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1. Introduction

Let G be any finite simple graph with vertex set V(G) = {x1, . . . , xn} and edge set E(G), where
simple means no loops or multiple edges. The edge ideal of G is the ideal I(G) =

〈
xixj | {xi, xj} ∈ E(G)

〉
in R = k[x1, . . . , xn], a standard graded polynomial ring over a field k (k is any field). Describing the
dictionary between the graph theoretic properties of G and the algebraic properties of I(G) or R/I(G)

is an active area of research; e.g., see [1,2].
Relating the homological invariants of I(G) and the graph theoretic invariants of G has proven

to be a fruitful approach to building this dictionary. Recall that the minimal graded free resolutionof
I(G) ⊆ R is a long exact sequence of the form:

0→
⊕

j
R(−j)βl,j(I(G)) →

⊕
j

R(−j)βl−1,j(I(G)) → · · · →
⊕

j
R(−j)β0,j(I(G)) → I(G)→ 0

where l ≤ n. Here, R(−j) denotes the free R-module obtained by shifting the degrees of R by j,
that is R(−j)a = Ra−j. We denote by βi,j(I(G)) the i, jth graded Betti number of I(G); this number
equals the number of minimal generators of degree j in the ith syzygy module of I(G). Two invariants
that measure the “size” of the resolution are the (Castelnuovo–Mumford) regularity and the projective
dimension, defined as:

reg(I(G)) = max{j− i | βi,j(I(G)) 6= 0}, and

pd(I(G)) = max{i | βi,j(I(G)) 6= 0 for some j}.

One wishes to relate the numbers βi,j(I(G)) to the invariants of G; e.g., see the survey of Hà [3],
which focuses on describing reg(I(G)) in terms of the invariants of G.

In this note, we give explicit formulas for reg(I(G)) for the edge ideals of two infinite families of
circulant graphs. Our results complement previous work on the algebraic and combinatorial topological
properties of circulant graphs (e.g, [4–11]). Fix an integer n ≥ 2 and a subset S ⊆ {1, . . . , b n

2 c}.
The circulant graph Cn(S) is the graph on the vertex set {x1, . . . , xn} such that {xi, xj} ∈ E(Cn(S))
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if and only if |i − j| or n− |i − j| ∈ S. To simplify notation, Cn(a1, . . . , at) is sometimes written for
Cn({a1, . . . , at}). As an example, the graph C10(1, 3) is drawn in Figure 1.

Figure 1. The circulant C10(1, 3).

When S = {1, . . . , b n
2 c}, then Cn(S) ∼= Kn, the clique on n vertices. On the other hand, if S = {1},

then Cn(1) ∼= Cn, the cycle on n vertices. For both of these families, the regularity of their edge ideals is
known. Specifically, the ideal I(Kn) has a linear resolution by Fröberg’s theorem [12], so reg(I(Kn)) = 2.
The value of reg(I(Cn)) can be deduced from the work of Jacques ([13], Theorem 7.6.28). One can view
these circulant graphs as “extremal” cases in the sense that |S| is either as large or as small as possible.

Our motivation is to understand the next open cases. In particular, generalizing the case of Kn,
we compute reg(I(Cn(S)) when S = {1, . . . , ĵ, . . . , b n

2 c} for any 1 ≤ j ≤ b n
2 c (Theorem 5). For most j,

the regularity follows from Fröberg’s theorem and a result of Nevo [14]. To generalize the case of Cn (a
circulant graph where every vertex has degree two), we compute the regularity of the edge ideal of any
cubic (every vertex has degree three) circulant graph, that is G = C2n(a, n) with 1 ≤ a ≤ n (Theorem
8). Our proof of Theorem 8 requires a new technique to compute reg(I) for a square-free monomial
ideal. Specifically, we show how to use partial information about reg(I), pd(I), and the reduced Euler
characteristic of the simplicial complex associated with I to determine reg(I) exactly (see Theorem 4).
We believe this result to be of independent interest.

We use the following outline. We first recall the relevant background regarding graph theory
and commutative algebra, along with our new result on the regularity of square-free monomial ideals.
In Section 3, we compute the regularity of I(G) for the family of graphs G = Cn(1, . . . , ĵ, . . . , b n

2 c).
In Section 4, we give an explicit formula for the regularity of edge ideals of cubic circulant graphs.

2. Background

We review the relevant background from graph theory and commutative algebra. In addition,
we give a new result on the regularity of square-free monomial ideals.

2.1. Graph Theory Preliminaries

Let G = (V(G), E(G)) denote a finite simple graph. We abuse notation and write xy for the edge
{x, y} ∈ E(G). The complement of G, denoted Gc, is the graph (V(Gc), E(Gc)) where V(Gc) = V(G)

and E(Gc) = {xy | xy 6∈ E(G)}. The neighbours of x ∈ V(G) are the set N(x) = {y ∈ V(G) | xy ∈
E(G)}. The closed neighbourhood of x is N[x] = N(x) ∪ {x}. The degree of x is deg(x) = |N(x)|. If we
need to highlight the graph, we write NG[x] or NG(x).

A graph H = (V(H), E(H)) is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G). Given a subset
W ⊆ V(G), the induced subgraph of G on W is the graph GW = (W, E(GW)) where E(GW) = {xy ∈
E(G) | {x, y} ⊆W}. Notice that an induced subgraph is a subgraph of G, but not every subgraph of G
is an induced subgraph.

An n-cycle, denoted Cn, is the graph with V(Cn) = {x1, . . . , xn} and edges E(Cn) =

{x1x2, x2x3, . . . , xn−1xn, xnx1}. A graph G has a cycle of length n if G has a subgraph of the form
Cn. A graph is a chordal graph if G has no induced graph of the form Cn with n ≥ 4. A graph G is
co-chordal if Gc is chordal. The co-chordal number of G, denoted co-chord(G), is the smallest number of
subgraphs of G such that G = G1 ∪ · · · ∪ Gs, and each Gc

i is a chordal graph.
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A claw is the graph with V(G) = {x1, x2, x3, x4} with edges E(G) = {x1x2, x1x3, x1x4}. A graph
is claw-free if no induced subgraph of the graph is a claw. A graph G is gap-free if no induced
subgraph of Gc is a C4. Finally, the complete graph Kn is the graph with V(Kn) = {x1, . . . , xn} and
E(Kn) = {xixj | 1 ≤ i < j ≤ n}.

2.2. Algebraic Preliminaries

We recall some facts about the regularity of I(G). Note that for any homogeneous ideal, reg(I) =
reg(R/I) + 1.

We collect together a number of useful results on the regularity of edge ideals.

Theorem 1. Let G be a finite simple graph. Then:

(i) if G = H ∪ K, with H and K disjoint, then:

reg(R/I(G)) = reg(R/I(H)) + reg(R/I(K)).

(ii) reg(I(G)) = 2 if and only if Gc is a chordal graph.
(iii) reg(I(G)) ≤ co-chord(G) + 1.
(iv) if G is gap-free and claw-free, then reg(I(G)) ≤ 3.
(v) if x ∈ V(G), then reg(I(G)) ∈ {reg(I(G \ NG[x])) + 1, reg(I(G \ x))}.

Proof. For (i), see Woodroofe ([15], Lemma 8). Statement (ii) is Fröberg’s Theorem ([12], Theorem 1).
Woodroofe ([15], Theorem 1) first proved (iii). Nevo first proved (iv) in [14] (Theorem 5.1). For (v),
see Dao, Huneke, and Schweig ([16], Lemma 3.1).

We require a result of Kalai and Meshulam [17] that has been specialized to edge ideals.

Theorem 2. ([17], Theorems 1.4 and 1.5) Let G be a finite simple graph, and suppose H and K are subgraphs
such that G = H ∪ K. Then,

(i) reg(R/I(G)) ≤ reg(R/I(H)) + reg(R/I(K)), and
(ii) pd(I(G)) ≤ pd(I(H)) + pd(I(K)) + 1.

We now introduce a new result on the regularity of edge ideals. In fact, because our result holds
for all square-free monomial ideals, we present the more general case.

We review some facts about simplicial complexes. Given a vertex set V = {x1, . . . , xn}, a simplicial
complex ∆ on V is a set of subsets of V that satisfies the properties: (i) if F ∈ ∆ and G ⊆ F, then G ∈ ∆,
and (ii) {xi} ∈ ∆ for i = 1, . . . , n. Note that ∅ ∈ ∆ by (i) since {x1} ∈ ∆ by (ii) (if ∆ is not the empty
complex). An element of ∆ is called a face. For any W ⊆ V, the restriction of ∆ to W is the simplicial
complex ∆W = {F ∈ ∆ | F ⊆W}.

The dimension of F ∈ ∆ is dim(F) = |F| − 1. The dimension of a complex ∆, denoted dim(∆),
is max{dim(F) | F ∈ ∆}. Let fi equal the number of faces of ∆ of dimension i; we adopt the convention
that f−1 = 1. If dim(∆) = D, then the f -vector of ∆ is the (D + 2)-tuple f (∆) = ( f−1, f0, . . . , fD).

We can associate with any simplicial complex ∆ on V a monomial ideal I∆ in the polynomial ring
R = k[x1, . . . , xn] (with k a field) as follows:

I∆ =
〈

xj1 xj2 · · · xjr | {xj1 , xj2 , . . . , xjr} /∈ ∆
〉

.

The ideal I∆ is the Stanley–Reisner ideal of ∆. This construction can be reversed. Given a square-free
monomial ideal I of R, the simplicial complex associated with I is:

∆(I) =
{
{xi1 , . . . , xir} | the square-free monomial xi1 · · · xir 6∈ I

}
.
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Given a square-free monomial ideal I, Hochster’s formula relates the Betti numbers of I to the
reduced simplicial homology of ∆(I). See [2] (Section 6.2) for more background on H̃j(Γ; k), the jth

reduced simplicial homology group of a simplicial complex Γ.

Theorem 3. (Hochster’s formula) Let I ⊆ R = k[x1, . . . , xn] be a square-free monomial ideal, and set
∆ = ∆(I). Then, for all i, j ≥ 0,

βi,j(I) = ∑
|W|=j, W⊆V

dimk H̃j−i−2(∆W ; k).

Given a simplicial complex ∆ of dimension D, the dimensions of the homology groups H̃i(∆; k)
are related to the f -vector f (∆) via the reduced Euler characteristic:

χ̃(∆) =
D

∑
i=−1

(−1)i dimk H̃i(∆; k) =
D

∑
i=−1

(−1)i fi. (1)

Note that the reduced Euler characteristic is normally defined to be equal to one of the two sums,
and then, one proves the two sums are equal (e.g., see [2], Section 6.2).

Our new result on the regularity of square-free monomial ideals allows us to determine reg(I)
exactly if we have enough partial information on the regularity, projective dimension, and the reduced
Euler characteristic.

Theorem 4. Let I be a square-free monomial ideal of R = k[x1, . . . , xn] with associated simplicial complex
∆ = ∆(I).

(i) Suppose that reg(I) ≤ r and pd(I) ≤ n− r + 1.

(a) If r is even and χ̃(∆) > 0, then reg(I) = r.
(b) If r is odd and χ̃(∆) < 0, then reg(I) = r.

(ii) Suppose that reg(I) ≤ r and pd(I) ≤ n− r. If χ̃(∆) 6= 0, then reg(I) = r.

Proof. By Hochster’s formula (Theorem 3), note that βa,n(I) = dimk H̃n−a−2(∆; k) for all a ≥ 0 since
the only subset W ⊆ V with |W| = n is V.

(i) If reg(I) ≤ r and pd(I) ≤ n− r + 1, we have βa,n(I) = 0 for all a ≤ n− r− 1 and βa,n(I) = 0
for all a ≥ n− r + 2. Consequently, among all the graded Betti numbers of the form βa,n(I) as
a varies, only βn−r,n(I) = dimk H̃r−2(∆; k) and βn−r+1,n(I) = dimk H̃r−3(∆; k) may be non-zero.
Thus, by (1):

χ̃(∆) = (−1)r−2 dimk H̃r−2(∆; k) + (−1)r−3 dimk H̃r−3(∆; k).

If we now suppose that r is even and χ̃(∆) > 0, the above expression implies:

dimk H̃r−2(∆; k)− dimk H̃r−3(∆; k) > 0,

and thus, βn−r,n(I) = dimk H̃r−2(∆; k) 6= 0. As a consequence, reg(I) = r, thus proving (a).
Similarly, if r is odd and χ̃(∆) < 0, this again forces βn−r,n(I) = dimk H̃r−2(∆; k) 6= 0, thus
proving (b).

(ii) Similar to Part (i), the hypotheses on the regularity and projective dimension imply that χ̃(∆) =
(−1)r−2 dimk H̃r−2(∆; k) = (−1)r−2βn−r,n(I). Therefore, if χ̃(∆) 6= 0, then βn−r,n(I) 6= 0,
which implies reg(I) = r.
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Remark 1. There is a similar result to Theorem 4 for the projective dimension of I. In particular, under the
assumptions of (i) and if r is even and χ̃(∆) < 0, or if r is odd and χ̃(∆) > 0, then the proof of Theorem 4
shows that pd(I) = n− r + 1. Under the assumptions of (ii), then pd(I) = n− r.

We will apply Theorem 4 to compute the regularity of cubic circulant graphs (see Theorem 8).
We will also require the following terminology and results that relate the reduced Euler characteristic
to the independence polynomial of a graph.

A subset W ⊆ V(G) is an independent set if for all e ∈ E(G), e * W. The set of independent sets
forms a simplicial complex called the independence complex of G, that is,

Ind(G) = {W |W is an independent set of V(G)}.

Note that Ind(G) = ∆I(G), the simplicial complex associated with the edge ideal I(G).
The independence polynomial of a graph G is defined as:

I(G, x) =
α

∑
r=0

irxr,

where ir is the number of independent sets of cardinality r. Note that (i0, i1, . . . , iα) = ( f−1, f0, . . . , fα−1)

is the f -vector of Ind(G). Since χ̃(Ind(G)) = ∑α−1
i=−1(−1)i fi, we get:

χ̃(Ind(G)) = −I(G,−1). (2)

Thus, the value of χ̃(Ind(G)) can be extracted from the independence polynomial I(G, x).

3. The Regularity of the Edge Ideals of Cn(1, . . . , ĵ, . . . , b n
2 c)

In this section, we compute the regularity of the edge ideal of the circulant graph G = Cn(S) with
S = {1, . . . , ĵ, . . . , b n

2 c} for any j ∈ {1, . . . , b n
2 c}.

We begin with the observation that the complement of G is also a circulant graph, and in particular,
Gc = Cn(j). Furthermore, we have the following structure result.

Lemma 1. Let H = Cn(j) with 1 ≤ j ≤
⌊ n

2
⌋
, and set d = gcd(j, n). Then, H is the union of d disjoint cycles

of length n
d . Furthermore, H is a chordal graph if and only if n = 2j or n = 3j.

Proof. Label the vertices of H as {0, 1, . . . , n− 1}, and set d = gcd(j, n). For each 0 ≤ i < d, the induced
graph on the vertices {i, j + i, 2j + i, . . . , ( n

d − 1)j + i} is a cycle of length n
d , thus proving the first

statement (if n
d = 2, then H consists of d disjoint edges). For the second statement, if n = 3j, then

d = gcd(j, n) = 3, so H is the disjoint union of three cycles, and thus chordal. If n = 2j, then H consists
of j disjoint edges and, consequently, is chordal. Otherwise, n

d ≥ 4, and so, H is not chordal.

Lemma 2. Let G = Cn(1, . . . , ĵ, . . . , b n
2 c), and d = gcd(j, n).

(i) If n
d ≥ 4, then G is claw-free.

(ii) If n
d ≥ 5, then G is gap free.

Proof. For the first statement, suppose that G has an induced subgraph H on {z1, z2, z3, z4} ⊆ V(G)

that is a claw. Then, Hc is an induced subgraph of Gc of the form:

z4 z2

z3

z1
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However, by Lemma 1, the induced cycles of Gc have length n
d ≥ 4. Thus, G is claw-free.

The second statement also follows from Lemma 1 and the fact that a graph G is gap-free if and
only if Gc has no induced four cycles.

The main result of this section is given below.

Theorem 5. If G = Cn(1, . . . , ĵ, . . . , b n
2 c), then:

reg(I(G)) =

{
2 n = 2j or n = 3j

3 otherwise.

Proof. Consider Gc = Cn(j), and let d = gcd(j, n). By Lemma 1, Gc consists of induced cycles of
length k = n

d . Because 1 ≤ j ≤ b n
2 c, we have d < n, and thus, 2 ≤ k ≤ n. If k = 2 or 3, i.e., if n = 2j

or n = 3j, Lemma 1 and Theorem 1 (ii) combine to give reg(I(G)) = 2. If k ≥ 5, then Lemmas 1 and
2 imply that G is gap-free and claw-free (but not chordal), and so, Theorem 1 (ii) and (iv) implies
reg(I(G)) = 3.

To compete the proof, we need to consider the case k = 4. In this case, n = 4d, and so, G =

C4d(1, . . . , ĵ, . . . , 2d). However, because d = gcd(j, 4d) and 1 ≤ j ≤ 2d, we have d = j. Therefore, the
graph G has the form G = C4j(1, . . . , ĵ, . . . , 2j). By Lemma 1, Gc is j disjoint copies of C4, and thus,
Theorem 1 (ii) gives reg(I(G)) ≥ 3. To prove that reg(I(G)) = 3, we show co-chord(G) = 2 and
apply Theorem 1 (iii).

Label the vertices of G as 0, 1, . . . , 4j− 1, and let:

V1 = {0, 1, 2, . . . , j− 1, 2j, 2j + 1, . . . , 3j− 1} and

V2 = {j, j + 1, . . . , 2j− 1, 3j, 3j + 1, . . . , 4j− 1}.

Observe that the induced subgraph of G on V1 (and V2) is the complete graph K2j.
Let G1 be the graph with V(G1) = V(G) and edge set E(G1) = (E(C4j(1, . . . , j− 1)) ∪ E(GV1)) \

E(GV2). Similarly, we let G2 be the graph with V(G2) = V(G) and edge set E(G2) = (E(C4j(j +
1, . . . , 2j)) ∪ E(GV2)) \ E(GV1).

We now claim that G = G1 ∪ G2, and furthermore, both Gc
1 and Gc

2 are chordal and, consequently,
co-chord(G) = 2. The equality G = G1 ∪ G2 follows from the fact that:

E(G1) ∪ E(G2) = E(C4j(1, . . . , j− 1)) ∪ E(C4j(j + 1, . . . , 2j))

= E(G4j(1, . . . , ĵ, . . . , 2j)).

To show that Gc
1 is chordal, first note that the induced graph on V1, that is (G1)V1 , is the complete

graph K2j. In addition, the vertices V2 form an independent set of G1. To see why, note that if a, b ∈ V2

are such that ab ∈ E(G), then ab ∈ E(GV2). However, by the construction of E(G1), none of the edges
of E(GV2) belong to E(G1). Therefore, ab 6∈ E(G1), and thus, V2 is an independent set in G1.

The above observations therefore imply that in Gc
1, the vertices of V1 form an independent set,

and (Gc
1)V2 is the clique K2j. To show that Gc

1 is chordal, suppose that Gc
1 has an induced cycle of length

t ≥ 4 on {v1, v2, v3, . . . , vt}. Since the induced graph on (Gc
1)V2 is a clique, at most two of the vertices

of {v1, v2, . . . , vt} can belong to V2. Indeed, if there were at least three vi, vj, vk ∈ {v1, v2, . . . , vt} ∩V2,
then the induced graph on these vertices is a three cycle, contradicting the fact that {v1, v2, . . . , vt} is
the minimal induced cycle of length t ≥ 4. However, then at least t− 2 ≥ 2 vertices of {v1, v2, . . . , vt}
must belong to V1, and in particular, at least two of them are adjacent. However, this cannot happen
since the vertices of V1 are independent in Gc

1. Thus, Gc
1 must be a chordal graph.

The proof that Gc
2 is chordal is similar. Note that the vertices of V2 are an independent set, and

(Gc
2)V1 is the clique K2j. The proof now proceeds as above.
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4. Cubic Circulant Graphs

We now compute the regularity of the edge ideals of cubic circulant graphs, that is a circulant
graph where every vertex has degree three. In general, a circulant graph Cn(a1, . . . , at) is 2t-regular
(every vertex has degree 2t), except if 2at = n, in which case, it is (2t − 1)-regular. Consequently,
cubic circulant graphs have the form G = C2n(a, n) with integers 1 ≤ a ≤ n. The main result of this
section can also be viewed as an application of Theorem 4 to compute the regularity of a square-free
monomial ideal.

We begin with a structural result for cubic circulants due to Davis and Domke.

Theorem 6. [18] Let 1 ≤ a < n and t = gcd(2n, a).

(a) If 2n
t is even, then C2n(a, n) is isomorphic to t copies of C 2n

t
(1, n

t ).
(b) If 2n

t is odd, then C2n(a, n) is isomorphic to t
2 copies of C 4n

t
(2, 2n

t ).

Theorem 6 implies that a cubic circulant graph is the disjoint union of one or more connected
cubic circulant graphs. Furthermore, the only connected cubic circulant graphs are those circulant
graphs that are isomorphic to either the circulant C2n(1, n) for any n ≥ 2 or the circulant C2n(2, n)
with n > 1 odd (for the second circulant, if n is not odd, then Theorem 6 implies that this circulant is
not connected). Recall from Theorem 1 (i) that, to compute the regularity of a graph, it is enough to
compute the regularity of each connected component. Therefore, it suffices to compute the regularity
of the edge ideals of C2n(1, n) and C2n(2, n) with n odd. Moving forward, unless stated otherwise, we
will restrict to connected cubic circulant graphs. Note it will be convenient to use the representation
and labelling of these two graphs as in Figure 2.

xn−2

xn−1
xn

xn+1

xn+2

xn+3x3

x2

x1

x2n

x2n−1

x2n−2

xi

xn+i

x2n−5

x2n−3

x2n−1 x1x3

x5 xn+5

xn+3

xn+1xn−1

xn−3

xn−5

xi

xn+i

Figure 2. The graphs C2n(1, n) and C2n(2, n).

Our strategy is to use Theorem 4 to compute the regularity of these two graphs. Thus, we need
bounds on reg(I(G)) and pd(I(G)) and information about the reduced Euler characteristic of Ind(G)

when G = C2n(1, n) or C2n(2, n).
We first bound the regularity and the projective dimension. We introduce the following three

families of graphs, where the t ≥ 1 denotes the number of “squares”:

(i) The family At:

(ii) The family Bt:

(iii) The family Dt:
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Lemma 3. With the notation as above, we have:

(i) If G = At, then:

reg(I(G)) ≤
{

t+4
2 if t even

t+3
2 if t odd

and pd(I(G)) ≤
{

3t
2 + 1 if t even
3(t−1)

2 + 2 if t odd.

(ii) If G = Bt, then

reg(I(G)) ≤
{

t+4
2 if t even

t+3
2 if t odd.

(iii) If G = Dt and t = 2l + 1 with l an odd number, then reg(I(G)) ≤ t+3
2 .

Proof. (i) The proof is by induction on t. Via a direct computation (for example, using Macaulay2 [19]),
one finds reg(I(A1)) = 2, reg(I(A2)) = 3, pd(I(A1)) = 2, and pd(I(A2)) = 4. Our values agree with
the upper bounds given in the statement, so the base cases hold.

Now, suppose that t ≥ 3. The graph At can be decomposed into the subgraphs A1 and At−2, i.e.,

a a

b b

Suppose that t is even. By Theorem 2 and by induction (and the fact that reg(R/I) = reg(I)− 1),
we get:

reg(R/I(At)) ≤ reg(R/I(A1)) + reg(R/I(At−2)) ≤ 1 +
(t− 2) + 4

2
− 1 =

t + 4
2
− 1

and:

pd(I(At)) ≤ pd(I(A1)) + pd(I(At−2) + 1 ≤ 2 +
3(t− 2)

2
+ 1 + 1 =

3t
2
+ 1.

Because the proof for when t is odd is similar, we omit it.
(ii) A direct computation shows reg(I(B1)) = 2 and reg(I(B2)) = 3. If t ≥ 3, we decompose Bt

into the subgraphs B1 and At−2, i.e.,

a a

b b

Suppose that t is even. Since reg(I(B1)) = 2, Theorem 2 and Part (i) above give us:

reg(R/I(Bt)) ≤ reg(R/I(B1)) + reg(R/I(At−2)) ≤
(t− 2) + 4

2
=

t + 2
2

.

Therefore, reg(I(Bt)) ≤ t+2
2 + 1 = t+4

2 . When t is odd, the proof is similar.
(iii) Because t = 2l + 1 with l odd, the graph Dt can be decomposed into l + 1 subgraphs of the

form A1, i.e.,

a a

b b
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Since reg(I(A1)) = 2, by Theorem 2, we get reg(R/I(Dt)) ≤ (l + 1)reg(R/I(A1)) = l + 1. Thus,
reg(I(Dt)) ≤ l + 2 = t+3

2 .

Remark 2. In the above proof, we relied on computer computations for our base case. In general, the graded Betti
numbers of an ideal may depend on the characteristic of the ground field. However, as shown by Katzman [20], the
Betti numbers of edge ideals of graphs on 11 or less vertices are independent of the characteristic. Since the graphs
in our induction steps have 11 or less vertices, the values found for our base cases hold in all characteristics.

We now bound the projective dimensions of the edge ideals of C2n(1, n) and C2n(2, n). In the next
two lemmas, we assume that n ≥ 4. However, as we show in Theorem 8, the bounds (in fact, they are
equalities) given in these lemmas also hold if n = 2 or 3, i.e., if G = C4(1, 2), C6(1, 3) or C6(2, 3).

Lemma 4. Let n ≥ 4.

(i) If G = C2n(1, n), then:

pd(I(G)) ≤
{

3k− 1 if n = 2k

3k + 1 if n = 2k + 1.

(ii) If G = C2n(2, n), then pd(I(G)) ≤ 3k + 1 where n = 2k + 1.

Proof. (i) Let G = C2n(1, n), and suppose that n = 2k + 1. The graph C2n(1, n) can be decomposed
into the subgraphs A1 and A2k−2, i.e.,

xn

x2n

xn+1

x1

x2n

xn

xn+2 xn+2

x2 x2

x2n

xn

Note that since n ≥ 4 and n is odd, 2k− 2 ≥ 2. Combining Theorem 2 and Lemma 3, we get:

pd(I(C2n(1, n))) ≤ pd(I(A2k−2)) + pd(I(A1)) + 1 ≤
(

3(2k− 2)
2

+ 1
)
+ 3 = 3k + 1.

If n = 2k, C2n(1, n) can be decomposed as in the previous case with the only difference being
that C2n(1, n) can be decomposed into the union of the subgraphs A1 and A2k−3. By Theorem 2 and
Lemma 3:

pd(I(C2n(1, n))) ≤ pd(I(A2k−3)) + pd(I(A1)) + 1 ≤
(

3(2k− 4)
2

+ 2
)
+ 3 = 3k− 1.

(ii) Let G = C2n(2, n) with n = 2k + 1. We can draw G as:

xn−1

x2n−1

xn+1

x1

xn−1

x2n−1

The previous representation of G contains 2k squares. Then, the graph G can be decomposed into the
subgraphs A1 and A2k−2, and the proof runs as in (i).

We now determine bounds on the regularity.

Lemma 5. Let n ≥ 4.
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(i) If G = C2n(1, n), then:

reg(I(G)) ≤
{

k + 1 if n = 2k, or if n = 2k + 1 and k odd

k + 2 if n = 2k + 1 and k even.

(ii) If G = C2n(2, n), then

reg(I(G)) ≤
{

k + 1 if n = 2k + 1 and k even

k + 2 if n = 2k + 1 and k odd.

Proof. (i) Let G = C2n(1, n). We consider three cases.

Case 1. n = 2k.

In Lemma 4 (i), we saw that G can be decomposed into the subgraphs A1 and A2k−3. By Theorem 2
and Lemma 3, we get:

reg(R/I(G)) ≤ reg(R/I(A1)) + reg(R/I(A2k−3)) ≤ k.

Case 2. n = 2k + 1 with k an odd number.

Using Theorem 1 (v), we have:

reg(I(G)) ∈ {reg(I(G \ x1), reg(I(G \ NG[x1]) + 1}.

If we set W = G \ x1, then by applying Theorem 1 (v) again, we have:

reg(I(G)) ∈ {reg(I(W \ xn+1), reg(I(W \ NW [xn+1]) + 1, reg(I(G \ NG[x1]) + 1}.

We have G \ NG[x1] ∼= W \ NW [xn+1] ∼= D2k−3. Moreover, 2k− 3 = 2(k− 2) + 1, and since k is
an odd number, k− 2 is also odd. Thus, by Lemma 3 (iii), we obtain reg(I(D2k−3)) ≤ 2k−3+3

2 = k.
On the other hand, the graph W \ xn+1 = (G \ x1) \ xn+1

∼= B2k−1, so by Lemma 3 (ii), we have
reg(I(W \ xn+1)) ≤ 2k−1+3

2 ≤ k + 1. Thus, reg(I(G)) ≤ k + 1.

Case 3. n = 2k + 1 with k an even number.

In Lemma 4 (i), we saw that G can be decomposed into the subgraphs A1 and A2k−2, and the
proof runs as in Case 1.

(ii) Let G = C2n(2, n). We consider two cases.

Case 1. n = 2k + 1 with k an even number.

As in the second case of (i), by Theorem 1 (v), we have:

reg(I(G)) ∈ {reg(I(W \ xn+1), reg(I(W \ NW [xn+1]) + 1, reg(I(G \ NG[x1]) + 1}.

where W = G \ x1. In particular, W \NW [xn+1] ∼= G \NG[x1]. The graph G \NG[x1] can be represented as:

The previous representation of G \ NG[x1] contains 2k− 3 squares. It follows that G \ NG[x1] can be
decomposed into the subgraphs D2k−5 and A1, i.e.,

a

b

a

b
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Note that 2k − 5 = 2(k − 3) + 1, and because k is even, then k − 3 is odd. Using Theorem 2 and
Lemma 3, we get:

reg(R/I(G \ NG[x1])) ≤ reg(R/I(D2k−5)) + reg(R/I(A1)) ≤
2k− 2

2
= k− 1.

The graph W \ xn+1
∼= B2k−1. Therefore, by Lemma 3 (ii), we have reg(I(W \ xn+1)) ≤ 2k−1+3

2 =

k + 1. Consequently, reg(I(G)) ≤ k + 1, as desired.

Case 2. n = 2k + 1 with k an odd number.

The result follows from the fact that the graphs C2n(2, n) can be decomposed into the subgraphs
A1 and A2k−2 as seen in Lemma 4, and so, reg(I(G)) ≤ reg(I(A1)) + reg(I(A2k−2))− 1.

Our final ingredient is a result of Hoshino ([21], Theorem 2.26) (also see Brown–Hoshino ([22]),
Theorems 3.2 and 3.5), which describes the independence polynomial for cubic circulant graphs.

Theorem 7 ([21,22]). For each n ≥ 3, set:

In(x) = 1 +
b n−2

4 c

∑
`=0

2n
2`+ 1

(
n− 2`− 2

2`

)
x2`+1(1 + x)n−4`−2.

(i) If G = C2n(1, n) with n even, or if G = C2n(2, n) with n odd, then I(G, x) = In(x).
(ii) If G = C2n(1, n) and n is odd, then I(G, x) = In(x) + 2xn.

We now come to the main result of this section.

Theorem 8. Let 1 ≤ a < n and t = gcd(2n, a).

(a) If 2n
t is even, then:

reg(I(C2n(a, n))) =

{
kt + 1 if n

t = 2k, or n
t = 2k + 1 with k an odd number

(k + 1)t + 1 if n
t = 2k + 1 with k an even number.

(b) If 2n
t is odd, then:

reg(I(C2n(a, n))) =

{
kt
2 + 1 if 2n

t = 2k + 1 with k an even number
(k+1)t

2 + 1 if 2n
t = 2k + 1 with k an odd number.

Proof. The formulas can be verified directly for the special cases that n = 2 (i.e., G = C4(1, 2)) or n = 3
(i.e., G = C6(1, 3) and C6(2, 3)). We can therefore assume n ≥ 4. In light of Theorem 6 and Theorem 1
(i), it will suffice to prove that the inequalities of Lemma 5 are actually equalities. We will make use of
Theorem 4. We consider five cases, where the proof of each case is similar.

Case 1. G = C2n(1, n) with n = 2k.

In this case, Lemma 4 gives pd(I(G)) ≤ 3k − 1, and Lemma 5 gives reg(I(G)) ≤ k + 1.
Furthermore, since χ̃(Ind(G)) = −I(G,−1) by Equation (2), Theorem 7 gives χ̃(Ind(G)) = −1 if
n 6= 4m + 2, and χ̃(Ind(G)) = 3 if n = 4m + 2. Because G has 4k = (k + 1) + (3k− 1) vertices and
since χ̃(Ind(G)) 6= 0, Theorem 4 (ii) implies reg(I(G)) = k + 1.

Case 2. G = C2n(1, n) with n = 2k + 1 and k even.

We have reg(I(G)) ≤ k + 2 and pd(I(G)) ≤ 3k + 1 = (4k + 2)− (k + 2) + 1 = n− (k + 2) + 1 by
Lemmas 4 and 5, respectively. Because n is odd, χ̃(Ind(G)) = −[In(−1) + 2(−1)n] = −[1− 2] = 1 > 0.
Therefore, reg(I(G)) = k + 2 by Theorem 4 (i) (a) because k + 2 is even and χ̃(Ind(G)) = 1 > 0.
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Case 3. G = C2n(1, n) with n = 2k + 1 and k odd.

We have reg(I(G)) = k + 1 by Theorem 4 (ii) because reg(I(G)) ≤ k + 1 (Lemma 5), pd(I(G)) ≤
3k + 1 (Lemma 4), 2n = 4k + 2 is the number of variables, and χ̃(Ind(G)) = −1 6= 0.

Case 4. G = C2n(2, n) with n = 2k + 1 and k even.

We have reg(I(G)) = k + 1 from Theorem 4 (ii) since reg(I(G)) ≤ k + 1 (Lemma 5), pd(I(G)) ≤
3k + 1 (Lemma 4), and χ̃(Ind(G)) = −I(G,−1) = −1 6= 0 (Theorem 7).

Case 5. G = C2n(2, n) with n = 2k + 1 and k odd.

In our final case, reg(I(G)) ≤ k + 2 by Lemma 5, pd(I(G)) ≤ 3k + 1 by Lemma 4. Since n is odd,
χ̃(Ind(G)) = −I(G,−1) = −1 < 0 by Theorem 7. Since k is odd, k + 2 is odd. Because 2n = 4k + 2 is
the number of variables, we have reg(I(G)) = k + 2 by Theorem 4 (i) (b).

These five cases now complete the proof.
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