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Abstract: The analysis of the real observations of precipitation based on the novel statistical approach
using the negative binomial distribution as a model for describing the random duration of a wet
period is considered and discussed. The study shows that this distribution fits very well to the real
observations and generalized standard methods used in meteorology to detect an extreme volume of
precipitation. It also provides a theoretical base for the determination of asymptotic approximations
to the distributions of the maximum daily precipitation volume within a wet period, as well as the
total precipitation volume over a wet period. The paper demonstrates that the relation of the unique
precipitation volume, having the gamma distribution, divided by the total precipitation volume
taken over the wet period is given by the Snedecor–Fisher or beta distributions. It allows us to
construct statistical tests to determine the extreme precipitations. Within this approach, it is possible
to introduce the notions of relatively and absolutely extreme precipitation volumes. An alternative
method to determine an extreme daily precipitation volume based on a certain quantile of the
tempered Snedecor–Fisher distribution is also suggested. The results of the application of these
methods to real data are presented.

Keywords: wet periods; total precipitation volume; asymptotic approximation; extreme order
statistics; random sample size; testing statistical hypotheses
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1. Introduction

Estimates of regularities and trends in heavy and extreme daily precipitation are important for
understanding climate variability and change at relatively small or medium time horizons [1–3].
However, such estimates are much more uncertain compared to those derived for mean precipitation
or total precipitation during a wet period [4]. This uncertainty is due to the fact that, first, estimates
of heavy precipitation depend closely on the accuracy of the daily records; they are more sensitive
to missing values. Second, uncertainties in the estimates of heavy and extreme precipitation are
caused by the inadequacy of the mathematical models used for the corresponding calculations. Third,
these uncertainties are boosted by the lack of reasonable means for the unambiguous (algorithmic)
determination of extreme or anomalously heavy precipitation amplified by some statistical significance
problems owing to the low occurrence of such events. As a consequence, continental-scale estimates of
the variability and trends in heavy precipitation based on daily precipitation might generally agree
qualitatively but may exhibit significant quantitative differences. In Reference [5] a detailed review
of this phenomenon is presented where it is noted that for the European continent, most results hint
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at a growing intensity of heavy precipitation over the last five decades. The changes in extreme
precipitation volumes are also among the relevant problems of such areas as climate [6,7], shallow
landslides [8], debris flows [9], and so forth. Therefore, tools for analyzing such observations are being
improved, including precipitation reanalysis [10].

There are several schemes on how to detect the extreme precipitation volume and what can be
understood as the extreme precipitation. It can be selected from the total precipitation as unique
heavy rain or show, for instance, which contains the precipitation volume more then 95% or more
volume among total precipitation for given period independently of whether rain was observed or not.
Alternatively, the precipitation and its volume can be considered only during the wet period ignoring
all dry spells. In this case the concept of extreme precipitation and its statistics will differ from its
counterpart in the first case. The details are discussed for instance in Reference [11]. The classical
extreme value approach based on Pickands-Balkema-de Haan theorem [12,13] (the POT method) is
used for solving such problems for precipitation data in References [14–16]. But sometimes it can lead
to less accurate estimates of extreme values [17] than the methods proposed in the present paper (one
possible alternative for estimating precipitation extremes based on the log-histospline was considered
in Reference [18]). In the present paper, a rather reasonable approach to the unambiguous (algorithmic)
determination of extreme or abnormally heavy daily and total precipitation within a wet period
is proposed.

It is traditionally assumed that the duration of a wet period (the number of subsequent wet
days) follows the geometric distribution (for example, see Reference [5]). But the sequence of dry
and wet days is not only independent, it is also devoid of the Markov property [19]. Our approach
introduces the negative binomial model for the duration of wet periods measured in days. This model
demonstrates excellent fiting the numbers of successive wet days with the negative binomial
distribution with shape parameter less than one, see References [20,21]. Numerous examples for
dry and wet periods for different stations in Europe and Russia have been presented in Reference [22].
It provides a theoretical base for the determination of asymptotic approximations to the distributions
of the maximum daily precipitation volume within a wet period and of the total precipitation volume
for a wet period. The asymptotic distribution of the maximum daily precipitation volume within a wet
period turns out to be a tempered Snedecor-Fisher distribution (i.e., the distribution of a positive power
of a random variable with the Snedecor-Fisher distribution) whereas the total precipitation volume for
a wet period turns out to be the gamma distribution. Both approximations appear to be very accurate.
These asymptotic approximations are deduced using limit theorems for statistics constructed from
samples with random sizes.

In this paper, two approaches are proposed to the definition of anomalously extremal precipitation.
The first approach to the definition (and determination) of abnormally heavy daily precipitation is
based on the tempered Snedecor-Fisher distribution (some methods of statistical estimation of its
parameters will also be discussed). The second approach is based on the assumption that the total
precipitation volume over a wet period has the gamma distribution. This assumption is theoretically
justified by a version of the law of large numbers for sums of a random number of random variables in
which the number of summands has the negative binomial distribution and is empirically substantiated
by the statistical analysis of real data. Hence, the hypothesis that the total precipitation volume during
a certain wet period is anomalously large can be formulated as the homogeneity hypothesis of a
sample from the gamma distribution. Two equivalent tests are proposed for testing this hypothesis.
One of them is based on the beta distribution whereas the second is based on the Snedecor–Fisher
distribution. Both of these tests deal with the relative contribution of the total precipitation volume for
a wet period to the considered set (sample) of successive wet periods. Within the second approach
it is possible to introduce the notions of relatively abnormal and absolutely anomalous precipitation
volumes. The results of the application of these tests to real data are presented yielding the conclusion
that the intensity of wet periods with anomalously large precipitation volume increases.
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The proposed approaches have several important benefits First, estimates of total precipitation
are weakly affected by the accuracy of the daily records and are less sensitive to missing values.
Second, they are based on limit theorems of probability theorems that yield unambiguous asymptotic
approximations which are used as adequate mathematical models. Third, these approaches provide
unambiguous algorithms for the determination of extreme or anomalously heavy daily or total
precipitation that do not involve statistical significance problems owing to the low occurrence of such
(relatively rare) events.

Suggested methods improve the approach described in Reference [11], where an estimate of the
fractional contribution from the wettest days to the total was developed which is less hampered by the
limited number of wet days. This paper demonstrates that the proposed methods have a theoretical
background and at the same time they are perfectly consistent with the real data. Our methods are
also compared with previously suggested in Reference [11] on the same database. The comparison
clearly showed that in many case the new approach gives more precise assessment for extremes and
allows distinguishing the ordinary and extreme volume for precipitation more detailed. It is worth
noting that all algorithms have been implemented as MATLAB software tools.

The paper is organized as follows. In Section 2 mathematical models to derive statistical tests
for the extreme precipitation events are introduced. The tempered Snedecor-Fisher distribution as an
asymptotic approximation to the maximum daily precipitation volume within a wet period and some
corresponding analytic properties are presented. Two equivalent statistical tests for a total precipitation
volume over a wet period to be abnormally large based on testing the homogeneity hypothesis of
a sample from the gamma distribution are introduced. Section 3 describes the application of the
proposed models and algorithms to real data using precipitation observations in Potsdam and Elista in
about 60 years. Section 4 is devoted to the main conclusions of the work.

2. Mathematical Models to Derive Statistical Tests for Precipitation Volume to Be Anomalous Large

At the beginning of this section some notations that will be used below are introduced. All the
random variables under consideration are defined on the same probability space (Ω, F, P). The results

are expounded in terms of random variables with the corresponding distributions. The symbol d
=

denotes the coincidence of distributions.
Let Gr,λ be a random variable having the gamma distribution with shape parameter r > 0 and

scale parameter λ > 0:

P(Gr,λ < x) =
x∫

0

λr

Γ(r)
zr−1e−λzdz, x > 0,

Let Wγ be a random variable with the Weibull distribution with the distribution function[
1− e−xγ]

1(x > 0) (1(A) is the indicator function of a set A). The distribution of the random variable
|X|, where X is a random variable with the standard normal distribution function, is a folded normal
(x > 0):

P(|X| < x) = 2Φ(x)− 1. (1)

Let Sα,1 and S′α,1 (0 < α < 1) be independent and identically-distributed random variables with
the same strictly stable distribution [23]. So, the density vα(x) of the random variable Rα = Sα,1/S′α,1
can be represented [24] as follows (x > 0):

vα(x) =
sin(πα)xα−1

π[1 + x2α + 2xα cos(πα)]
. (2)
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2.1. The Tempered Snedecor–Fisher Distribution as an Asymptotic Approximation to the Maximum Daily
Precipitation Volume Within a Wet Period

As it has been demonstrated in Reference [25], the asymptotic probability distribution of extremal
daily precipitation within a wet period can be represented as follows (here r > 0, λ > 0, and γ > 0):

F(x; r, λ, γ) =

(
λxγ

1 + λxγ

)r

, x > 0. (3)

Moreover, the theoretical conditions of limit theorems correspond with the real data (in sense of
fitting Pareto distribution, see Reference [26]). The function (3) is a scale mixture of the Fréchet (inverse
Weibull) distribution. It can be demonstrated for a random variable Mr,γ,λ with a distribution function
F(x; r, λ, γ) that

Mr,γ,λ
d
=
(Qr,1

λr

)1/γ
.

that is, the distribution of the random variable Mr,γ,λ up to a non-random scale factor coincides with
that of the positive power of a random variable with the Snedecor–Fisher distribution. In other words,
the distribution function F(x; r, λ, γ) (3) up to a power transformation of the argument x coincides with
the Snedecor–Fisher distribution function. In statistics, distributions with arguments subjected to the
power transformation are conventionally called tempered. Therefore, the distribution F(x; r, λ, γ) can
be called tempered Snedecor–Fisher distribution. Some properties of the distribution of the random
value Mr,γ,λ were discussed in [26]. In particular, it was shown that the limit distribution (3) can be
represented as a scale mixture of exponential or stable or Weibull or Pareto or folded normal laws
(r ∈ (0, 1], γ ∈ (0, 1], λ > 0):

Mr,γ,λ
d
=

G1/γ
r,λ Sγ,1

W1

d
=

Wγ

W ′γ
· 1

Z1/γ
r,λ

d
= W1 ·

Rγ

W ′1Z1/γ
r,λ

d
=

ΠRγ

Z1/γ
r,λ

d
=
|X|
√

2W1Rγ

W ′1Z1/γ
r,λ

,

where Wγ
d
= W ′γ, W1

d
= W ′1, the random variable Rγ has the density (2), the random variable Π has the

Pareto distribution (P(Π > x) = (x + 1)−1, x > 0), and in each term the involved random variables
are independent.

It should be mentioned that the same mathematical reasoning can be used for the determination
of the asymptotic distribution of the maximum daily precipitation within m wet periods with arbitrary
finite m ∈ N. Indeed, fix arbitrary positive r1, . . . , rm and p ∈ (0, 1). Let N(1)

r1,p, . . . , N(m)
rm ,p be independent

random variables having the negative binomial distributions with parameters rj, p, j = 1, . . . , m,
respectively. By the consideration of characteristic functions it can be easily verified that

N(1)
r1,p + . . . + N(m)

rm ,p
d
= Nr,p, (4)

where r = r1 + . . . + rm. If all rj coincide, then r = mr1 and in accordance with relation (4),
the asymptotic distribution of the maximum daily precipitation within m wet periods has the form
(x > 0)

F(m)(x; r, λ, γ) = F(x; mr1, λ, γ) =

(
λxγ

1 + λxγ

)mr1

.

And if now m infinitely increases and simultaneously λ changes as λ = cm, c ∈ (0, ∞),
then, obviously,

lim
m→∞

F(m)(x; r, λ, γ) = lim
m→∞

F(x; mr1, cm, γ) = e−µx−γ

with µ = (cr1)
−1, that is, the distribution function

F(m)(x; r, λ, γ) of the maximum daily precipitation within m wet periods turns into the classical
Fréchet distribution.
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This model makes it possible to propose the following approach to the definition
(and determination) of an anomalously heavy daily precipitation volume. The grounds for this
approach is an obvious observation that if X1, X2, . . . , XN is a sample of N positive observations, then
with finite (possibly, random) N, among Xi’s there is always an extreme observation, say, X1, such that
X1 > Xi, i = 1, 2, . . . , N. Two cases are possible: X1 is a ‘typical’ observation and its extreme character
is conditioned by purely stochastic circumstances (there must be an extreme observation within a finite
homogeneous sample) and X1 is abnormally large so that it is an outlier and its extreme character is
due to some exogenous factors. It follows from (3) that the distribution of X1 in the first case is the
tempered Snedecor–Fisher distribution. Therefore, if X1 exceeds a certain (pre-defined) quantile of this
distribution, then it is regarded as suspicious to be an outlier. The examples will be demonstrated in
Section 3.2.

2.2. The Algorithms of Statistical Fitting of the Tempered Snedecor-Fisher Distribution Model

In this section the algorithms and corresponding formulas for a statistical estimation of the
parameters r, λ and γ of the tempered Snedecor–Fisher distribution (3) are briefly given (for details,
see Reference [26]).

Let {Xi,j}, i = 1, . . . , m, j = 1, . . . , mi, be the precipitation volumes on the jth day of the ith
wet sequence. Let X∗(1), . . . , X∗(m) be order statistics constructed from the sample X∗1 , . . . , X∗m, where
X∗k = max{Xk,1, . . . , Xk,mk

}. The unknown parameters r, λ and γ can be found as a solution of a
following system of equations (for fixed values p1, p2 and p3, 0 < p1 < p2 < p3 < 1):

X∗([mpk ])
=

(
p1/r

k

λ− λp1/r
k

)1/γ

, k = 1, 2, 3 (5)

(here the symbol [a] denotes the integer part of a number a).

Proposition 1. The values of parameters γ and λ can be estimated as follows:

γ̃q =
1
r (log p1 − log p3) + log(1− p

1
r
3 )− log(1− p

1
r
1 )

log X∗
([mp1])

− log X∗
([mp3])

, (6)

λ̃q =
p

1
r
2

(1− p
1
r
2 )(X∗

([mp2])
)γ

. (7)

The expressions (6) and (7) are obtained as solutions to the system of Equation (5) while the
parameter r is determined numerically.

Proposition 2. If the value of parameter r is estimated as a corresponding parameter of the negative binomial
distribution, least squares estimates of parameters γ and λ are as follows:

γ̂LS =
m−1

∑
j=1

log X∗(j)

(log
j1/r

m1/r − j1/r

)m−1

−
m−1

∑
k=1

log
k1/r

m1/r − k1/r

×
×

(m− 1)
m−1

∑
j=1

(
log X∗(j)

)2
−
(

m−1

∑
j=1

log X∗(j)

)2
−1

, (8)

λ̂LS = exp

{
1

m− 1

( m−1

∑
j=1

log
j1/r

m1/r − j1/r − γ̂LS ∑m−1
j=1 log X∗(j)

)}
. (9)
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The derivation of the Formulas (8) and (9) is based on a minimization of the discrepancy between
the empirical and model distribution functions using the least squares techniques.

The examples of fitting tempered Snedecor–Fisher distribution to the real data will be discussed
in Section 3.1. The examples of determining an extreme daily precipitation volume based on quantiles
of this distribution will be demonstrated in Section 3.2 using precipitation observations in Potsdam
and Elista from 1950 to 2007.

2.3. The Tests for a Total Precipitation Volume to Be Anomalously Extremal Based on the Homogeneity Test of a
Sample From the Gamma Distribution

Here some algorithms of testing the hypotheses that a total precipitation volume during a wet
period is anomalously extremal within a certain time horizon are proposed. Moreover, this approach
makes it possible to consider relatively anomalously extremal volumes and absolutely anomalously
extremal volumes for a given time horizon.

Let m ∈ N and G(1)
r,µ , G(2)

r,µ , . . . , G(m)
r,µ —be independent random variables having the same gamma

distribution with shape parameter r > 0 and scale parameter µ > 0. In Reference [11] it was suggested
to use the distribution of the ratio

R∗ =
G(1)

r,µ

G(1)
r,µ + G(2)

r,µ + . . . + G(m)
r,µ

d
=

G(1)
r,1

G(1)
r,1 + G(2)

r,1 + . . . + G(m)
r,1

as a heuristic model of the distribution of the extremely large precipitation volume based on the
assumption that fluctuations of daily precipitation follow the gamma distribution. The gamma model
for the distribution of daily precipitation volume is less adequate than the Pareto one [26]. Here we
will modify the technique proposed in Reference [11] and make it more adequate and justified.

Let X1, X2, . . . be daily precipitation volumes on wet days. For k ∈ N denote Sk = X1 + . . . + Xk.
The statistical analysis of the observed data shows that the average daily precipitation volume on wet
days is finite:

1
n

n

∑
j=1

Xj =⇒ a ∈ (0, ∞). (10)

Here the symbol =⇒ denotes the convergence in distribution.
Figure 1 illustrates the stabilization of the cumulative averages of daily precipitation volumes

as n grows in Potsdam (continuous line) and Elista (dash line), and thus, the practical validity of
assumption (10). It should be emphasized that X1, X2, . . . can be dependent.

Figure 1. Stabilization of the cumulative averages of daily precipitation volumes as n grows in Potsdam
(continuous line) and Elista (dash line).
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Let r > 0, µ > 0, q ∈ (0, 1), n ∈ N. Let the random variable Nr,pn have the negative binomial
distribution with parameters r and pn = min{q, µ/n}. Using the properties of characteristic functions
it is easy to make sure that

n−1Nr,pn =⇒ Gr,µ
d
= 1

µ Gr,1 (11)

as n→ ∞. So, the following analog of the law of large numbers for negative binomial random sums
can be obtained. It can be actually regarded as a generalization of the Rényi theorem concerning the
rarefaction of renewal processes.

Theorem 1. Assume that the daily precipitation volumes on wet days X1, X2, ... satisfy condition (10). Let the
numbers r > 0, q ∈ (0, 1) and µ > 0 be arbitrary. For each n ∈ N, let the random variable Nr,pn have the
negative binomial distribution with parameters r and pn = min{q, µ/n}. Assume that the random variables
Nr,pn are independent of the sequence X1, X2, ... Then

n−1
Nr,pn

∑
j=1

Xj =⇒ aGr,µ
d
= a

µ Gr,1 as n→ ∞. (12)

Proof. Consider a sequence of random variables
{

Wn = ∑n
j=1 Xj

}
, n ∈ N. Let us introduce the

following notations:

bn = dn = n, Nn = Nr,pn , W = a, N =
1
µ

Gr,1,

where for every n ∈ N the random variable Nn is independent of the sequence {Wn}. Then,
the expressions

b−1
n Wn =⇒W, d−1

n bNn =⇒ N

take place as n→ ∞ (see (10) and (11), respectively). As all the conditions of the theorem for random
sequences with independent random indices [27,28] are satisfied, we obtain the following expression:

d−1
n WNn =⇒W · N as n→ ∞.

Taking into account above-mentioned notations, one can conclude that relation (12) holds.

Therefore, with the account of the excellent fit of the negative binomial model for the duration of
a wet period [26] with rather small pn, the gamma distribution can be regarded as an adequate and
theoretically well-based model for the total precipitation volume during a (long enough) wet period.
This theoretical conclusion based on the negative binomial model for the distribution of duration of
a wet period is vividly illustrated by the empirical data as shown on Figure 2 where the histograms
of total precipitation volumes in Potsdam and Elista and the fitted gamma distributions are shown.
For comparison, the densities of the best generalized Pareto distributions are also presented. It can be
seen that even the best fitted Pareto distributions demonstrate worse fit than the gamma distribution.

Let m ∈ N and G(1)
r,µ , G(2)

r,µ , . . . , G(m)
r,µ be independent random variables having the same gamma

distribution with parameters r > 0 and µ > 0. Consider the relative contribution of the random
variable G(1)

r,µ to the sum G(1)
r,µ + G(2)

r,µ + . . . + G(m)
r,µ :

R =
G(1)

r,µ

G(1)
r,µ + G(2)

r,µ + . . . + G(m)
r,µ

d
=

G(1)
r,1

G(1)
r,1 + G(2)

r,1 + . . . + G(m)
r,1

d
=

d
=

(
1 +

1

G(1)
r,1

(G(2)
r,1 + . . . + G(m)

r,1 )

)−1
d
=

(
1 +

G(m−1)r,1

Gr,1

)−1

, (13)
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where the gamma-distributed random variables on the right hand side are independent. So, the random
variable R characterizes the relative precipitation volume for one (long enough) wet period with respect
to the total precipitation volume registered for m wet periods.

(a)

(b)

Figure 2. The histograms of total precipitation volumes in Potsdam (a) and Elista (b) and the fitted
gamma and generalized Pareto distributions.

The distribution of the random variable R is completely determined by the distribution of the
ratio of two independent gamma-distributed random variables. To find the latter, denote k = (m− 1)r
and obtain

Gk,1

Gr,1
=

k
r
·
(

r
k
·

Gk,1

Gr,1

)
d
=

k
r
·Qk,r,

where Qk,r is the random variable having the Snedecor–Fisher distribution determined for k > 0, r > 0
by the Lebesgue density

fk,r(x) =
Γ(k + r)
Γ(k)Γ(r)

( k
r

)k xk−1

(1 + k
r x)k+r

, x > 0, (14)

(as is known, Qk,r
d
= rGk, 1(kGr, 1)

−1, where the random variables Gk, 1 and Gr, 1 are independent
(see, e.g., Reference [29], p. 32)). It is worth noting that the particular value of the scale parameter is
insignificant. For convenience, it is assumed equal to one.

So, R d
=

(
1 + k

r Qk,r
)−1, and, as is easily made sure by standard calculation using (14),

the distribution of the random variable R is determined by the density

p(x; k, r) =
Γ(k + r)
Γ(r)Γ(k)

(1− x)k−1xr−1, 0 6 x 6 1,
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that is, it is the beta distribution with parameters k = (m− 1)r and r.
Then the test for the homogeneity of an independent sample of size m consisting of the

gamma-distributed observations of total precipitation volumes during m wet periods with known γ

based on the random variable R looks as follows. Let V1, . . . , Vm be the total precipitation volumes
during m wet periods and, moreover, V1 > Vj for all j > 2. Calculate the quantity

SR =
V1

V1 + . . . + Vm

(SR means “Sample R”). From what was said above it follows that under the hypothesis H0:
“the precipitation volume V1 under consideration is not anomalously large” the random variable
SR has the beta distribution with parameters k = (m− 1)r and r. Let α ∈ (0, 1) be a small number,
βk,r(1 − α) be the (1 − α)-quantile of the beta distribution with parameters k = (m − 1)r and r.
If SR > βk,r(1− α), then the hypothesis H0 must be rejected, that is, the volume V1 of precipitation
during one wet period must be regarded as anomalously large. Moreover, the probability of erroneous
rejection of H0 is equal to α.

Instead of R (13), the quantity

R0 =
(m− 1)G(1)

r,µ

G(2)
r,µ + . . . + G(m)

r,µ

d
=

k
r

Gr,µ

Gk,µ

d
=

k
r

Gr,1

Gk,1

d
= Qr,k

can be considered. Then, as is easily seen, the random variables R and R0 are related by the
one-to-one correspondence

R =
R0

m− 1 + R0
or R0 =

(m− 1)R
1− R

,

so that the homogeneity test for a sample from the gamma distribution equivalent to the one described
above and, correspondingly, the test for a precipitation volume during a wet period to be anomalously
large, can be based on the random variable R0 which has the Snedecor-Fisher distribution with
parameters r and k = (m− 1)r.

Namely, again let V1, . . . , Vm be the total precipitation volumes during m wet periods and,
moreover, V1 > Vj for all j > 2. Calculate the quantity

SR0 =
(m− 1)V1

V2 + . . . + Vm
(15)

(SR0 means “Sample R0”). From what was said above it follows that under the hypothesis H0:
“the precipitation volume V1 under consideration is not anomalously large” the random variable SR
has the Snedecor–Fisher distribution with parameters r and k = (m− 1)r. Let α ∈ (0, 1) be a small
number, qr,k(1− α) be the (1− α)-quantile of the Snedecor–Fisher distribution with parameters r and
k = (m− 1)r. If SR0 > qr,k(1− α), then the hypothesis H0 must be rejected, that is, the volume V1 of
precipitation during one wet period must be regarded as anomalously large. Moreover, the probability
of erroneous rejection of H0 is equal to α.

Let l be a natural number, 1 6 l < m. It is worth noting that, unlike the test based on the statistic
R, the test based on R0 can be modified for testing the hypothesis H′0: “the precipitation volumes
Vi1 , Vi2 , . . . , Vil do not make an anomalously large cumulative contribution to the total precipitation
volume V1 + . . . + Vm”. For this purpose denote

Tl = Vi1 + Vi2 + . . . + Vil , T = V1 + V2 + . . . + Vm

and consider the quantity

SR′0 =
(m− l)Tl
l(T − Tl)

.
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In the same way as it was done above, it is easy to make sure that

SR′0
d
=

(m− l)Glr,l

lG(m−l)r,1

d
= Qlr,(m−l)r.

Let α ∈ (0, 1) be a small number, qlr,(m−1)r(1− α) be the (1− α)-quantile of the Snedecor-Fisher
distribution with parameters lr and k = (m− l)r. If SR′0 > qlr,(m−l)r(1− α), then the hypothesis H′0
must be rejected, that is, the cumulative contribution of the precipitation volumes Vi1 , Vi2 , . . . , Vil into
the total precipitation volume V1 + . . . + Vm must be regarded as anomalously large. Moreover, the
probability of erroneous rejection of H′0 is equal to α.

The examples of application of the test for a total precipitation volume within a wet period to be
anomalously large will be discussed in Section 3.4 using precipitation observations in Potsdam and
Elista from 1950 to 2007.

3. The Results of the Analysis of Real Data

3.1. Statistical Fitting of the Tempered Snedecor-Fisher Distribution Model to Real Data

The numerical results of estimation of the parameters of daily precipitation in Potsdam and
Elista from 1950 to 2009 using both algorithms described in Propositions 1 and 2 (see Section 2.2) are
presented in Tables 1 and 2. The first column indicates the censoring threshold: since the tempered
Snedecor–Fisher distribution is an asymptotic model which is assumed to be more adequate with
small “success probability,” the estimates were constructed from differently censored samples which
contain only those wet periods whose duration is no less than the specified threshold.

Table 1. Estimation of the parameters of daily precipitation in Potsdam (r = 0.847).

Minimum Duration Sample Size Dq DLS λ̃q λ̂q γ̃LS γ̂LS

1 3323 0.09 0.092 0.169 0.212 1.18 1.29
2 2066 0.045 0.065 0.0383 0.054 1.755 1.71
3 1282 0.031 0.041 0.01 0.013 2.261 2.183
4 862 0.026 0.027 0.0049 0.0045 2.449 2.524
6 384 0.025 0.026 0.0015 0.0012 2.822 2.949
8 163 0.04 0.045 0.0007 0.0005 3.174 3.255

10 73 0.041 0.042 0.0003 0.0003 3.385 3.352
15 12 0.13 0.09 0.0014 0.0009 2.667 2.973

Table 2. Estimation of the parameters of daily precipitation in Elista (r = 0.876).

Minimum Duration Sample Size Dq DLS λ̃q λ̂q γ̃LS γ̂LS

1 2937 0.06 0.06 0.361 0.349 1.053 1.263
2 1374 0.049 0.055 0.108 0.101 1.424 1.574
3 656 0.041 0.045 0.0454 0.0376 1.707 1.9
4 319 0.051 0.06 0.0234 0.0273 1.891 1.94
6 77 0.07 0.075 0.0181 0.0144 2.011 2.186
7 42 0.15 0.01 0.0197 0.0207 1.983 2.179
8 22 0.12 0.14 0.014 0.0358 2.01 1.764

10 10 0.17 0.16 0.0136 0.0375 2.163 1.802

The second column contains the correspondingly censored sample size. The third and
fourth columns contain the sup-norm discrepancies Dq and DLS between the empirical F̂(x) and
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fitted tempered Snedecor–Fisher distributions F(q)
SF (x) and F(LS)

SF (x) for two types of estimators
(quantile (6), (7) and least squares (8), (9)) described above. The quantities Dq and DLS are as follows:

Dq = max
x∈X

∣∣∣F̂(x)− F(q)
SF (x)

∣∣∣, DLS = max
x∈X

∣∣∣F̂(x)− F(LS)
SF (x)

∣∣∣,
where X = (X1, . . . , Xn) is a sample. The rest columns contain the corresponding values of the
parameters estimated by these two methods.

According to Tables 1 and 2, the best accuracy is attained when the censoring threshold equals
3 days for Elista and 5–6 days for Potsdam. The least squares method leads to the more accurate
estimates. Figures 3 and 4 demonstrate examples of fitted tempered Snedecor–Fisher distribution to
precipitation in Potsdam and Elista, respectively.

Figure 3. Fitted tempered Snedecor–Fisher distribution to precipitation in Potsdam.

Figure 4. Fitted tempered Snedecor–Fisher distribution to precipitation in Elista.

3.2. Determining an Extreme Daily Precipitation Volume Based on Quantiles of the Tempered
Snedecor-Fisher Distribution

In applied problems dealing with extreme values there is a common tradition which, possibly, has
already become a prejudice, that statistical regularities in the behavior of extreme values necessarily
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obey one of well-known three types of extreme value distributions. In general, this is certainly
so, if the sample size is very large, that is, the time horizon under consideration is very wide.
In other words, the models based on the extreme value distributions have asymptotic character.
However, in real practice, when the sample size is finite and the extreme values of the process under
consideration are studied on the time horizon of a moderate length, the classical extreme value
distributions may turn out to be inadequate models. In these situations a more thorough analysis
may generate other models which appear to be considerably more adequate. This is exactly the case
discussed in the present paper. Methodically, this approach is similar to the classical techniques of
dealing with extreme observations [30]. The novelty of the proposed method is in a more accurate
specification of the distribution of extreme daily precipitation which turned out to be the tempered
Snedecor-Fisher distribution. Figure 5 demonstrates the algorithm of determination of an anomalously
heavy daily precipitation.

Figure 5. The algorithm of determination of an anomalously heavy daily precipitation.

It is easy to see that the the probability of the error of the first kind (occurring in the case where a
regularly large maximum value is erroneously recognized as an anomalously large outlier) for this test
is approximately equal to α, it is a small fixed positive number.

The application of this test to real data is illustrated by Figures 6 and 7. On these figures the lower
horizontal line corresponds to the threshold equal to the quantile of the fitted tempered Snedecor-Fisher
distribution of order 0.9. The middle and upper lines correspond to the quantiles of orders 0.95 and
0.99, respectively. Figure 6 contains all data. For the sake of vividness, on Figure 7 only one, maximum,
daily precipitation is exposed for each wet period.

From Figure 7 it is seen that during 58 years (from 1950 to 2007) in Potsdam there were 13 wet
periods containing anomalously heavy maximum daily precipitation volumes (at 99% threshold)
and 69 wet periods containing anomalously heavy maximum daily precipitation volumes (at 95%
threshold). Other maxima were ‘regular.’



Mathematics 2019, 7, 648 13 of 20

(a)

(b)

Figure 6. Testing daily precipitation within a wet period for abnormal heaviness: (a) Potsdam; (b) Elista,
all data.

(a)

(b)

Figure 7. Testing maximum daily precipitation within a wet period for abnormal heaviness:
(a) Potsdam; (b) Elista, data containing only maximum daily precipitation for every wet period.

During the same period in Elista there were only 2 wet periods containing anomalously heavy
maximum daily precipitation volumes (at 99% threshold) and 40 wet periods containing anomalously
heavy maximum daily precipitation volumes (at 95% threshold). Other maxima were ‘regular.’
The proportion of abnormal maxima exceeding 99% and 95% thresholds in Potsdam is quite adequate
(the latter is approximately five times greater than the former) whereas in Elista this proportion
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is noticeably different. Perhaps, this can be explained by the fact that, for Elista, heavy rains are
rare events.

3.3. Comparison With the Extreme Precipitation Detected by the Beta-Distributed Tests

At this section we present the results of comparison of the precipitation events from two samples
both having the length 20 rains over the selected time-period (Elista and Potsdam). The extreme rain is
detected as it passes the 95% quantile in the corresponding statistics. The first approach exploits the
Beta distribution and it is based on the ratio between the selected precipitation and total precipitation
sum over the sample. This test has been previously suggested in the paper [11]. It leads to the
threshold THbeta where all necessary parameters of the Beta distribution have been estimated directly
from the samples. The second threshold THSF is determined using the tempered Snedecor–Fisher
distribution (3) (see Section 2.1). The results of the comparison are presented in Table 3 where only
two maximum rains are accounted. The column Decision indicates whether the corresponding volume
is considered to be extreme according to the threshold values.

Table 3. An example of comparing the results with the previously proposed test.

City Volume Ratio THbeta THSF Decision

Potsdam 28.7 0.45 0.25 28.66 Yes/Yes
16 0.25 0.25 28.66 Yes/No

Elista 21.9 0.59 0.23 21.19 Yes/Yes
5.2 0.14 0.23 21.19 No/No

It is clearly seen that the Snedecor-Fisher test detects the extremal rains more accurately. Unlike
the beta test, it selects only the rains that substantially extend the average or other heavy rains but
which, however, are not extremely heavy. This means that the supposed scheme really can be applied
to detect and forecast the potentially dangerous phenomena and to separate them from the substantial
but not extremally big precipitations.

3.4. Determination Of Abnormalities Types Based on the Results of the Statistical Analysis

This section demonstrates the application of the statistical methodology based on the test (15)
to determine extremeness of the precipitation volumes within wet periods. This method allows
us to improve the quality of detecting events of such type in comparison with approaches based
on thresholds.

It should be emphasized that the parameter m of the Snedecor-Fisher distribution of the test
statistic SR0 (15) is tightly connected with the time horizon, the abnormality of precipitation within
which is studied. Indeed, the average duration of a wet/dry period (or the average distance between
the first days of successive wet periods) in Potsdam turns out to be 5.804 ≈ 6 days. So, one observation
of a total precipitation during a wet period, on the average, corresponds to approximately 6 days.
This means, that, for example, the value m = 5 corresponds to approximately one month on the time
axis, the value m = 15 corresponds to approximately 3 months, the value m = 60 corresponds to
approximately one year. Figure 8 presents a flowchart illustrating the proposed algorithm.

It is important that the test for whether a total precipitation volume during one wet period is
anomalously large can be applied to the observed time series in a moving mode. For this purpose,
a window (a set of successive observations) should be determined. The number of observations in
this set, say, m, is called the window width. The observations within a window constitute the sample
to be analyzed. After the test has been performed for a given position of the window, the window
moves rightward by one observation so that the leftmost observation at the previous position of the
window is excluded from the sample and the observation next to the rightmost observation is added
to the sample. The test is performed once more and so on. It is clear that each fixed observation falls in
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exactly m successive windows (from mth to N −m + 1, where N denotes the number of wet periods).
Two cases are possible: (i) the fixed observation is recognized as anomalously large within each of
m windows containing this observation and (ii) the fixed observation is recognized as anomalously
large within at least one of m windows containing this observation. In the case (i) the observation will
be called absolutely anomalously large with respect to a given time horizon (approximately equal
to m · 5.804 ≈ 6m days). In the case (ii) the observation will be called relatively anomalously large
with respect to a given time horizon. Of course, these definitions admit intermediate cases where the
observation is recognized as anomalously large for q ·m windows with q ∈ [ 1

m , 1].

Figure 8. The algorithm of determination of extremeness of the precipitation volumes.

The results of the application of the test for a total precipitation volume during one wet period
to be anomalously large based on SR0 in the moving mode are shown on Figures 9–11 (Potsdam)
and Figures 12–14 (Elista) for different time horizons (30, 90 and 360 days). The notation Extrint
corresponds to the intermediate extremes (the fixed observation is recognized as anomalously large
within at least dm/2ewindows containing this observation, here the symbol d·e denotes the next larger
integer). They are marked by circles on the figures. The absolutely extreme volumes are shown as
triangles, and the relatively ones are marked by squares.

It is seen that at relatively small time horizons, the test yields non-trivial and unobvious
conclusions. However, as the time horizon increases, the results of the test become more expected.
At small time horizons there are some big precipitation volumes that are not recognized as abnormal.
At large time horizons there are almost no regular big precipitation volumes at significance level
α = 0.05 whereas at the smaller significance level α = 0.01 there are some regular big precipitation
volumes which are thus not recognized as abnormal.
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(a)

(b)

Figure 9. Abnormal precipitation volumes, Potsdam, time horizon = 30 days, significance levels
α = 0.05 (a) and α = 0.01 (b).

(a)

(b)

Figure 10. Abnormal precipitation volumes, Potsdam, time horizon = 90 days, significance levels
α = 0.05 (a) and α = 0.01 (b).
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(a)

(b)

Figure 11. Abnormal precipitation volumes, Potsdam, time horizon = 360 days, significance levels
α = 0.05 (a) and α = 0.01 (b).

(a)

(b)

Figure 12. Abnormal precipitation volumes, Elista, time horizon = 30 days, significance levels
α = 0.05 (a) and α = 0.01 (b).
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(a)

(b)

Figure 13. Abnormal precipitation volumes, Elista, time horizon = 90 days, significance levels
α = 0.05 (a) and α = 0.01 (b).

(a)

(b)

Figure 14. Abnormal precipitation volumes, Elista, time horizon = 360 days, significance levels
α = 0.05 (a) and α = 0.01 (b).

4. Conclusions and Discussion

In this paper, it is shown that the negative binomial distribution can be fruitful for the description
of the statistical regularities in the duration of wet periods observed in practice and can be used as a
base for obtaining the model for the extreme precipitation per wet period and, consequently, for testing
the hypothesis that the specific precipitation volume considered over a given wet period is anomalously
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extreme. Several approaches to the definition of an anomalously extreme precipitation are proposed.
This is an important issue, since up until now there has not been a single-valued criterion for which
precipitation volume should be regarded as anomalous and which is not. Obviously, one and the same
volume can be regarded normal in a region where precipitations are quite frequent, for instance in
tropical zones and at the time it can be considered absolutely anomalous in a dry region, say, in a
desert. The proposed tests consider the relative part of precipitation and the time scale and, therefore,
are free from the aforementioned disadvantage. Moreover, the proposed techniques of testing the
corresponding hypotheses can be easily numerically implemented.

The models and methods described in the paper can be applied to various time series in order
to detect anomalously extreme values. For example, the considered algorithms can be used for other
geophysical time series such as wind speed, heat fluxes and so forth, both univariate or multivariate.
This can be important for global climate prediction models, for forecasting and evaluation of dangerous
phenomena and processes. One more possible useful application of these models is filling the gaps in
precipitation time series due to missing observations. Indeed, the statistically estimated parameters of
the proposed models can be used as additional attributes in training samples when machine learning
techniques or Artificial Intelligence systems are used for the simulation of missing data without actual
extension of available information.
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