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Abstract: Distance measure and similarity measure have been applied to various multi-criteria
decision-making environments, like talent selections, fault diagnoses and so on. Some improved distance
and similarity measures have been proposed by some researchers. However, hesitancy is reflected in all
aspects of life, thus the hesitant information needs to be considered in measures. Then, it can effectively
avoid the loss of fuzzy information. However, regarding fuzzy information, it only reflects the subjective
factor. Obviously, this is a shortcoming that will result in an inaccurate decision conclusion. Thus, based on
the definition of a probabilistic neutrosophic hesitant fuzzy set (PNHFS), as an extended theory of fuzzy
set, the basic definition of distance, similarity and entropy measures of PNHFS are established. Next,
the interconnection among the distance, similarity and entropy measures are studied. Simultaneously,
a novel measure model is established based on the PNHFSs. In addition, the new measure model is
compared by some existed measures. Finally, we display their applicability concerning the investment
problems, which can be utilized to avoid redundant evaluation processes.

Keywords: probabilistic neutrosophic hesitant fuzzy set; distance measure; similarity measure;
entropy measure; multi-criteria decision-making (MCDM)

1. Introduction

Neutrosophic set (NS) [1,2] as a more general theory form of fuzzy sets (FS) [3] provides a simple
method to describe uncertain information under the MCDM environment. Afterwards, in order to better
combine with practical problems, Wang et al. proposed the single-valued neutrosophic set (SVNS) [4–6]
and interval neutrosophic set (INS) [7–9] by depicting the range of different membership functions
to encourage the application of FS. For instance, NS adds three independent membership functions:
truth-membership function T(x), indeterminacy-membership function I(x) and falsity-membership
function F(x). In development, according to the complexity of the information in the MCDM problems,
SVNS and INS have been applied to deal with some different types of problems [10–16]. When some
decision makers (DMs) make a decision, some DMs may at the hesitancy among truth membership,
indeterminacy membership and falsity membership. Thus, different forms of NS have been proposed,
like single-valued neutrosophic hesitant FS (SVNHFS) [17–19], multi-valued NS (MVNS) [20–23],
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some types of linguistic NS [24–26], and other types of NS [27–32]. Some experts applied to algebraic
systems [33–40], which clarified that the extended NSs are the effective tools for describing uncertainty
and imprecise information, the information including imperfect, fuzzy, uncertainty and so on. Then,
based on the different requirements of practical applications, the axioms of NS are investigated. The most
important thing is how to minimize the loss of information when uncertain problems are resolved.

The use of truth-membership, indeterminacy-membership and falsity-membership degrees to depict
the fuzziness only expresses subjective uncertainty. However, the statistical data can describe the occurrence
frequency of membership degree based on objective views. The elements that decide on the accurate
evaluation conclusion of MCDM include both fuzzy and statistic information. The DMs can explain the
subjective information by utilizing NSs, SVNSs, SVNHSs and so on. As the amount of information increases,
the impact of statistical information on decision outcomes will increase.

Xu et al. proposed hesitant probabilistic fuzzy set [41] and researched its basic operations.
Next, Hao et al. [42] constructed probabilistic dual hesitant fuzzy set and applied in risk evaluation.
Zhai et al. [43] took the probabilistic interval-valued intuitionistic hesitant fuzzy set and investigated its
distance, similarity and entropy measures. Later, these theories have been widely studied and applied to
solve MCDM problems [44–47]. However, when solving some decision problems, the decision makers
will give the indeterminacy-membership hesitant degrees and corresponding probability information.
In order to solve this situation, Shao et al. [48] and Peng et al. [49] established probabilistic single-valued
neutrosophic hesitant fuzzy set (PSVNHFS or PNHFS) and probability multi-valued neutrosophic set
(PMVN), respectively. Shao et al. investigated the basic operation laws of PNHFSs and their characteristics.
Next, they established the probabilistic neutrosophic hesitant fuzzy weighted averaging (geometric)
operators to fuse the uncertain information. Peng et al. presented a new QUALIFLEX method to fuse
and analyze the uncertain information. The new form of expression is conductive to reducing the loss of
uncertain information and improving the application in MCDM environments.

Distance measure, similarity measure and entropy measure are three effective ways to solve MCDM
problems. As the key step of implicating fuzzy information explanation into MCDM, different types of
distance and similarity measure for NSs [50,51], SVNSs [52,53], and SVNHFS [54,55] have been investigated.
On the other hand, some ranking methods and MCDM approaches based on the measures of linguistic
NSs have been established and utilized in various practical problems [56,57]. The effectiveness of similarity
measure is to express the degree of similarity between factors. Additionally, the distance measure focuses
on the divergence of items, which is opposite to the similarity measure. Simultaneously, similarity measure
is an effective tool to express the relationship between items. Distance measure also has this characteristic.

The present notions of measures include the three independent membership degrees (truth, indeterminacy,
falsity membership degrees) of fuzzy information, which can be effective to reduce the loss of information.
Researchers pay attention to study the measures to improve the exactness and effectiveness in MCDM problems.
According to the inner construction of present measure formulae, we establish a novel distance measure and
a novel similarity. Sahin [58] proposed the Hamming distance measure of SVNHFSs as follows:

DSVNHFS =
1
3 ∑

x∈X
(

1
l

l

∑
i=1
|αµ(i)

N1
(x)− α

µ(i)
N2

(x)|+ 1
p

p

∑
i=1
|βµ(i)

N1
(x)− β

µ(i)
N2

(x)|+ 1
q

l

∑
i=1
|γµ(i)

N1
(x)− γ

µ(i)
N2

(x)|),

in which α, β and γ are the truth-membership, indeterminacy-membership and falsity-membership
degrees of xi ∈ X to a situation, N1 and N2 are SVNHFSs. However, there are some drawbacks, for which
it is necessary to be concerned. For instance, the truth-membership and falsity-membership degrees
are utilized to describe DMs’ determination on x to the situation A. According to DMs, there is some
associated information about x to the situation A, and α and γ are given at the same time when DMs
make judgements. However, β expresses the vagueness of DMs’ un-known about x, and this is distinct
to the α and β. Obviously, it is not logical for any DCDM problems when DMs characterize them by
utilizing the same formula and equal potentiality in a measure function.
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Due to the complexity of the uncertain information, the evaluation information given by the decision
makers will be fused. For example, TA, IA and FA describe the proportion of pros, cons, and abstentions,
respectively, in the voting model. In the case of some subjective factors, the decision maker cannot be
sure that it is fully or completely opposed, so some of the abstentions tend to vote in favor, expressed by
TI. Similarly, IF describes the fusion information between abstention and opposition. TF describes the
fusion information between approval and opposition. T1, F1 and I1 represent information that is fully
in favor, totally opposed, and completely abstained. Then, this type of information can be solved with
neutrosophic hesitation fuzzy theory, TA = T1 + TF + TI, FA = F1 + TF + IF and IA = I1 + TI + IF.

The whole uncertainty set is separated into vagueness, non-vagueness and hesitancy. The non-vagueness
sub-domain includes truth-membership and falsity-membership regions, whereas the vagueness sub-domain
is organized by the indeterminacy–membership region. The uncertainty in the non-vagueness sub-domain
can be expressed as an undetermined attribute. The indeterminacy indicates that there are a variety of
thoughts about x belonging to the situation A. Every thought can not be certain. Hesitancy sub-domain
describes the hesitancy degrees of DMs. Thus, it is appropriate to explore and solve the uncertain information
based on the vagueness, non-vagueness and hesitant degrees. The distinction among the novel measures and
previous measures is distinguished.

According to the instructions above, our main aim is to accomplish the fuzzy description system
based on the PNHFS. By holding more uncertainty parameters, the uncertain information is expressed.
At the same time, the uncertainty information is divided more clearly. The particular introduction is related
in Section 2. The second aim is to propose novel distance, similarity and entropy measures. This work
is done in Section 3 exactly. We expect to take advantages of this new approach to improve the accuracy
of practical MCDM results. In Section 4, the detail is described and an application case about reducing
the excess re-evaluation is shown, respectively. Finally, the discussion and future research are presented
followed by the Conclusions section.

2. Preliminaries

Firstly, the basic theoretical knowledge used in this paper is reviewed. For convenience, SVNHFS is
simply called the neutrosophic hesitant fuzzy set (NHFS) in this work.

2.1. Several Types of NS

Definition 1. Suppose X is a non-empty reference set. An NHFS is described by the following mathematical
formula [4]:

N = {〈x, t̃(x), ĩ(x), f̃ (x)〉|x ∈ X},

where t̃(x), ĩ(x) and f̃ (x) ∈ [0, 1]. t̃, ĩ and f̃ denote three different types of degrees, respectively. t̃ : X → [0, 1]
describes the truth-membership degree, ĩ : X → [0, 1] denotes the indeterminacy-membership degree, f̃ : X → [0, 1]
depicts the falsity-membership degree. t̃(x), ĩ(x) and f̃ (x) satisfy the following condition: 0 ≤ t̃(x) + ĩ(x) +
f̃ (x) ≤ 3 .

Definition 2. Suppose that X is a non-empty reference set; then, an NHFS involved with X on the basis of three
functions to X return three subsets of [0, 1]. Ye proposed an NHFS with the following mathematical sign [18]:

N = {〈x, T(x), I(x), F(x)〉|x ∈ X},

where T(x), I(x) and F(x) are three subsets of [0, 1], respectively. Moreover, the definition of single-valued
neutrosophic hesitant fuzzy element (SVNHFE) is proposed. If T(x), I(x) and F(x) are three finite subsets,
then the SVNHFE can be expressed by
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〈(α1(x), α2(x), · · · αL(T)(x)), (β1(x), β2(x), · · · , βL(I)(x)), (γ1(x), γ2(x), · · · , γL(F)(x))〉

= 〈T(x), I(x), F(x)〉,

in which L(T), L(I) and L(F) are three positive integers to describe the corresponding number of values in the
T(x), I(x) and F(x). Simultaneously, αa (a ∈ {1, 2, · · · , L(T)) describes the ath possible truth-membership degree,
βb (b ∈ {1, 2, · · · , L(I)) describes the bth possible indeterminacy-membership degree, and γc (c ∈ {1, 2, · · · , L(F))
describes the cth possible falsity-membership degree of x ∈ X to a situation. The restrictions of SVNHFS are
listed below:

0 ≤ αa, βb, γc ≤ 1 and 0 ≤ α+ + β+ + γ++ ≤ 3, α+ = max{αa}, β+ = max{βb}, γ+ = max{γc} for
x ∈ X.

After that, single-valued neutrosophic hesitant fuzzy measures and correlation coefficients, aggregation
operators on SVNHFS have been investigated to solve MCDM problems, medical diagnoses and so on.

2.2. The Distance and Similarity Measures for SVNHFSs

Definition 3. A mapping D : NHFS(X)× NHFS(X) → [0, 1], “×” is the Cartesian product. Then, D is
defined to be a distance measure of NHFS, if it satisfies the following four conditions [58] : A, B, C ∈ SVNHFS(X),

(1) 0 ≤ D(A, B) ≤ 1;
(2) D(A, B) = 0 iff A = B;
(3) D(A, B) = D(B, A);
(4) If A ⊆ B ⊆ C, then D(A, C) ≥ D(A, B), D(A, C) ≥ D(B, C).

Definition 4. A mapping S : NHFS(X) × NHFS(X) → [0, 1], “×” is the Cartesian product. Then, S is
defined a similarity measure, if S has the following four axioms [58]: A, B, C ∈ NHFS(X),

(1) 0 ≤ S(A, B) ≤ 1;
(2) S(A, B) = 1 iff A = B;
(3) S(A, B) = S(B, A);
(4) If A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B), S(A, C) ≤ S(B, C).

Definition 5. A mapping E : NS(X) → [0, 1] is called an entropy on NS(X), “×” is the Cartesian product.
Then, E holds the following properties [51]: A, B ∈ NS(X),

(1) E(A) = 0 if A is a crisp set;
(2) E(A) = 1 iff A = {0.5, 0.5, 0.5};
(3) E(A) ≤ E(B) if A is more crisper than B;
(4) E(A) ≤ E(Ac), where Ac is the complement of A.

3. The Distance and Similarity Measures of PSVNHFS

For the content of this part, as an extended theory of FS, Shao et al. [48] first proposed the probabilistic
single-valued neutrosophic hesitant fuzzy set (PSVNHFS). The PSVNHFS can better describe the uncertainty
by involving objectively uncertain information and subjective uncertain information. However, the vote set
was first introduced by Zhai et al. [43]. Thus, according to the division of certain opinion, indeterminacy
opinion and contradictory (vagueness) opinion, inference set as a new kind of vote set is constructed and
applied to the NHFS. Finally, the distance measure and similarity measure are introduced and investigated.

Definition 6. Suppose that X is a finite reference set. A PNHFS on X is denoted by the following
mathematical symbol [48]:
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N = {〈x, T(x)|PT(x), I(x)|PI(x), F(x)|PF(x)〉|x ∈ X}. (1)

The T(x)|PT(x), I(x)|PI(x) and F(x)|PF(x) are three elements of N, in which T(x), I(x) and F(x) is
defined as the possible truth-membership hesitant function, possible indeterminacy-membership hesitant function
and possible falsity-membership hesitant function of x, respectively. PT(x), PI(x) and PF(x) is the probabilistic
information of factors in the components T(x), I(x) and F(x), respectively. This subjective information and
objective information have the following requirements:

αa, βb, γc ∈ [0, 1], 0 ≤ α+ + β+ + γ+ ≤ 3; PT
a , PI

b , PF
c ∈ [0, 1];

L(T)

∑
a=1

PT
a ≤ 1,

L(I)

∑
b=1

PI
b ≤ 1,

L(F)

∑
c=1

PF
c ≤ 1,

where αa ∈ T(x), βb ∈ I(x), γc ∈ F(x). α+ = max{αa}, β+ = max{βb}, γ+ = max{γc}, PT
a ∈ PT ,

PI
b ∈ PI , PF

c ∈ PF. The symbols L(T), L(I) and L(F) are the cardinal numbers of elements in the components
T(x)|PT(x), I(x)|PI(x) and F(x)|PF(x), respectively.

Generally, a probabilistic neutrosophic hesitant fuzzy number (PNHFN) of x is expressed by the
mathematical symbol:

N = 〈(α1|PT
1 , α2|PT

2 , · · · αL(T)|PT
L(T)), (β1|PI

1 , β2|PI
2 , · · · , βL(I)|PI

L(I)), (γ1|PF
1 , γ2|PF

1 , · · · , γL(F)|PF
L(F))〉

= {T|PT , I|PI , F|PF}.

Definition 7. If X is a finite reference set and N is a PNHFN, then Ñ is a normalized PNHFN [49]:

Ñ = {T(x)|P̃T(x), I(x)|P̃I(x), F(x)|P̃F(x)}, (2)

where P̃T
a = PT

a
∑ PT

a
, P̃I

b =
PI

b
∑ PI

b
, P̃F

c = PF
c

∑ PF
c

.

Example 1. If X = {x} is a reference set, an PNHFS can be denoted by

N = {x, 〈{0.5|0.3, 0.6|0.5}, {0.4|0.4, 0.6|0.6}, {0.3|0.6}〉}.

For every membership function, the PNHFN Ñ = 〈{0.5|0.3, 0.6|0.5}, {0.4|0.4, 0.6|0.6}, {0.3|0.6}〉 independently
denotes the whole uncertain area with three probabilistic membership functions, where ∑

L(T)
a=1 PT

a = 0.3 + 0.5 = 0.8,

∑
L(I)
b=1 PI

b = 0.4 + 0.6 = 1, ∑
L(F)
c=1 PF

c = 0.6.

The PNHFS is considered a generalized theory of aforementioned various of FS, including FS, IFS,
HFS, etc. Next, some special cases of normal PNHFS are introduced.

(1) If the probability values are equal for the same type of hesitant membership function, i.e.,

PT
1 = PT

1 = · · · = PT
L(T), PI

1 = PI
1 = · · · = PI

L(I), PF
1 = PF

1 = · · · = PF
L(F).

Then, the normal PNHFS is reduced to the SVNHFS.
(2) If L(T) = L(I) = L(F) = 1 and PT

1 = PI
1 = PF

1 = 1, then the normal PNHFS reduces to the SVNS.
(3) If I(x) = ∅ (there is also PI(x) = ∅), α+ + β+ ≥ 1, then the normal PNHFS reduces to the PDHFS,

which can be expressed by N = {〈x, T(x)|PT(x), F(x)|PF(x)〉|x ∈ X}.
(4) If the normal PNHFS satisfies the conditions in (3), and PT

1 = PT
1 = · · · = PT

L(T), PF
1 = PF

1 =

· · · = PF
L(F), then the normal PNHFS reduces to the DHFS, denoted by N = {〈x, T(x), F(x)〉|x ∈ X}

(5) If I(x) = F(x) = ∅ (there is also PI(x) = PF(x) = ∅), then the normal PNHFS reduces to the PHFS,
the mathematical symbol is N = {〈x, T(x)|PT(x)〉|x ∈ X}.
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(6) If the normal PNHFS satisfies the conditions in (5), and PT
1 = PT

1 = · · · = PT
L(T), the normal PNHFS

reduces to the HFS, denoted by N = {〈x, T(x)〉|x ∈ X}.
(7) If I(x) = ∅ (there is also PI(x) = ∅), L(T) = L(F) = 1, PT

1 = PF
1 = 1,α1 + γ1 ≥ 1, then the normal

NHFS reduces to the IFS, denoted by N = {〈x, α1, γ1〉|x ∈ X}.
(8) If I(x) = ∅ (there is also PI(x) = ∅), L(T) = L(F) = 1, PT

1 = PF
1 = 1, and 1− α1 − γ1 = 0, then the

normal NHFS reduces to the FS.

Definition 8. Suppose that X = {x1, x2, · · · , xn} is a finite reference set and N is a PNHFN, then the hesitant
degree of xi is defined by the following mathematical symbol:

χ(xi) = 1− 1
3
(

1
L(T)

+
1

L(I)
+

1
L(F)

); (3)

χ(N) =
1
n

n

∑
i=1

χ(xi), (4)

where L(T), L(I) and L(F) represent the total numbers of factors in the components T(x)|P̃T(x), I(x)|P̃I(x) and
F(x)|P̃F(x).

The hesitant degree of xi reflects the decision maker’s degree of hesitation, the bigger χ(N),
the bigger the hesitation of decision maker in making decisions. If χ(N) = 0, then the decision
information is completely unhesitating.

By the definition of PNHFS, we know that the information {α1|PT
1 , α2|PT

2 , · · · , αL(T)|PT
L(T)} denotes

the positive attitude for x to a situation A, Those data express a certain and non-vagueness component.
In this case, we can not obtain effective data to denote the specific truth-membership degree. Similarly,
the information elucidated by the data {γ1|PF

1 , γ2|PF
2 , · · · , γL(F)|PF

L(F)} is like the introduction of
the truth-membership hesitant degrees with probability, which denotes determinate attitude and
uncertain settled data. However, the information {β1|PI

1 , β2|PI
2 , · · · , βL(I)|PI

L(I)} expresses uncertain
attitude and inconclusive membership degree with probability. Thus, through the above analysis,
the truth-membership hesitant degrees and false-membership hesitant degrees are considered as the
components of non-vagueness subspace. The indeterminacy-membership degrees expresses the uncertain
attitude. It denotes the imprecise notion of people’s knowledge about x. The rest of the region denotes
a contradictory (vague) attitude about whether the x belongs to an event. It represents the unexplored
domain of people’s knowledge about x. As people acquire more and more knowledge, the fuzzy
information represented by contradictory (vague) subspace will be converted to the uncertain knowledge
repressed by the information T(x)|PT(x), I(x)|PI(x) and F(x)|PF(x).

Thus, we propose a method to get all uncertain parameters and accurately describe the certain
attitude subspace, indeterminate attitude subspace and contradictory (vague) subspace. Considering the
certain subspace, the standpoint about the truth-membership hesitant degrees and false-membership
hesitant degrees is correct. Thus, we let the truth-membership hesitant degrees have assigned positive
values; the value domain is [0, 1] and then the false-membership hesitant degrees are assigned negative
values; the value domain is [−1, 0]. Eventually, the value of certain attitude belongs to [−1, 1]. Obviously,
by the Definition 6, the value of indeterminate attitude belongs to [0, 1]. Next, through the above
analysis, we found that PNHFS is a convenient way to express fuzzy information. However, for decision
makers, they prefer to get the optimal result more conveniently. However, the hesitant degree can
describe the hesitation of uncertain information. Thus, we fuse the truth-membership hesitant degrees,
false-membership hesitant degrees and hesitant degree into an attitude presentation. The uncertain
neutrosophic space is relatively macroeconomic expressed by a certain attitude, indeterminate attitude
and hesitation. The calculation process can be simplified and made more feasible for solving problems.
Based on the above analysis, the definition of inference set (IS) is established as follows:
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Definition 9. Suppose that X is a finite reference set; then, a inference set (IS) is expressed by the following
mathematical symbol:

IS = {〈x, d(x), e(x), g(x)〉|x ∈ X}, (5)

where IE = 〈x, d(x), e(x), g(x)〉 is defined as an inference element (IE), (d(x), e(x), andg(x)) is called an
inference number (IN). The function d : X → [−1, 1] describes the attitude of x belonging to the situation A.
It is a compositive product about the truth-membership hesitant degrees and false-membership hesitant degrees.
The mapping e : X → [0, 1] expresses the un-vagueness opinion of x belonging to the situation A. In addition,
the mapping g : X → [0, 1] figures the contradictory (vague) degree for people’s attitudes about x belonging to the
situation A. Note, when 0 < d(x) ≤ 1, the decision makers remain optimistic about x belonging to the situation A;
when −1 ≤ d(x) < 0, the decision makers are pessimistic about x belonging to the situation A. If d(x) = 0, then
the decision makers’ attitude is neutral.

Example 2. The mathematical symbol 〈x, 0.4, 0.7, 0.2〉 is an IE. It describes the decision maker having a 40%
degree of agreement about x belonging to the situation A. However, there is a 70% degree of determination about
the information on x to the situation A. In addition, there is a 20% degree of non-hesitation on the x belonging to
the situation A.

3.1. The Method of Comparing PNHFSs

In this subsection, a way to convert the PNHFE to the IE is established. Next, the PNHFS can be
compared by utilizing IEs. In the entire space, the certain attitude subspace, the indeterminate attitude
subspace, the contradictory (vague) attitude subspace and corresponding probabilistic values express the
different meanings. The certain attitude subspace represents the degrees of agreement or disagreement
about x belonging to the situation A; the indeterminate attitude subspace can be described to the lack of
decision makers’ information, whereas the contradictory (vague) subspace represents the contradiction of
decision makers’ knowledge. Additionally, the probability theory expresses uncertainty, which is shared
by the certain attitude subspace, the indeterminate sub-space and contradictory (vagueness) subspace.
Thus, the probability values are integrated to reduce uncertain variables. Next, in order to establish
distance measure and similarity measure, a function from a PNHFS to an IS is given.

Definition 10. Suppose that X is a finite reference set, N is a finite PNHFE, and a mapping H is defined as follows:

H(N) = {
L(T)

∑
a=1

taPT
a −

L(F)

∑
c=1

fcPF
c ,

L(I)

∑
b=1

(1− ib)PF
b , 1− χ(xi)}. (6)

For instance, when PT
1 = PT

2 = · · · = PT
L(T), PI

1 = PI
2 = · · · = PI

L(I), PF
1 = PF

2 = · · · = PF
L(F),

the PNHFS is reduced to an NHFS. Thus, the function H(N) can be transformed to an IS as

H(N) = {∑
L(T)
a=1 ta

L(T)
− ∑

L(F)
c=1 fc

L(F)
,

∑
L(I)
b=1 (1− ib)

L(I)
, 1− χ(xi)}.

According to Equation (6), the IS includes the probabilistic information and fuzzy information, which
can be illustrated with the help of investigating the Definition 10. The formula ∑

L(T)
a=1 taPT

a −∑
L(F)
c=1 fcPF

c
introduces the average value of certain attitude obtained by the truth-membership subspace and the
false-membership subspace. The expression ∑

L(I)
b=1 (1− ib)PF

b explains the average degree of an un-hesitant
opinion given by the indeterminate-membership subspace. Then, the formula 1− χ(xi) illustrates the
average value of the un-sloppy attitude for known information about x related to the situation A.
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By Definition 6, all objective and subjective uncertain elements are considered and different types of
fuzzy spaces are distinguished. However, if PNHFE is infinite, the formula 6 will change

H(N) = {
∫ L(T)

a=1
taPT

a −
∫ L(F)

c=1
fcPF

c ,
∫ L(I)

b=1
(1− ib)PF

b , 0}. (7)

Based on the importance of objective and subjective information, the method of comparison for IEs
is defined as follows:

Definition 11. Let X be a finite reference set, IE1 = 〈d1(x), e1(x), g1(x)〉 and IE2 = 〈d2(x), e2(x), g2(x)〉 be
two IEs, then

(1) If g1 ≤ g2, then IE1 ≤ IE2;
(2) If g1 ≥ g2, then IE1 ≥ IE2;
(3) If g1 = g2, then (i) If e1 ≤ e2, then IE1 ≤ IE2; (ii) If e1 ≥ e2, then IE1 ≥ IE2;
(4) If g1 = g2, e1 = e2, then (i) If d1 ≤ d2, then IE1 ≤ IE2; (ii) If d1 ≥ d2, then IE1 ≥ IE2.

The division of entire uncertain field to describe the certain, indeterminate and hesitant attitude.
By Definition 9, based on the internal perspective and external perspective, the IE expresses the certain
subdomain without probabilistic information. Thus, according to the degree of information obtained and
the importance of experience in decision-making activities, the method of comparison for IEs is based on
the rule “degree of non-hesitation, determinacy and lastly opinion”.

Supposing that A and B are two PNHFEs to the finite reference set X, then the corresponding IEs
can be expressed by IEA = 〈dA(x), eA(x), gA(x)〉 and IEB = 〈dB(x), eB(x), gB(x)〉, respectively. Thus,
the notion of binary relation for PNHFEs can be described as follows:

Definition 12. Suppose that A and B are two PNHFEs to the finite reference set X. Then, the binary relations for
PNHFEs are given as follows:

(1) If 〈dA(x), eA(x), gA(x)〉 ≥ 〈dB(x), eB(x), gB(x)〉, then A ≥ B;
(2) If 〈dA(x), eA(x), gA(x)〉 ≤ 〈dB(x), eB(x), gB(x)〉, then A ≤ B;
(3) If 〈dA(x), eA(x), gA(x)〉 = 〈dB(x), eB(x), gB(x)〉, then A = B.

3.2. Distance and Similarity Measures of PNHFSs

According to the work mentioned above, the distance measure, similarity measure and entropy
measure of PNHFE are established in this subsection. The inclusion between ISA and ISB is given.
Similarity, the inclusion between PNHFSA and PNHFSB are proposed.

Suppose that X is a finite reference set, A and B are PNHFS to set X, and ISA and ISB are corresponding
ISs of A and B, respectively.

A ⊆ B iff ∀x ∈ X, TA|PTA ≤ TB|PTB , IA|PIA ≥ IB|PIB , FA|PTA ≥ FB|PFB and χ(A) ≥ χ(B),

where TA|PTA and TB|PTB describe the average value of truth-membership hesitant degree of A and B,
respectively, IA|PIA and IB|PIB express the average indeterminate-membership hesitant degree of A and
B, respectively. Similarly, FA|PFA and FB|PFB represent the corresponding average false-membership
hesitant degree of A and B.

Additionally, if ISA ⊆ ISB, the following conditions need to hold:

aA ≤ aB, bA ≤ bB, cA ≤ cB.
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Definition 13. Suppose that X is a finite reference set, ISA, ISB and ISC are three ISs in X. A function
DIS : IS(X) × IS(X) → [0, 1], where “×” means the Cartesian production. Then, DIS is called a distance
measure, if DIS satisfies the following three requirements:

(1) DIS(ISA, ISB) = 0 iff ISA = ISB;
(2) DIS(ISA, ISB) = DIS(ISB, ISA);
(3) DIS(ISA, ISC) ≥ DIS(ISA, ISB), DIS(ISA, ISC) ≥ DIS(ISB, ISC) when ISA ⊆ ISB ⊆ ISC.

Theorem 1. Suppose that ISA = {〈dA(x), eA(x), gA(x)〉|x ∈ X} and ISB = {〈dB(x), eB(x), gB(x)〉|x ∈ X}
are three ISs in X, then the function

DIS = AIO(MIT(MIU1(|dA(x)− dB(x)|), MIU2(|eA(x)− eB(x)|), MIU3(|gA(x)− gB(x)|))) (8)

is a distance measure for IS, where the mappings: MIU1, MIU2, MIU3 : [0, 1] → [0, 1], satisfy the conditions:
MIU1, MIU2 and MIU3 are three monotonically increasing unary functions and MIU1(0) = 0, MIU2(0) = 0,
MIU3(0) = 0. Those functions can be the same and are not mandatory here. The mapping MIT : [0, 1]3 → [0, 1] is
a monotonically increasing ternary function; MIT holds the following requirements: MIT(0, 0, 0) = 0; MIT′1 ≥ 0,
MIT′2 ≥ 0, and MIT′3 ≥ 0, MIT′1, MIT′2 and MIT′1 are corresponding partial derivatives of MIU1, MIU2 and
MIU3, respectively. Additionally, AIO : [0, 1]n → [0, 1] is an aggregation operator and the partial derivative
AIO′i ≥ 0 (i ∈ {1, 2, · · · , n}); n represses the total numbers of factors in X.

Proof. According to the conditions of MIU1, MIU2, MIU3, MIT and AIO, Definition 13 (1) and (2)
obviously hold. Thus, the proof process of condition (3) is listed, here. Since the restrictive conditions
ISA ⊆ ISB ⊆ ISC hold, thus the inequalities are listed below:

|dA(x)− dC(x)| ≥ |dA(x)− dB(x)|, |eA(x)− eC(x)| ≥ |eA(x)− eB(x)|, |gA(x)− gC(x)| ≥ |gA(x)− gB(x)|;
|dA(x)− dC(x)| ≥ |dB(x)− dC(x)|, |eA(x)− eC(x)| ≥ |eB(x)− eC(x)|, |gA(x)− gC(x)| ≥ |gB(x)− gC(x)|.

Because functions MIU1, MIU2 and MIU3 are three monotonically increasing functions, so we can
get, ∀x ∈ X

MIU1(|dA(x)− dC(x)|) ≥ MIU1(|dA(x)− dB(x)|), MIU2(|eA(x)− eC(x)|) ≥ MIU2(|eA(x)− eB(x)|),
MIU3(|gA(x)− gC(x)|) ≥ MIU3(|gA(x)− gB(x)|); MIU1(|dA(x)− dC(x)|) ≥ MIU1(|dB(x)− dC(x)|),

MIU2(|eA(x)− eC(x)|) ≥ MIU2(|eB(x)− eC(x)|), MIU3(|gA(x)− gC(x)|) ≥ MIU3(|gB(x)− gC(x)|).

However, the partial derivatives MIT′1 ≥ 0, MIT′2 ≥ 0, and MIT′3 ≥ 0, thus

MIT(MIU1(|dA(x)− dC(x)|), MIU2(|eA(x)− eC(x)|), MIU3(|gA(x)− gC(x)|))
≥ MIT(MIU1(|dA(x)− dB(x)|), MIU2(|eA(x)− eB(x)|), MIU3(|gA(x)− gB(x)|));

MIT(MIU1(|dA(x)− dC(x)|), MIU2(|eA(x)− eC(x)|), MIU3(|gA(x)− gC(x)|))
≥ MIT(MIU1(|dA(x)− dC(x)|), MIU2(|eA(x)− eC(x)|), MIU3(|gA(x)− gC(x)|)).

According to the characteristic of function AIO, the following results are shown:

AIO(MIT(MIU1(|dA(x)− dC(x)|), MIU2(|eA(x)− eC(x)|), MIU3(|gA(x)− gC(x)|)))
≥ AIO(MIT(MIU1(|dA(x)− dB(x)|), MIU2(|eA(x)− eB(x)|), MIU3(|gA(x)− gB(x)|)));

AIO(MIT(MIU1(|dA(x)− dC(x)|), MIU2(|eA(x)− eC(x)|), MIU3(|gA(x)− gC(x)|)))
≥ AIO(MIT(MIU1(|dA(x)− dC(x)|), MIU2(|eA(x)− eC(x)|), MIU3(|gA(x)− gC(x)|))).

Namely, DIS(ISA, ISC) = DIS(ISA, ISB), DIS(ISA, ISC) = DIS(ISB, ISC).
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Theorem 2. Suppose that ISA = {〈dA(x), eA(x), gA(x)〉|x ∈ X} and ISB = {〈dB(x), eB(x), gB(x)〉|x ∈ X}
are three ISs in X, then the function

DIS = AIO(MDT(MDU1(|dA(x)− dB(x)|), MDU2(|eA(x)− eB(x)|), MDU3(|gA(x)− gB(x)|))) (9)

is a distance measure on IS, where the mappings: MDU1, MDU2, MDU3 : [0, 1]→ [0, 1] satisfy the conditions:
MIU1, MIU2 and MIU3 are three monotonically decreasing unary functions, respectively. MDU1(1) = 0,
MDU2(1) = 0, MDU3(1) = 0. Those functions can be the same and are not mandatory here. The mapping
MDT : [0, 1]3 → [0, 1] is a monotonically decreasing ternary function, MDT holds the following requirements:
MDT(1, 1, 1) = 0; MDT′1 ≤ 0, MDT′2 ≤ 0, and MDT′3 ≤ 0, MDT′1, MDT′2 and MDT′1 are corresponding
partial derivatives of MDU1, MDU2 and MDU3, respectively. AIO : [0, 1]n → [0, 1] is an aggregation operator
and the partial derivative AIO′i ≥ 0 (i ∈ {1, 2, · · · , n}), n represses the total numbers of factors in X.

Proof. Since the process of proof is similar to Theorem 1, thus the whole conditions of Definition 13 are
held by Theorem 2.

Definition 14. Suppose that X is a finite reference set; A, B and C are three PNHFSs on X, a mapping DPNHFS :
[0, 1]× [0, 1] is called a distance measure on PNHFS(X), if it holds the following three requirements: “×” is the
Cartesian product,

(1) DPNHFS(A, B) = 0 iff A = B;
(2) DPNHFS(A, B) = DPNHFS(B, A);
(3) If A ⊆ B ⊆ C, then DPNHFS(A, B) ≤ DPNHFS(A, C) and DPNHFS(B, C) ≤ DPNHFS(A, C).

Theorem 3. Suppose that X is a finite reference set, A, B and C are three PNHFSs in X, ISA, ISB and ISC are
corresponding ISs of A, B and C, respectively. Then, a real-valued mapping:

DPNHFS(A, B) = MIU(DIS(ISA, ISB))

is a distance measure on PNHFS(X), where MIU : [0, 1] → [0, 1] is a monotonically increasing unary
mapping, MIU.

Proof. According to the conditions of Theorem 3, the mapping DPNHFS holds the requirements of
Definition 14 (1), (2). Thus, the requirement (3) merely needs to be proved.

Based on the explanation of A ⊆ B ⊆ C, A, B, C ∈ PNHFS(X), thus, by Definition 10,
the corresponding ISs of A, B, C exist in the following inclusion relation:

ISA ⊆ ISB ⊆ ISC.

Obviously, the following inequalities are obtained:

DIS(ISA, ISC) ≥ DIS(ISA, ISB),

DIS(ISA, ISC) ≥ DIS(ISB, ISC).

Since the function MIU is a monotonically increasing unary mapping, so the following inequalities
are shown:

MIU(DIS(ISA, ISB)) ≤ MIU(DIS(ISA, ISC)), MIU(DIS(ISB, ISC)) ≤ MIU(DIS(ISA, ISC)).

This completes the proof process.
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Example 3. Suppose that X is a finite reference set, A, B are PNHFSs on X, ISA = {〈dA(x), eA(x), gA(x)〉|x ∈
X} and ISB = {〈dB(x), eB(x), gB(x)〉|x ∈ X} are the corresponding ISs for those two PNHFSs. Based on
the Theorem 1 and Theorem 3, let MIU1 = yφ, MIU2 = yµ, MIU3 = yν, y ∈ [0, 1], 0 ≤ φ, µ, ν ≤ 1.
MIT = log4(1 + y1 + y2 + y3), y1, y2, y3 ∈ [0, 1]. Additionally, suppose MIU = yλ, where y ∈ [0, 1], 0 ≤ λ.
Then, we have

D1(A, B) =
1

2n ∑
x∈X

(log4(1 + (
|dA(x)− dB(x)|

2
)φ + (|eA(x)− eB(x)|)µ + (

|gA(x)− gB(x)|
2

)ν))λ. (10)

If φ = µ = ν = λ = 1, we have

Dφ=µ=ν=λ=1
1 (A, B) = 1

2n ∑x∈X(log4(1 + ( |dA(x)−dB(x)|
2 ) + (|eA(x)− eB(x)|) + ( |gA(x)−gB(x)|

2 ))). (11)

If φ = µ = ν = 2, λ = 1
2 , then

Dφ=µ=ν=2,λ= 1
2

1 (A, B) = 1
2n ∑x∈X((log4(1 +

|dA(x)−dB(x)|
2 ))2 + (|eA(x)− eB(x)|)2 + (|gA(x)−gB(x)|)2

4 )
1
2 . (12)

From the formulas of D1(A, B), Dφ=µ=ν=λ=1
1 (A, B) and Dφ=µ=ν=2,λ= 1

2
1 (A, B), we know that the

parameters φ, µ, ν manage the functions of |dA(x) − dB(x)|, |eA(x) − eB(x)| and |gA(x) − gB(x)| to
establish the internal framework of D1(A, B). However, the parameter λ is utilized to regulate the
reciprocity among the |dA(x)− dB(x)|, |eA(x)− eB(x)| and |gA(x)− gB(x)| in the regulate area. Based on
different application environments, the parameters φ, µ, ν are decided. Thus, for a MCDM problem, it is a
tool applied to measure the distinction in their knowledge background. Thus, it is rational to decide the
parameters utilized to manage the internal framework of measures based on respective importance degree.
By dispatching different functions to |dA(x)− dB(x)|, |eA(x)− eB(x)| and |gA(x)− gB(x)|, the value of
adjusting the feasibility of |dA(x)− dB(x)|, |eA(x)− eB(x)| and |gA(x)− gB(x)| can also be solved.

Example 4. Suppose that X, A, B, ISA and ISB are as mentioned above in Example 3, MIU1 = ln(1 + y),
(y ∈ [0, 1]); MIU1 = yφ, (y ∈ [0, 1]), φ ≥ 0; MIU3 = yµ, (y ∈ [0, 1]), µ ≥ 0, MIT = (y1 · y2 · y3)

λ,
(y1, y2, y3 ∈ [0, 1], λ ≥ 0). Additionally, MIU = t(lny), (y ∈ [0, 1], t ≥ 0). Then,

D2(A, B) = ∑
x∈X

t(((ln(1 +
|dA(x)− dB(x)|

2
))φ|eA(x)− eB(x)|µ| gA(x)− gB(x)

2
|ν)λ)y.

In addition, if φ = µ = ν = λ = t = 1, then

Dφ=µ=ν=1
2,λ=1,y=1(A, B) = ∑

x∈X
ln(1 +

|dA(x)− dB(x)|
2

)|eA(x)− eB(x)|| gA(x)− gB(x)
2

|.

Definition 15. Suppose that X is a finite reference set, ISA, ISB and ISC are three ISs on X, SIS : IS(X)×
IS(X) → [0, 1] is a real-valued function, where “×” is the Cartesian product. Then, SIS is called a similarity
measure on IS(X), if it holds the following three axiomatic conditions:

(1) SIS(ISA, ISB) = 1 iff ISA = ISB;
(2) SIS(ISA, ISB) = SIS(ISB, ISA);
(3) If ISA ⊆ ISB ⊆ ISC, then SIS(ISA, ISB) ≥ SIS(ISA, ISC), SIS(ISB, ISC) ≥ SIS(ISA, ISC).

Theorem 4. Suppose that X is a finite reference set, ISA = {〈dA(x), eA(x), gA(x)〉|x ∈ X}, ISB =

{〈dB(x), eB(x), gB(x)〉|x ∈ X} are two ISs; then, function SIS(ISA, ISB) is called a similarity measure, and
the mathematical symbol is as follows:
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SIS(ISA, ISB) = AIO(MDT(MIU1(
|dA(x)−dB(x)|

2 ), MIU2(|eA(x)− eB(x)|), MIU3(|gA(x)− gB(x)|))), (13)

where MIU1, MIU2, MIU3 : [0, 1] → [0, 1] hold the following conditions: MIU1, MIU2 and MIU3 are three
monotonically increasing unary mappings, MIU1(0) = MIU2(0) = MIU3(0) = 0. They may be the same
functions, and there are no requirements here. MDT : [0, 1]3 → [0, 1] is a monotonically decreasing ternary mapping,
MDT′1, MDT′2, MDT′3 are three corresponding partial derivatives of MDT with respect to MIU1, MIU2, MIU3,
respectively. Those partial derivatives hold the following requirements: MDT′1 ≤ 0, MDT′2 ≤ 0, MDT′3 ≤ 0 and
MDT(0, 0, 0) = 1. The mapping AIO : [0, 1]n → [0, 1] is an aggregation operator, the partial derivative describes
AIO′i ≥ 0 (i ∈ {1, 2, · · · , n}); n describes the total numbers of factors in X.

Proof. The process of proof is similar to Theorem 1, thus it is unimportant here.

Theorem 5. Suppose that X is a finite reference set, ISA = {〈dA(x), eA(x), gA(x)〉|x ∈ X}, ISB =

{〈dB(x), eB(x), gB(x)〉|x ∈ X} are two ISs, then function SIS(ISA, ISB) is called a similarity measure, and
the mathematical symbol is as follows:

SIS(ISA, ISB) = AIO(MIT(MDU1(
|dA(x)−dB(x)|

2 ), MDU2(|eA(x)− eB(x)|), MDU3(|gA(x)− gB(x)|))), (14)

where MDU1, MDU2, MDU3 : [0, 1] → [0, 1] satisfy the following requirements: MDU1, MDU2 and
MDU3 are three monotonically decreasing unary mappings, MDU1(1) = MDU2(1) = MDU3(1) = 0.
They may have equal functions, and there are no requirements here. MIT : [0, 1]3 → [0, 1] is a monotonically
increasing ternary mapping, MIT′1, MIT′2, MIT′3 are three corresponding partial derivatives of MIT with respect
to MIU1, MIU2, MIU3, respectively. Those partial derivatives hold the following requirements: MIT′1 ≥ 0,
MIT′2 ≥ 0, MIT′3 ≥ 0 and MIT(0, 0, 0) = 0. The mapping AIO : [0, 1]n → [0, 1] is an aggregation operator and
the partial derivative AIO′i ≥ 0 (i ∈ {1, 2, · · · , n}), n describe the total numbers of factors in X.

Proof. The proof process is omitted.

Definition 16. Suppose that X is a finite reference set, for any three PNHFSs A, B and C on X, a function
SPNHFS : PNHFS(X) × PNHFS(X) → [0, 1] is called a similarity measure, if it holds the following three
axiomatic conditions: “×” is the Cartesian product,

(1) SPNHFS(A, B) = 1 iff A = B;
(2) SPNHFS(A, B) = SPNHFS(B, A);
(3) If A ⊆ B ⊆ C, then SPNHFS(A, B) ≥ SPNHFS(A, C) and SPNHFS(B, C) ≥ SPNHFS(A, C).

Theorem 6. Let X be a finite reference set, and A and B be two PNHFSs on X. The ISA and ISB are corresponding
ISs of A ,B, respectively. Then, the mapping SPNHFS is called a similarity measure on PNHFS(X), and
the mathematical symbol is

SPNHFS(A, B) = MIU(SIS(ISA, ISB)), (15)

where MIU : [0, 1]→ [0, 1] is an increasing function and MIU(0) = 0

Proof. According to the Theorem 14, we know the proof is obvious. Thus, the process of proof
is omitted.
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Example 5. Suppose that X, A, B, ISA, ISB are as above mentioned, MDU1 = MDU2 = MDU3 = ty − t,
(0 ≤ t, y ≤ 1); MIT = (y1 + y2 + y3)

φ, 0 ≤ φ, y1, y2, y3 ≤ 1. Additionally, suppose MIU = yλ,
0 ≤ y ≤ 1, λ ≥ 0. The similarity measure is described as follows:

S1(A, B) = ∑
x∈X

(t
|dA(x)−dB(x)|

2 + t|eA(x)−eB(x)| + t|gA(x)−gB(x)| − 3t)λ.

In addition, suppose t =
1
3

, φ = λ = 1, thus

Sφ=λ=1
1,t= 1

3
(A, B) = ∑

x∈X
(

1
3
)
|dA(x)−dB(x)|

2 + (
1
3
)|eA(x)−eB(x)| + (

1
3
)|gA(x)−gB(x)| − 1.

Through Example 5, we know that those parameters and mappings to decide the effects of |dA(x)−
dB(x)|, |eA(x)− eB(x)| and |gA(x)− gB(x)| to establish the internal framework of similarity measures.
Those parameters and mappings’ selection methods are similar to the methods of Example 3.

3.3. The Interrelations among Distance, Similarity and Entropy Measures

According to the concept of “duality”, the distance and similarity measures among SVNS, IVNS
were investigated. However, different knowledge backgrounds of decision makers will lead to different
results. According to the interrelation among distance and similarity measures, Wang [23] first proposed
the definition of entropy and across entropy of MVNS and applied them to solving MCDM problems.

In the section, the interrelations among distance, similarity and entropy measures of PNHFS are
investigated. According to Subsection 3.2, the distance measure shows the difference between factors.
Additionally, the similarity measure investigated the uniformity of factors. Because distance measure
and similarity measure describe two opposite aspects, the relationship between these two measures is
investigated based on the following theorem:

Theorem 7. Suppose that A and B are two PNHFS on X, the distance measure DPNHFS(A, B) holds the
conditions in Definition 14, and then SPNHFS(A, B) = FN(DPNHFS(A, B)) is a similarity measure, which holds
the axiomatic conditions in Definition 16, in which FN : [0, 1]→ [0, 1] is a fuzzy negation.

Proof. By Definition 14 and Definition 16, the process proof is obvious, so it is omitted.

According to the interpretation of the divisions of the neutrosophic space, to better describe stability
of PNHFS, the entropy measure of a PNHFS is designed as follows:

Definition 17. Suppose that X is a reference set, A = {〈x, {T|PT}, {I|PI}, {F|PF}〉|x ∈ X} is a PNHFS in X.
Then, the complement of A is expressed by the following mathematical symbol:

Ac = {〈x, {F|PF}, {I|PI}, {T|PT}〉|x ∈ X}.

Obviously, Ac is also a PNHFS.

Definition 18. Suppose that X is a finite reference set, A and B are two PNHFSs in X, ISA, ISB are corresponding
ISs of A and B, respectively. Then, a function E : PNHFS(X)→ [0, 1] is called to be an entropy measure when it
holds the following four requests:

(1) E(A) = 0 if A = {〈x, {1|1}, {0|1}, {0|1}〉|x ∈ X} or A = {〈x, {0|1}, {0|1}, {1|1}〉|x ∈ X}
or A = {〈x, {0|P1}, {0|P2}, {0|P3}〉|x ∈ X};

(2) E(A) = 1 if A = {〈x, {0.5|1}, {0.5|1}, {0.5|1}〉|x ∈ X};
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(3) E(A) = E(Ac) iff A = {〈x, {T|PT}, {I|PI}, {F|PF}〉|x ∈ X} holds the requirement that ∑
L(I)
b=1 ibPI

b =

∑
L(F)
c=1 fcPF

c , in which Ac is the complement of A.
(4) E(B) ≤ E(C) when SPNHFS(A, B) ≤ SPNHFS(A, C) or DPNHFS(A, B) ≥ DPNHFS(A, C), in which

A = {〈x, {0.5|P1}, {0.5|P2}, {0.5|P3}〉|x ∈ X}.

Since we only are concerned with the importance of a(x), b(x) and c(x) on the stationarity of IS,
the following theorems are introduced:

Theorem 8. Suppose that X is a finite reference set, A is a PNHFS in X, and the corresponding IS of A is described
by ISA. Then, the following formula:

E(A) = MDT(MIU1(|dA(x)|), MIU2(|2eA(x)− 1|), MIU3(|gA(x)|) (16)

is an entropy measure, in which MIU1, MIU2, MIU3 : [0, 1] → [0, 1] are three monotonically increasing
unary mappings with MIU′1 ≥ 0, MIU′2 ≥ 0, MIU′3 ≥ 0, and MIU1(0) = MIU2(0) = MIU3(0) = 0,
MIU1(1) = MIU2(1) = MIU3(1) = 1. The function MDT : [0, 1]3 → [0, 1] is a monotonically decreasing
ternary mapping, and its partial derivatives are lower than zero with the requirements: MDT(0, 0, 0) = 1,
MDT(1, 1, 1) = 0.

Proof. The function E(A) is illustrated to hold all the conditions of Definition 18.

(1) Let A = {〈x, {1|1}, {0|1}, {0|1}〉|x ∈ X}, A = {〈x, {0|1}, {0|1}, {0|1}〉|x ∈ X} or A =

{〈x, {0|1}, {0|1}, {1|1}〉|x ∈ X}, thus the corresponding ISs of A are shown:

ISA = (1, 1, 1) or ISA = (−1, 1, 1).

Next, the entropy measure of A is calculated as follows:

E(A) = MDT(MIU1(1), MIU2(1), MIU3(1)) = MDT(1, 1, 1) = 0.

(2)

E(A) = 1

⇔ MDT(MIU1(|dA(x)|), MIU2(|2eA(x)− 1|), MIU3(|gA(x)|) = 1

⇔ MIU1(0) = 0, MIU2(0) = 0, MIU3(0) = 0

⇔ |d(x)| = 0, |2e(x)− 1| = 0, |g(x)| = 0,

⇐ ta = fc = 0.5, ib = 0.5. a, b, c ∈ ∞.

(3) Let A = {〈x, TA|PT , IA|PI , FA|PF〉|x ∈ X}, then the complementary of A is obtained:
Ac = {〈x, FA|PF, IA|PI , TA|PT , 〉|x ∈ X}. By Definition 9, the following equality is obtained:
ISA = ISAc . Obviously, E(A) = E(Ac).

(4) Suppose that B and C are two PNHFS of X, A = {〈x, {0.5|PT
a }, {0.5|PI

b}, {0.5|PF
c }〉|x ∈ X}. Thus,

the corresponding IS of A is ISA = {0, 0, 0}. By Theorem 5, the following similarity measures can
be obtained:

SPNHFS(A, B) = MIU(AIO(MIB(MDU1(
|dB(x)|

2
), MDU2(|eB(x)|), MDU3(|gB(x)|))));

SPNHFS(A, C) = MIU(AIO((MIB(MDU1(
|dC(x)|

2
), MDU2(|eC(x)|), MDU3(|gC(x)|)))).
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Since SPNHFS(A, B) ≤ SPNHFS(A, C), every function is monotonous, thus, we have |dB(x)| ≥ |dC(x)|,
|eB(x)| ≥ |eC(x)| and |gB(x)| ≥ |gC(x)|. Finally, based on the requirements of Theorem 8, E(B) ≤ E(C).

Additionally, DPNHFS(A, B) = 1 − SPNHFS(A, B), DPNHFS(A, C) = 1 − SPNHFS(A, C). Thus,
the process of proof based on the distance measure is omitted.

Theorem 9. Suppose that X is a finite reference set, A is a PNHFS on X, and ISA is the corresponding IS about A.
Then, Equation (17) is an entropy measure:

E(A) = MIT(MDU1(|dA(x)|), MDU2(|2eA(x)− 1|), MDU3(|gA(x)|)). (17)

E(A) satisfies the following limits: MDU1, MDU2, MDU3 : [0, 1] → [0, 1] are two monotonically decreasing
unary mappings, and MDU1(0) = MDU2(0) = MDU3(0) = 1, MDU1(1) = MDU2(1) = MDU3(1) = 0.
The mapping MIB : [0, 1]3 → [0, 1] is a monotonically increasing binary function, its partial derivatives are better
than 0, MIB(0, 0, 0) = 0, MIB(1, 1, 1) = 1.

Based on the Equations (16) and (17), the different entropy measures can be established.
Through the above analysis, we know that entropy measure can be depicted by the unsteadiness

of a PNHFS. However, distance measure and similarity measure play a vital role. Vice versa, entropy
measure can better help us to comprehend distance measurement and similarity measurement. Next,
according to the distance measure and similarity measure, respectively, the entropy measure can
be established.

Theorem 10. Suppose D is a distance measure obtained according to Definition 14,
B = {〈 x, {0.5|PT

a }, {0.5|PI
b}, {0.5|PF

c }〉|x ∈ X}, then E(A) = MDU(DPNHFS(A, B)).
The MDU : [0, 1] → [0, 1] is a decreasing unary function, its partial derivatives are lower than 0,
and MDU(0) = 1, MDU(1) = 0.

Theorem 11. Suppose S is a similarity measure obtained according to Definition 14,
B = {〈x, {0.5|PT

a }, {0.5|PI
b}, {0.5|PF

c }〉|x ∈ X}, then E(A) = MIU(SPNHFS(A, B)). The MIU : [0, 1]→
[0, 1] is a decreasing unary function, its partial derivatives are bigger than 0, and MDU(0) = 0, MDU(1) = 1.

The process of proof about Theorem 10 and Theorem 11 is not unfolded here. Similarity, we can also
get the following theorems. The proof processes are visualized.

Theorem 12. Supposing that DPNHFS is the distance measure of PNHFS A, SPNHFS is
the similarity measure of PNHFS A, B = {〈x, {0.5|PT

a }, {0.5|PI
b}, {0.5|PF

c }〉|x ∈ X},
then E(A) = MIB(MDU(DPNHFS(A, B)), MIU(SPNHFS(A, B))) is a entropy measure.
MIB : [0, 1] → [0, 1] is an increasing binary function under the conditions that the partial derivatives are
bigger than 0, MIB(0, 0) = 0, MIB(1, 1) = 1. The mappings MDU : [0, 1]→ [0, 1] and MIU : [0, 1]→ [0, 1]
are decreasing unary function and increasing function, respectively. In addition, MDU(0) = 1, MDU(1) = 0,
MIU(0) = 0, MDU(1) = 1.

Theorem 13. Supposing that DPNHFS is the distance measure of PNHFS A, SPNHFS is
the similarity measure of PNHFS A, B = {〈x, {0.5|PT

a }, {0.5|PI
b}, {0.5|PF

c }〉|x ∈ X},
then E(A) = MDB(MIU(DPNHFS(A, B)), MDU(SPNHFS(A, B))) is an entropy measure.
MDB : [0, 1]→ [0, 1] is a decreasing binary function under the conditions that the partial derivatives are lower
than 0, MIB(1, 1) = 0, MIB(0, 0) = 1. The mappings MIU : [0, 1] → [0, 1] and MDU : [0, 1] → [0, 1]
are increasing unary function and decreasing function, respectively. In addition, MIU(1) = 1, MIU(0) = 0,
MDU(1) = 0, MDU(1) = 1.
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4. Method Analysis Based on Illustrations and Applications

4.1. Comparative Evaluations

In real life, the investment problem is a common MCDM problem, and many researchers have
proposed different types of distance and similarity measures of SVNHFS to settle this problem.
In this part, a famous investment selection situation is introduced. The specific evaluation and the
precise data of alternatives for investment company to invest the money problem are listed in Table 1.
Table 1 displays the decision matrix of four alternatives A1, A2, A3, A4 and three evaluated criteria C1,
C2, C3. The four alternatives are Real Estate, Oil Exploitation, Bank Financial and Western Restaurant,
respectively. The three criteria are Market Prospect, Risk Assessment and Earning Cycle, respectively.
The idea element A∗ = 〈1|1, 0|0, 0|0}.

Table 1. Probabilistic neutrosophic hesitant fuzzy decision matrix of the investment problem.

C1 C2

A1 {{0.3|0.3, 0.4|0.3, 0.5|0.3}, {0.1|1}, {0.3|0.5, 0.4|0.5}} {{0.5|0.5, 0.6|0.5}, {0.2|0.5, 0.3|0.5}, {0.3|0.5, 0.4|0.5}}
A2 {{0.6|0.5, 0.7|0.5}, {0.1|0.5, 0.2|0.5}, {0.2|0.5, 0.3|0.5}} {{0.6|0.5, 0.7|0.5}, {0.1|1}, {0.3|1}}
A3 {{0.5|0.5, 0.6|0.5}, {0.4|1}, {0.2|0.5, 0.3|0.5}} {{0.6|1}, {0.3|1}, {0.4|1}}
A4 {{0.7|0.5, 0.8|0.5}, {0.1|1}, {0.1|0.5, 0.2|0.5}} {{0.6|0.5, 0.7|0.5}, {0.1|1}, {0.2|1}}

C3

A1 {{0.2|0.5, 0.3|0.5}, {0.1|0.5, 0.2|0.5}, {0.5|0.5, 0.6|0.5}}
A2 {{0.6|0.5, 0.7|0.5}, {0.1|0.5, 0.2|0.5}, {0.1|0.5, 0.2|0.5}}
A3 {{0.5|0.5, 0.6|0.5}, {0.1|1}, {0.3|1}}
A4 {{0.3|0.5, 0.5|0.5}, {0.2|1}, {0.1|0.3, 0.2|0.3, 0.3|0.3}}

Note 1. The data on this investment selection problem in Table 1 is in the form of PNHFNs. The PNHFS is one
of the generalized from the NHFS, which we have described by item (1) after Definition 6. Thus, the definition of
PNHFS can also utilized to NHFS. For instance, 〈{0.5, 0.6}, {0.1}, {0.3}〉 is an NHFE. We can describe it as
〈{0.5|0.5, 0.6|0.5}, {0.1|1}, {0.3|1}〉, which is an PNHFE.

Note 2. The results are listed in Table 2, and the optimal result is according to the minimum value among
distance measures.

Table 2. Results shown by Equation (10) corresponding to different parameters.

Parameter A1 A2 A3 A4 Ranking

Dφ=µ=ν=λ=1 0.1269 0.0635 0.0989 0.1053 A1 > A4 > A3 > A2

Dφ=µ=ν=2,λ= 1
2 0.1498 0.1063 0.1150 0.1239 A1 > A4 > A3 > A2

Dφ=µ=1,ν=2,λ=1 0.0956 0.0622 0.0561 0.0792 A1 > A4 > A3 > A2
Dφ=ν=1,µ=2λ=1 0.1024 0.691 0.0523 0.0733 A1 > A4 > A2 > A3

Dφ=2,ν=1=µ=1λ=1 0.1871 0.1203 0.1071 0.1449 A1 > A4 > A2 > A3

The optimal selections are shown in Table 3. By comparing the conclusions shown by the present
distance measures Xu and Xia’s Method, Singh’s Method, and Sahin’s Method, we found that the selections
calculated are the same as our method with Dφ=µ=ν=λ=1, Dφ=µ=ν=2,λ= 1

2 and Dφ=µ=1,ν=2,λ=1. However,
the conclusions calculated by Dφ=ν=1,µ=2λ=1, Dφ=2,ν=1=µ=1λ=1 are different from the present method.
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Table 3. Relationships between presenting methods and our method .

Method Ranking The Best Result The Worst Result

Xu and Xia’s Method A1 > A4 > A3 > A2 A1 A2
Singh’s Method A1 > A4 > A3 > A2 A1 A2
Sahin’s Method A1 > A4 > A3 > A2 A1 A2

Thus, we deduce that the consequences may change if we change the inner frames of the distance
measure formula. According to the components of |dA(x)− dB(x)|, |eA(x)− eB(x)| and |gA(x)− gB(x)|,
which describe the certain attitudes, knowledge backgrounds and hesitancy degree, respectively, we trust
that the new type of distance measures are effective and significant. If the difference of the decision
makers’ hesitancy degree and background knowledge is relatively big, it does not have a lot of effective
consult values regarding whether they have the same conclusions. However, when the difference between
the decision maker’s hesitation and background knowledge is not too big, analyzing the reasons for the
difference in their opinions is significant. Thus, it is important for making rational decisions.

4.2. Streamlining the Talent Selection Process

In many areas of life, the existing evaluation systems are incomplete, resulting in redundancy in the
evaluation processes and waste of resources. This situation results in the low efficiency of evaluation
for the entire decision-making section. Through the evaluation and analysis of the existing concerned
decision documents, the matter of unnecessary waste of manpower resource is extensive. For example,
many companies with well-established evaluation systems are concentrated in large cities or large
countries, under the context of rapid growth in information and the trend of economic globalization.
In addition, the untimely exchange of information is an important reason for the waste of decision
resources. In the process of multi-criteria decision-making, the final results show inaccurate features in
the case of a loss of decision information. Thus, in this situation, we explain the application by taking the
investment company’s choice of the best investment project as an example.

ABC Investment Co., Ltd. is a large investment consulting company. The company’s decision-making
level is in the leading position. Thus, policymakers prefer to choose ABC Investment Co., Ltd. instead of
other relatively backward companies. As a result, large investment companies are common, and small
investment sectors create a waste of corporate resources. Ultimately, helping companies to share information
in decision-making systems to improve decision-making processes is critical to guiding companies to
choose more rational decision-making companies. Thus, when enterprises face risky decision-making
problems, they should choose large decision-making departments to deal with them effectively, but not all
decision-making problems blindly choose large investment departments to solve.

With regard to those decision-making issues that need to be transferred to the upper-level department
for processing, the decision given by the decision-maker is a critical step. Therefore, accurate judgment,
the consensus of the decision-makers at the corresponding level and the decision-making departments at
higher levels provide a reference for the development of the enterprise. This can synthesize different
levels of knowledge information to improve decision-making efficiency.

Combined with the above considerations, companies establish decision-making systems to improve
decision-making efficiency. It is necessary for companies to have a database of their decision information.
In some enterprises, decision information storage and retrieval systems have been established based on
computer networks for enterprise-centric data collection and investigation. Effectively sharing decision
data among decision-making departments is beneficial to the development of companies. Therefore,
in reducing excessive unnecessary decisions, PNHFNs are used to express the conclusions of decision
makers for the MCDM problems faced by companies.

For instance, the formula {〈T|PT , I|PI , F|PF〉} is a decision maker’s judgment for an MCDM problem,
where T describes that the decision maker’s support degrees for the problem can be solved, I indicates
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that the professor’s indeterminacy degrees for the problem can be solved, and F expresses that the
decision maker’s dissentient degrees for the problem can be solved. The probabilities PT , PI and PF are
the corresponding statistic value of T, I and F, respectively.

Next, we introduce an illustration by utilizing the new distance and similarity measures to perfect
the accurate evaluation for reducing the excessive re-evaluations. The special illustration of a talents
selection problem is introduced as follows:

C : {A1, A2, A3, A4} is a set of three investors.
E : {E1, E2} is a set of two stock consultants from the higher and lower companies, respectively.
A : {RE Network Technology Company (RE); DR Biotechnology Company (DR); EV Chemical

Company (EV); and FL Technology Company (FL)} is a set of stocks that the investors need to be
premeditated.

Then, regarding the investment questions, the evaluation information of the two experts is described
and listed in Tables 4 and 5.

Table 4. Probabilistic neutrosophic hesitant fuzzy decision matrix of E1.

RE DR

A1 {{0.4|0.6, 0.6|0.2}, {0.4|0.6}, {0.3|0.4, 0.4|0.5}} {{0.3|0.4, 0.6|0.4}, {0.5|0.5, 0.6|0.4}, {0.3|0.4}}
A2 {{0.5|0.4, 0.6|0.3}, {0.4|0.2, 0.6|0.5}, {0.3|0.4}} {{0.6|0.5}, {0.4|0.3, 0.6|0.5}, {0.4|0.6, 0.6|0.3}}
A3 {{0.5|0.7}, {0.4|0.3, 0.5|0.4}, {0.4|0.3, 0.6|0.5}} {{0.4|0.5, 0.6|0.5}, {0.5|0.6}, {0.4|0.4, 0.5|0.4}}
A4 {{0.5|0.3}, {0.2|0.1, 0.4|0.5, 0.6|0.2}, {0.5|0.7}} {{0.6|0.5}, {0.4|0.5, 0.6|0.5}, {0.5|0.3, 0.6|0.5}

EV FL

A1 {{0.7|0.5, 0.8|0.5}, {0.3|0.5, 0.4|0.4}, {0.5|0.6}} {{0.5|0.4, 0.7|0.6}, {0.3|0.5, 0.5|0.4}, {0.5|0.4}}
A2 {{0.7|0.3, 0.8|0.5}, {0.6|0.6}, {0.4|0.5, 0.6|0.4}} {{0.6|0.4, 0.8|0.4}, {0.4|0.2, 0.6|0.5}, {0.5|0.3}}
A3 {{0.6|0.5}, {0.4|0.5, 0.5|0.3}, {0.4|0.5, 0.6|0.4}} {{0.6|0.5}, {0.5|0.4, 0.6|0.4}, {0.5|0.6, 0.6|0.4}}
A4 {{0.6|0.3, 0.8|0.5}, {0.4|0.6}, {0.5|0.3, 0.6|0.5}} {{0.6|0.5, 0.8|0.4}, {0.4|0.6}, {0.4|0.5, 0.5|0.4}

Table 5. Probabilistic neutrosophic hesitant fuzzy decision matrix of E2.

RE DR

A1 {{0.6|0.5}, {0.4|0.2, 0.6|0.6}, {0.4|0.6, 0.6|0.2}} {{0.5|0.4, 0.7|0.4}, {0.6|0.4}, {0.4|0.6, 0.5|0.4}}
A2 {{0.3|0.4}, {0.5|0.4}, {0.2|0.2, 0.4|0.5, 0.6|0.3}} {{0.5|0.6}, {0.6|0.4}, {0.5|0.3, 0.6|0.4}}
A3 {{0.4|0.6, 0.6|0.2}, {0.6|0.3}, {0.5|0.4, 0.6|0.5}} {{0.6|0.4, 0.8|0.4}, {0.5|0.3, 0.7|0.5}, {0.5|0.4}}
A4 {{0.5|0.4, 0.6|0.4}, {0.5|0.3}, {0.3|0.4, 0.6|0.5}} {{0.7|0.5}, {0.5|0.6, 0.6|0.3}, {0.5|0.6}

EV FL

A1 {{0.5|0.3, 0.6|0.5}, {0.4|0.4, 0.6|0.6}, {0.3|0.6}} {{0.6|0.6}, {0.3|0.5}, {0.4|0.4, 0.5|0.3, 0.6|0.3}}
A2 {{0.5|0.4, 0.6|0.3}, {0.5|0.6, 0.6|0.3}, {0.5|0.5}} {{0.5|0.6, 0.6|0.4}, {0.4|0.5, 0.6|0.3}, {0.3|0.4}}
A3 {{0.5|0.4, 0.6|0.5}, {0.5|0.4, 0.7|0.5}, {0.5|0.8}} {{0.4|0.6, 0.7|0.4}, {0.3|0.4, 0.4|0.6}, {0.5|0.5}}
A4 {{0.5|0.6}, {0.5|0.5}, {0.4|0.2, 0.6|0.5, 0.7|0.3}} {{0.5|0.5, 0.7|0.5}, {0.5|0.4}, {0.4|0.6, 0.6|0.3}

First, normalize the evaluation information, since the space is limited, so the results are neglected.
According to the above-mentioned explanations, the distance and similarity measures among the two
reports’ evaluations are calculated by utilizing the following functions:

D(E1, E2) =

{
5log3(1 +

|dA(x)−dB(x)|2
4 + |eA(x)− eB(x)|+ |gA(x)−gB(x)|

2 ), when|eA(x)− eB(x)| ≥ 0.15;
5log3(1 +

|dA(x)−dB(x)|
2 + |eA(x)− eB(x)|2 + |gA(x)−gB(x)|

2 ), when|eA(x)− eB(x)| ≤ 0.15.
(18)

S(E1, E2) =

{
1
2 ((1−

2−|dA(x)−dB(x)|
2 )3 + ( 1

2 )
|eA(x)−eB(x)| + |gA(x)−gB(x)|

2 − 0.5), when|eA(x)− eB(x)| ≥ 0.15;
1
2 ((

1
2 )

3|eA(x)−eB(x)| − |dA(x)−dA(x)|
2 + |gA(x)−gB(x)|

2 + 0.5), when|eA(x)− eB(x)| ≤ 0.15.
(19)



Mathematics 2019, 7, 649 19 of 23

According to the investors knowledge backgrounds, the threshold value is set to 0.15. If the difference
of the stock consultant evaluation is lower than 0.15, the discussion of their evaluations is worth deeply
discussing and studying, and it may be a key factor of the investment choice. Conversely, the impact of
the difference in conclusions is not the most important.

Next, for the consequences of distance and similarity measures of every criterion for each investment
problem, these are described by the corresponding matrices D(E1, E2), S(E1, E2):

D(E1, E2) =


0, 2242, 0.0396, 0̂.7380, 0.0715
0̂.7777, 0.4676, 0.5701, 0.1101
0.2693, 0.3948, 0.7351, 0̂.7932
0.2208, 0.3892, 0̂.5937, 0.2866

 ,

S(E1, E2) =


0.6575, 0.7257, 0̂.6833, 0.7455
0̂.5023, 0.6088, 0.5272, 0.6933
0.6367, 0.5848, 0.6522, 0̂.6589
0.6806, 0.6400, 0̂.5485, 0.6628

 .

Based on the above conclusions, in order to confirm which criterion needs further examination,
the stock consultant should discuss the threshold value of the distance value with investors. However,
the similarity consequences are considered as a reference for the investor and stock consultant for the
consideration of further examinations. According to this question background, 0.15 is the threshold
value of distance measures for every investor (the threshold value of distance measures is determined by
a third party data source, and we are not discussing this here.). On the basis of the explanation of distance
measure, the threshold value of similarity measure will be determined. Next, the matrices D(E1, E2) and
S(E1, E2) help us to understand the meaning.

Observing the matrix D(E1, E2), investor A1 needs to focus on EV; investor A2 needs to focus on RE;
investor A3 needs to focus on EV and FL; and investor A4 does not need to focus on: RE, DR and FL.

Likewise, about the matrix S(E1, E2), for the investors A2 and A4, we can obtain the same conclusion
as the ones explained by D(E1, E2). However, the similarity measure of A1 is not the smallest, and neither
is the similarity measure of A3 for EVand FL. Both A1 and A3 reflect the greater distance and similarity
measures. The reason is that the context of the problem is different, and the distance and similarity
measure of A1 are investigated by the corresponding first formulas in (18) and (19); the conclusions of
the A3 are investigated by the corresponding second formula in (18) and (19). Obviously, the different
knowledge background of the stock consultants caused the results of A1, the results of A1 are relatively
less strict for rule EV. Furthermore, stock consultants need more in-depth communication to make
judgments and suggestions about rules EV and FL for A3.

However, in order to make a decision faster for A3, the entropy measure can be utilized. For A3,
the stock consultants provide the normal probabilistic neutrososphic hesitant fuzzy information with
respect to the EV listed:

E1 = 〈{0.6|1}, {0.4|0.625, 0.5|0.375}, {0.4|0.56, 0.6|0.44}〉,
E2 = 〈{0.5|0.44, 0.6|0.56}, {0.5|0.44, 0.7|0.56}, {0.5|1}〉.
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By utilizing Equations (18) and (19), and the following entropy measures

E(A) =
1D(A, B) + S(A, B)

2
(20)

to obtain the stock consultants’ entropy for rule EV, in which B = {〈x, {0.5|P1}, {0.5|P2}, {0.5|P3}〉|x ∈
X}, we can get

E1 = 0.5393; E2 = 0.5977.

The bigger the entropy value, the easier it is for the stock consultant to change his/her mind.
The investor should make a contract with the stock consultant E2 first, then make a contract with E1.
Suppose the stock consultant E2 changes his mind previously, and his opinion is closer to E1. Then,
it is not necessary for investor A3 to make an appointment with E1. Obviously, this method is more
convenient, flexible and efficient. This method is beneficial for reducing the unnecessary selective
re-examinations. In addition, the entropy measure is applied in MCDM situations, which is conducive to
improving resource utilization.

It is worth noting that the evaluation information is described by PNHFS, which include the objective
information and subjective degrees. The decision makers can select the optimal form of expression of
PNHFS to solve practical situations.

5. Conclusions and Future Research

Based on the concept of PNHFS, the theories of NSs are enriched and its application ranges are increased.
Next, the different types of fuzziness related to the uncertainty neutrosophic space are investigated. Through
analysis and comparison, we know that the neutrosophic space is composed of indeterminate subspace and
relatively certain subspace. These two different types of subspace should be distinguished. Simultaneously,
the connections among these subspaces are investigated. According to the drawbacks of distance and similarity
measures, a new method is established to describe the measures of PNHFSs. The basic axioms of measure are
satisfied. Next, the connections among the novel distance, similarity and entropy measures are researched,
and compared with other proposed methods. It shows that our methods are more effective. Finally, under
the background of investment selection, the novel distance, similarity and entropy measures are shown for
reducing the invalid evaluation processes. This is important for improving the evaluation efficiency of the
entire selection system. The results have expressed that our proposed methods are meaningful and, if applied,
solve the more complicated problems, like talent selections.

Furthermore, in Example 3 and Example 5, the parameters φ, µ, ν and λ can depict the experts’
individual preferences and knowledge background. Additionally, the more information that is expressed,
the more accurate the parameters will be. Thus, how to decide the parameters in measurements is
a significant problem. Next, the practicality of new measures is explained by applying distance, similarity
and entropy measures into the investment selection. The new distance (similarity) and entropy measures
will be researched by integrating them with some related backgrounds to promote the other practical
situations. Considering the privacy of information, the related situations of new measurements will help
with evaluation to guide decision makers. In the future, the novel measures will be investigated and
integrate some related methods in order to expand the scope of application. Based on the correlation
and complexity of investors’ information, the novel measures will be established. Finally, the properties
of entropy measurements have not been studied in full. Thus, in the future, the axioms of the entropy
measure will be given more attention. The basic operation laws of PNHFSs and IS have been omitted,
so the research about this situation will be studied further.
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