + k2)γ−1 sinh2(
√

n2 + k2T) sinh(
√

n2 + k2y)
√

n2 + k2
(

1 + β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
) ψnXn(x)

=
∞

∑
n=1

β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
1 + β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

(ψδ
n − ψn)Xn(x)

+
∞

∑
n=1

−β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)
1 + β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

ψδ
nXn(x),

using (21), (51) and (57), we can obtain

‖A2(y)
(
vβ(y, ·)− v(y, ·)

)
‖ ≤ δ + τδ = (τ + 1)δ. (58)

Meanwhile, according to the definition in (5) and the a priori bound condition (45), we have

‖vβ(y, ·)− v(y, ·)‖
D

vβ−v
γ

=

 ∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2

(
β(n2 + k2)γ−1 sinh2(

√
n2 + k2T)

1 + β(n2 + k2)γ−1 sinh2(
√

n2 + k2T)

)2(
sinh(

√
n2 + k2y)√

n2 + k2

)2

ψ2
n

 1
2

≤

 ∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2

(
sinh(

√
n2 + k2T)√

n2 + k2

)2

ψ2
n

 1
2

≤ E, (59)

then, by the condition stability result (11), we can get that

‖vβ(y, ·)− v(y, ·)‖ ≤ 2
y

2T

(
K(

1
2−γ)− T

y

) y
2T (

e
√

KT
(

1− e−2
√

KT
))− y

2T
(τ + 1)1− y

2T E
y

2T δ1− y
2T . (60)

Finally, combining (56) with (60), we can derive the inequality in (54).

Remark 1. In order to derive the error estimates of sharp type for our method, we impose the stronger a priori
assumptions (28) and (45), and apply the inequalities in Theorems 3 and 4 to proof Theorems 5–8. It can be
verify that there have some functions that satisfy these two assumptions. For instance, we make a verification on
the feasibility of the condition (28). We take u(y, x) = sin(x) cosh(

√
1 + k2y), it can be found that

‖u(T, ·)‖2
Du

γ
=

∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2 |〈u(T, ·), Xn〉L2(0,π)|2

=
∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2

∣∣∣∣∣∣
〈√

π

2
cosh(

√
1 + k2T)

√
2
π

sin(x),

√
2
π

sin(nx)

〉
L2(0,π)

∣∣∣∣∣∣
2

= (1 + k2)2γe4T
√

1+k2

∣∣∣∣∣∣
〈√

π

2
cosh(

√
1 + k2T)

√
2
π

sin(x),

√
2
π

sin(x)

〉
L2(0,π)

∣∣∣∣∣∣
2

= (2/π)(1 + k2)2γe4T
√

1+k2
cosh2(

√
1 + k2T)

(∫ π

0
sin2 xdx

)2

= (π/2)(1 + k2)2γe4T
√

1+k2
cosh2(

√
1 + k2T).
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For each fixed k, γ ≥ 1, we always can find the positive numbers l and µ, such that l > k, µ > γ, then it
holds that

‖u(T, ·)‖2
Du

γ
=

∞

∑
n=1

(n2 + k2)2γe4T
√

n2+k2 |〈u(T, ·), Xn〉L2(0,π)|2

= (π/2)(1 + k2)2γe4T
√

1+k2
cosh2(

√
1 + k2T) ≤ (π/2)(1 + l2)2µe4T

√
1+l2

cosh2(
√

1 + l2T),

i.e., there exists a positive number E = E(l, µ) =
√
(π/2)(1 + l2)2µe4T

√
1+l2 cosh2(

√
1 + l2T). This shows

that the assumption (28) is practicable, and the function u(y, x) = sin(x) cosh(
√

1 + k2y) satisfies (28).
In fact, we can verify that the functions u(y, x) = sin(mx) cosh(

√
m2 + k2y) (m ≥ 1 is a positive integer) all

satisfy the condition (28). About the explanation for the rationality of assumption (45), the procedure is similar
with the one above, here we skip it.

6. Numerical Experiments

This section verifies the calculated effect of regularized method by making some
special experiments. For the simplification, we only investigate numerical efficiency of the
regularization method for (2), which is similar to the case of inhomogeneous Neumann data (3).

Example 1. We take T = 1 and u(y, x) = sin(x) cosh(
√

1 + k2y)(k > 0) as the exact solution
of (2), ϕ(x) = u(0, x) = sin(x). Denote ∆x = π

N , xı = ı∆x (ı = 0, 1, 2, . . . , N), ϕδ is taken as
ϕδ = ϕ + εrandn(size(ϕ)), here ε is the noisy level, randn(size(ϕ)) returns an random array whose size
is same with ϕ. The noisy error bound δ is calculated by

δ := ‖ϕδ − ϕ‖l2 =

(
1

N + 1

N

∑
ı=0

∣∣∣ϕδ(xı)− ϕ(xı)
∣∣∣2)1/2

. (61)

For each 0 < y ≤ 1, the regularization solution uδ
α(y, x) is computed by (15) for n = 1, 2, . . . , M, and the

computation error is defined by

ε(u) =

√
1

N+1 ∑N
ı=0
(
u(y, xı)− uδ

α(y, xı)
)2√

1
N+1 ∑N

ı=0 u2(y, xı)
. (62)

In practice, since we can not easily know the a priori bound E of the solution, here we only make some
numerical experiments in which we choose the regularization parameter by the a posteriori rule (34). The Matlab
(R2015a, MathWorks Company, Natick, MA, USA) command “fzero” was used to find α, and the constant τ

was taken as 1.1.
For k = 0.5, 1.5, ε = 0.01, γ = 2, the numerical results for exact solution u(y, x) and regularized solution

uδ
α(y, x) at y = 0.4, 0.6, 0.8, 1 are shown in Figures 1 and 2, respectively. For k = 0.5, 1.5, γ = 3, the calculated

errors for various noisy level ε are shown in Tables 1 and 2. For k = 0.5, 1.5, taking ε = 0.01, we also compute
the corresponding errors for various γ, the computation results are presented in Tables 3 and 4.
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Figure 1. k = 0.5, ε = 0.01, γ = 2, the exact and regularized solutions; (a) y = 0.4, (b): y = 0.6,
(c) y = 0.8, (d) y = 1.
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Figure 2. k = 1.5, ε = 0.01, γ = 2, the exact and regularized solutions; (a) y = 0.4, (b) y = 0.6,
(c) y = 0.8, (d) y = 1.



Mathematics 2019, 7, 667 17 of 19

Table 1. k = 0.5, γ = 3, the relative root mean square errors for various noise level ε at y = 0.6, 1.

ε 0.001 0.005 0.01 0.05 0.1

α 5.0507× 10−5 2.4655× 10−4 4.7276× 10−4 0.0019 0.0032

ε0.6(u) 6.4027 ×10−4 0.0030 0.0055 0.0219 0.0396

ε1(u) 8.0136 ×10−4 0.0035 0.0064 0.0233 0.0409

Table 2. k = 1.5, γ = 3, the relative root mean square errors for various noise levels ε at y = 0.6, 1.

ε 0.001 0.005 0.01 0.05 0.1

α 8.5042× 10−7 4.2552× 10−6 8.5144× 10−6 4.1820× 10−5 8.0668× 10−5

ε0.6(u) 6.3978 ×10−4 0.0032 0.0062 0.0284 0.0525

ε1(u) 7.4456 ×10−4 0.0037 0.0072 0.0316 0.0569

Table 3. k = 0.5, ε = 0.01, the relative root mean square errors for various γ at y = 0.6, 1.

γ 1 2 3 4 5 6

α 7.9344× 10−4 6.2776× 10−4 4.7276× 10−4 3.1785× 10−4 1.9122× 10−4 1.0780× 10−4

ε0.6(u) 0.0064 0.0061 0.0055 0.0046 0.0039 00033

ε1(u) 0.0081 0.0075 0.0064 0.0050 0.0040 00034

Table 4. k = 1.5, ε = 0.01, the relative root mean square errors for various γ at y = 0.6, 1.

γ 1 2 3 4 5 6

α 9.0299× 10−5 2.7734× 10−5 8.5144× 10−6 2.6042× 10−6 7.8824× 10−7 2.3350× 10−7

ε0.6(u) 0.0064 0.0063 0.0062 0.0061 0.0058 00055

ε1(u) 0.0074 0.0073 0.0072 0.0069 0.0066 00060

Figures 1 and 2 and Tables 1–4 indicate that our method is stable and feasible. Tables 1 and 2
show that numerical results become better as ε goes to zero, which verifies the convergence of our
method in practice. Tables 3 and 4 show that, for the same ε, the error decreases as γ becomes large.
So in order to guarantee obtaining a good computational result, we should choose the parameter γ as
a relatively large positive number, this can also be found from the expressions of the regularization
solutions (15) and (20).

7. Conclusions and Discussion

This paper gives the estimates of conditional stability for (2) and (3) under an a priori bound
assumption for an exact solution. We use a generalized Tikhonov regularization method to overcome
the ill-poseness of two problems. By combining a priori and an a posteriori rules of the regularization
parameter, we derive the results of sharp types of error estimates for this method. We also verify the
feasibility of our method by doing the corresponding numerical experiments.

We point out that we write the expression of the solution by using the method of separation of
variables, so this regularization technique can also be used to investigate some other similar problems
in cylindrical region. However we can not apply this method to deal with some problems in a more
general domain, which is a limitation of this work.
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