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Abstract: In this paper, we propose the simultaneous sub-gradient projection algorithm with the
dynamic step size (SSPA for short) for solving the multiple-sets split feasibility problem (MSSFP
for short) and investigate its linear convergence. We involve a notion of bounded linear regularity
for the MSSFP and construct several sufficient conditions to prove the linear convergence for the
SSPA. In particular, the SSPA is an easily calculated algorithm that uses orthogonal projection onto
half-spaces. Furthermore, some numerical results are provided to verify the effectiveness of our
proposed algorithm.

Keywords: linear convergence; bounded linear regularity; multiple-sets split feasibility problem;
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1. Introduction

Let H1 and H2 be two Hilbert spaces, C ⊆ H1 and Q ⊆ H2 be two closed, convex and nonempty
sets. Let operator A : H1 → H2 be bounded and linear. The split feasibility problem (SFP for short)
was proposed by Censor and Elfving [1] to solve the phase retrieval problems, and is formulated as:

finding x ∈ C and y ∈ Q such that Ax = y. (1)

Let S̄ = C×Q ⊆ H = H1 ×H2, G = [A,−I] : H→ H2, G∗ be the adjoint operator of G, then SFP (1)
can be reformulated as:

finding w = (x, y) ∈ S̄ such that Gw = 0. (2)

This class of problem has received plenty of attention due to its wide applications, such as
intensity-modulated radiation therapy [2], signal processing [3], image reconstruction [4], etc.

Many algorithms have been developed to solve the SFP. One of the most popular and practical
algorithms is the CQ algorithm, which was proposed by Byrne [5]:

xn+1 = PC(xn − γA∗(I − PQ)Axn),

where A∗ is the adjoint operator of A, γ > 0 is the step size, while PC and PQ denote the orthogonal
projection onto C and Q, respectively.

As a quite important generalization of the CQ algorithm, López et al. [6] introduced the following
dynamic step size CQ algorithm and obtained a weak convergence result:

xn+1 = PC(xn − γnA∗(I − PQ)Axn),
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where

γn =


0, xn ∈ C∩A−1Q;

ρn‖(I−PQ)Ax‖2

‖A∗(I−PQ)Ax‖2 and ρn ⊆ (0, 2), otherwise.

The highlight of the dynamic step size CQ algorithm is that it does not require any prior knowledge
about the norm of the operator A.

Under some additional assumptions, the strong convergence property of the CQ algorithm was
developed in [7] as special cases of some generalized CQ-type algorithms. More papers about this
topic are given [8,9] and the references therein. However, there are few results involving the rate
of convergence.

In this paper, we investigate the multiple-sets split feasibility problem (MSSFP), which is to find a
point such that:

x ∈ C =
t⋂

i=1

Ci, Ax ∈ Q =
r⋂

j=1

Q j, (3)

where r and t are positive integers; {Ci}
t
i=1 and {Q j}

r
j=1 are closed, convex and nonempty subsets of

Hilbert spaces H1 and H2, respectively; A : H1 → H2 is a bounded linear operator. Without loss of
generality, suppose that t > r, and choose Qr+1 = Qr+2 = · · · = Qt = H2. Let Si = Ci ×Qi ⊆ H̃ =

H1 ×H2, i = 1, 2, · · · , t, Ŝ =
t⋂

i=1
Si, G = [A,−I] : H̃→ H2, G∗ be the adjoint operator of G. Then MSSFP

(3) can be reformulated as:

finding w = (x, y) ∈ Ŝ such that Gw = 0. (4)

Censor et al. [10] proposed the following iterative formula by using the projection gradient method
for solving the MSSFP:

xn+1 = PΩ[xn − s(
t∑

i=1

αi(xn − PCixn) +
r∑

j=1

β jA∗(Axn − PQ jAxn)],

where Ω ⊂ RN is an auxiliary simple set, s ∈ (0, 2
L ), L =

t∑
i=1

αi + %(A∗A)
r∑

j=1
β j, %(A∗A) is the spectral

radius of A∗A,
t∑

i=1
αi +

r∑
j=1

β j = 1 with αi > 0, β j > 0. However, this algorithm is usually difficult

to calculate. Then, Censor et al. [11] developed the following simultaneous sub-gradient projection
algorithm, which is an easily calculated algorithm that uses orthogonal projection onto half-spaces,
to solve the MSSFP:

xn+1 = xn −
s
L
[

t∑
i=1

αi(xn − PCi,n xn) +
r∑

j=1

β jA∗(Axn − PQ j,n Axn)].

Here, s ∈ (0, 2), L =
t∑

i=1
αi + %(A∗A)

r∑
j=1

β j, %(A∗A) is the spectral radius of A∗A,
t∑

i=1
αi +

r∑
j=1

β j = 1

with αi > 0, β j > 0 and:
Ci,n := {x ∈ H1 : ci(xn) + 〈ξi,n, x− xn〉 ≤ 0},

where ξi,n ∈ ∂ci(xn), i = 1, 2, · · · , t, and:

Q j,n := {y ∈ H2 : q j(yn) + 〈η j,n, y− yn〉 ≤ 0},
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where η j,n ∈ ∂q j(yn), j = 1, 2, · · · , r. However, the above projection method with a fixed step size
may be very slow. Then, motivated by the extrapolated method for solving the convex feasibility
problems in [12], Dang et al. [13] proposed a simultaneous sub-gradient projection algorithm to solve
the MSSFP by utilizing two extrapolated factors in one iterative step. We remark here that the above
algorithms only converge weakly to a solution of the MSSFP. Moreover, the rate of convergence
has not been explicitly estimated. Based on the above disadvantages, we propose a simultaneous
sub-gradient projection algorithm with the dynamic step size (SSPA for short) for solving the MSSFP
by utilizing projections onto half-spaces to replace the original convex sets, and we investigate the
linear convergence of the SSPA. Furthermore, we conclude the linear convergence rate of the SSPA.

The rest of this paper is organized as follows. Section 2 introduces the concept of bounded linear
regularity for the MSSFP and presents some relevant definitions and lemmas which will be very
useful for our convergence analysis. Section 3 gives the SSPA, the proof of its linear convergence
and its linear convergence rate. Section 4 presents some numerical results to clarify the validity of our
proposed algorithm.

2. Preliminaries

For convenience, we always suppose that H is a real Hilbert space with the inner product 〈·, ·〉 and
the norm ‖ · ‖. I denotes the identity operator on H. For a set C ⊆ H, intC denotes the interior of C. We
denote by B and B as the unit open metric ball and unit closed metric ball with center at the origin,
respectively, that is:

B := {x ∈ H : ‖x‖ < 1} and B := {x ∈ H : ‖x‖ ≤ 1}.

For a point x ∈ H and a set C ⊆ H, the orthogonal projection of x onto C and the distance of x from
C, denoted by PC(x) and dC(x), are respectively defined by:

PC(x) := arg min{‖x− y‖ : y ∈ C} and dC(x) := inf{‖x− y‖ : y ∈ C}.

The following proposition is about some well-known properties of the projection operator.

Proposition 1 ([14]). Let C ⊆ H be a closed, convex and nonempty set; then, for any x̆, y̆ ∈ H and z̆ ∈ C,
(i) 〈x̆− PCx̆, z̆− PCx̆〉 ≤ 0;
(ii) ‖PCx̆− PC y̆‖2 ≤ 〈PCx̆− PC y̆, x̆− y̆〉;
(iii) ‖PCx̆− z̆‖2 ≤ ‖x̆− z̆‖2 − ‖PCx̆− x̆‖2;
(iv) 〈(I − PC)x̆− (I − PC)y̆, x̆− y̆〉 ≥ ‖(I − PC)x̆− (I − PC)y̆‖2.

Throughout this paper, we denote the solution set of MSSFP (1.3) by using S, which is defined by:

S := C∩A−1Q = {x ∈ C : Ax ∈ Q},

and assume that the MSSFP is consistent; thus, S is also a closed, convex and nonempty set. Then, the
following equivalence holds for any x̄ ∈ C:

x̄ ∈ S⇐⇒ (I − PQ)Ax̄ = 0 (5)

The aim of this section is to construct several sufficient conditions to ensure the linear convergence
of the SSPA for MSSFP (3). Recall that a sequence {xn} in H is said to converge linearly to its limit x∗

(with rate σ ∈ [0, 1)) if there exists ω > 0 and a positive integer N such that:

‖xn − x∗‖ ≤ ωσn for all n ≥ N.

Next, we will introduce the concept of bounded linear regularity.
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Definition 1 ([15]). Let {Qi}i∈I be a collection of closed convex subsets in a real Hilbert space H and
Q =

⋂
i∈I

Qi , ∅. The collection {Qi}i∈I is said to be bounded linearly regular if for each r > 0 there exists a

constant γr > 0 such that:
dQ(y) ≤ γr sup{dQi(y) : i ∈ I} for all y ∈ rB.

Lemma 1 ([16]). Let {Qi}i∈I be a collection of closed convex subsets in a real Hilbert space H.
If Qi

⋂
int(

⋂
j∈I\{i}

Q j) , ∅, then the collection {Qi}i∈I is bounded linearly regular.

Definition 2. The MSSFP is said to satisfy the bounded linear regularity property if for each r > 0 there exists
a constant τr > 0 such that:

τrdS(x) ≤ dQ(Ax) for all x ∈ C∩ rB. (6)

Let operator G : H→ H2 be bounded and linear. We use ker G = {y ∈ H : Gy = 0} to denote the
kernel of G. The orthogonal complement of ker G is represented by (ker G)⊥ = {x ∈ H : 〈y, x〉 = 0,
∀y ∈ ker G}. As is well known, both ker G and (ker G)⊥ are closed subspaces of H.

Lemma 2 ([17]). Let operator G : H→ H2 be bounded and linear. Then G is injective and has a closed range if
and only if G is bounded below, namely, there exists a positive constant v such that ‖Gw‖ ≥ v‖w‖ for all w ∈ H.

Lemma 3. Let {Ŝ, ker G} be bounded linearly regular and the range of G be closed; then, MSSFP (4) satisfies
the bounded linear regularity property.

Proof. {Ŝ, ker G} is bounded linearly regular, so for any r > 0 there exists τr > 0 such that:

dS(w) = dŜ∩ker G(w) ≤ τr max{dŜ(w), dker G(w)} for all w ∈ rB. (7)

Hence:
dS(w) ≤ τrdker G(w) for all w ∈ Ŝ∩ rB. (8)

Since G restricted to (ker G)⊥ is injective and its range is closed, by Lemma 2, we know that there
exists v > 0 such that:

‖G(w1)‖ ≥ v‖w1‖ for all w1 ∈ (ker G)⊥.

Hence:
dG−1(0)(w) ≤

1
v
‖Gw‖ for all w ∈ H. (9)

Combining Inequations (8) and (9), we obtain:

dS(w) ≤
τr

v
‖Gw‖ =

τr

v
‖Ax− y‖ for all w = (x, y) ∈ Ŝ∩ rB. (10)

From:
dQ(Ax) := inf{‖Ax− y‖ : y ∈ Q},

it follows that:
∃ ε > 0, dQ(Ax) ≥ ε‖Ax− y‖.

This, together with Inequation (10), implies that:

dS(w) ≤
τr

vε
dQ(Ax) for all w = (x, y) ∈ Ŝ∩ rB.

The proof is complete. �
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Now, we will provide the concept of sub-differential which is necessary to construct the iterative
algorithm later.

Definition 3 ([16]). Let f : H→ R be a convex function. The sub-differential of f at x is defined as:

∂ f (x) := {ξ ∈ H : f (y) ≥ f (x) + 〈ξ, y− x〉 for all y ∈ H}.

An element of ∂ f (x) is said to be a sub-gradient.

Lemma 4 ([16]). Suppose that Ci = {x ∈ H : fi(x) ≤ 0} is nonempty for any ξk
i ∈ ∂ fi(xk); define the half-space

Ck
i by:

Ck
i := C( fi, xk, ξk

i ) := {x ∈ H : fi(xk) + 〈ξk
i , x− xk

〉 ≤ 0}.

Then:
(i) Ci ⊆ Ck

i ;
(ii) If ξk

i , 0, then Ck
i is a half-space; otherwise, Ck

i = H;

(iii) PCk
i
(xk) = xk

−
max{ f (xk),0}
‖g(x0)‖2

ξk
i ;

(iv) dCk
i
(xk) =

max{ f (xk),0}
‖ξk

i ‖
.

Finally, the following equality and concept of the Fejér monotone sequence are also important for
the convergence analysis.

Lemma 5 ([14]). Let {xn}n∈I be a finite family in H, and {λn}n∈I be a finite family in R with
∑
n∈I
λn = 1, then

the following equality holds:

‖

∑
n∈I

λnxn‖
2 =
∑
n∈I

λn‖xn‖
2
−

1
2

∑
n∈I

∑
m∈I

λnλm‖xn − xm‖
2, n ≥ 2.

Definition 4 ([14]). Let C be a nonempty subset of H and {xn} be a sequence in H. {xn} is called Fejér monotone
with respect to C if:

‖xn+1 − z∗‖ ≤ ‖xn − z∗‖, ∀ z∗ ∈ C.

Clearly, a Fejér monotone sequence {xn} is bounded and lim
n→∞

‖xn − z∗‖ exists.

3. Main Results

In this section, we will propose the SSPA and show that the algorithm converges linearly to a
solution of MSSFP (3). Without loss of generality, the sets Ci and Q j can be represented as:

Ci := {x ∈ H1 : ci(x) ≤ 0}, (11)

and
Q j := {y ∈ H2 : q j(y) ≤ 0}, (12)

where ci : H1 → R and q j : H2 → R are convex functions, for all i, j = 1, 2, · · · , t (t is a positive integer).
Suppose that both ci and q j are sub-differentiable on H1 and H2, respectively, and that ∂ci and ∂q j are
bounded operators (namely, bounded on bounded sets). Define:

Ci,n := {x ∈ H1 : ci(xn) + 〈ξi,n, x− xn〉 ≤ 0},
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where ξi,n ∈ ∂ci(xn), i = 1, 2, · · · , t, and:

Q j,n := {y ∈ H2 : q j(yn) + 〈η j,n, y− yn〉 ≤ 0},

where η j,n ∈ ∂q j(yn), j = 1, 2, · · · , t.
By the definition of the sub-gradient, it is clear that the half-space Ci,n contains Ci and the half-space

Q j,n contains Q j. Then:

C =
t⋂

i=1

Ci ⊆

t⋂
i=1

Ci,n and Q =
t⋂

j=1

Q j ⊆

t⋂
j=1

Q j,n.

Hence, by Equation (5), one has that:

(I − PQ j,n)Ax̄ = 0.

Due to the specific form of Ci,n and Q j,n, from Lemma 8 we know that the orthogonal projections
onto Ci,n and Q j,n may be computed directly.

Censor et al. [11] defined the proximity function p(x, y) of the MSSFP as follows:

p(x, y) :=
1
2

t∑
i=1

αi‖PCix− x‖2 +
1
2

r∑
j=1

β j‖PQ j(Ax) −Ax‖2,

where αi > 0, β j > 0 for all i and j,
t∑

i=1
αi +

r∑
j=1

β j = 1. Ci and Q j are defined by Equations (11) and (12),

respectively. Hence, the function p(x, y) is convex and differentiable with gradient:

∇p(x, y) =
t∑

i=1

αi(x− PCix) +
r∑

j=1

β jA∗(Ax− PQ jAx),

and they constructed the following iterative algorithm for the MSSEP:

xn+1 = xn −
s
L
(

t∑
i=1

αi(xn − PCi,n xn) +
r∑

j=1

β jA∗(Axn − PQ j,n Axn)). (13)

Here 0 < s < 2, L is the Lipschitz constant of ∇p(x) with L =
t∑

i=1
αi + %(A∗A)

r∑
j=1

β j, %(A∗A) is the

spectral radius of A∗A, αi > 0, β j > 0 with
t∑

i=1
αi +

r∑
j=1

β j = 1.

Now, we use the modification of Equation (13) to give our simultaneous sub-gradient projection
algorithm with the dynamic stepsize for the MSSFP.

Theorem 1. Suppose that MSSFP (3) satisfies the bounded linear regularity property. Let the sequence {xn} be
defined by Algorithm 1. If the following conditions are met:

(a) {Axn} is linearly focusing, that is, there exists β > 0 such that:

βdQi(Axn) ≤ dQi,n(Axn) for any i ∈ {1, 2, · · · , t};

(b) Qi
⋂

int(
⋂

r∈I\{i}
Qr) , ∅ (I = {1, 2, · · · , t}).

then, {xn} converges linearly to a solution of the MSSFP.
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Algorithm 1: SSPA
For an arbitrarily initial point x0 ∈ C, the sequence {xn+1} is generated by:

xn+1 = xn − γn

t∑
i=1

αi[(xn − PCi,n xn) + A∗(I − PQi,n)Axn],

where at each iteration n:
(i) 0 < lim

n→∞
infγn ≤ lim

n→∞
supγn < min{1, 1

‖A‖2 };

(ii) {αi}
t
i=1 ⊂ (0,+∞) and

t∑
i=1

αi = 1.

Proof. Without loss of generality, we suppose that xn is not in S for all n ≥ 0. Otherwise, Algorithm 1
terminates in a finite number of iterations, and the conclusions are clearly true. Then, in view of
Algorithm 1, one sees that Axn is not in Q for all n ≥ 0.

Take a point x̄ ∈ S and n ∈ N. For simplicity, we write:

Φxn := A∗(I − PQi,n)Axn.

Then, one can know that:

‖Φxn‖ ≤ ‖A‖dQi,n(Axn) and 〈xn − x̄, Φxn〉 ≥ d2
Qi,n

(Axn).

In fact, the first inequality is trivial, while the second one holds because, by Proposition 1 (iv) and
(I − PQ j,n)Ax̄ = 0:

〈xn − x̄, Φxn〉 = 〈A(xn − x̄), (I − PQi,n)Axn〉 ≥ ‖(I − PQi,n)Axn − (I − PQi,n)Ax̄‖2 = d2
Qi,n

(Axn).

We will firstly prove that the sequence {xn} is Fejér monotone with respect to S. From Algorithm 1,
we have:

‖xn+1 − x̄‖2 = ‖xn − γn[
t∑

i=1

αi(xn − PCi,n xn) +
t∑

i=1

αiΦxn ] − x̄‖2

= ‖xn − x̄‖2 − 2γn〈xn − x̄,
t∑

i=1

αi(xn − PCi,nxn) +
t∑

i=1

αiΦxn〉+ γ2
n‖

t∑
i=1

αi(xn − PCi,nxn) +
t∑

i=1

αiΦxn‖
2

≤ ‖xn − x̄‖2 + 2γ2
n‖

t∑
i=1

αi(xn − PCi,nxn)‖
2 + 2γ2

n‖

t∑
i=1

αiΦxn‖
2
− 2γn〈xn − x̄,

t∑
i=1

αi(xn − PCi,nxn)〉

− 2γn〈xn − x̄,
t∑

i=1

αiΦxn〉.

By Lemma 5, we have:

‖

t∑
i=1

αi(xn − PCi,nxn)‖
2 =

t∑
i=1

αi‖xn − PCi,nxn‖
2
−

1
2

t∑
i=1

t∑
j=1

αiα j‖(xn − PCi,nxn) − (xn − PC j,nxn)‖
2

≤

t∑
i=1

αi‖xn − PCi,nxn‖
2.
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Hence:

‖xn+1 − x̄‖2 ≤ ‖xn − x̄‖2 + 2γ2
n

t∑
i=1

αi‖xn − PCi,nxn‖
2 + 2γ2

n‖

t∑
i=1

αiΦxn‖
2
− 2γn〈xn − x̄,

t∑
i=1

αi(xn − PCi,nxn)〉

− 2γn〈xn − x̄,
t∑

i=1

αiΦxn〉.

(14)

Based on the properties of the projection operator (i.e., Proposition 1) and 〈xn − x̄, Φxn〉 ≥ d2
Qi,n

(Axn),
we get the following estimations:

〈xn − x̄,
t∑

i=1

αi(xn − PCi,nxn)〉 =
t∑

i=1

αi〈xn − x̄, xn − PCi,nxn〉

=
t∑

i=1

αi(〈xn − PCi,nxn, xn − PCi,nxn〉+ 〈PCi,nxn − x̄, xn − PCi,nxn〉)

=
t∑

i=1

αi(‖xn − PCi,nxn‖
2 + 〈PCi,nxn − x̄, xn − PCi,nxn〉)

≥

t∑
i=1

αi‖xn − PCi,nxn‖
2 ,

(15)

and:

〈xn − x̄,
t∑

i=1

αiΦxn〉 =
t∑

i=1

αi〈xn − x̄, Φxn〉 ≥

t∑
i=1

αi d2
Qi,n

(Axn) . (16)

Substituting Inequations (15) and (16) into Inequation (14), we obtain:

‖xn+1 − x̄‖2

≤ ‖xn − x̄‖2 + 2γ2
n

t∑
i=1

αi‖xn − PCi,nxn‖
2 + 2γ2

n‖

t∑
i=1

αiΦxn‖
2
− 2γn

t∑
i=1

αi‖xn − PCi,nxn‖
2
− 2γn

t∑
i=1

αi d2
Qi,n

(Axn)

= ‖xn − x̄‖2 − 2γn(1− γn)
t∑

i=1

αi‖xn − PCi,nxn‖
2
− 2γn

t∑
i=1

αi(1− γn

t∑
i=1

αi
‖Φxn‖

2

d2
Qi,n

(Axn)
)d2

Qi,n
(Axn)

≤ ‖xn − x̄‖2 − 2γn(1− γn)
t∑

i=1

αi‖xn − PCi,nxn‖
2
− 2γn

t∑
i=1

αi(1− γn
‖Φxn‖

2

d2
Qi,n

(Axn)
)d2

Qi,n
(Axn) .

(17)

According to (i) in Algorithm 1, it follows from Inequation (17) that:

‖xn+1 − x̄‖ ≤ ‖xn − x̄‖.

That is, the sequence {xn} is Fejér monotone with respect to S. Hence, {xn} is bounded and
lim

n→∞
‖xn − x̄‖ exists.
Then, we will show that {xn} converges linearly to a solution of MSSFP (3).
Since x̄ is taken arbitrarily in S, by Inequation (17), we have:

d2
S(xn+1) ≤ d2

S(xn) − 2γn(1− γn)
t∑

i=1

αid2
Ci,n

(xn) − 2γn

t∑
i=1

αi(1− γn
‖Φxn‖

2

d2
Qi,n

(Axn)
)d2

Qi,n
(Axn)

≤ d2
S(xn) − 2γn

t∑
i=1

αi(1− γn
‖Φxn‖

2

d2
Qi,n

(Axn)
)d2

Qi,n
(Axn)

(18)
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From (i) in Algorithm 1, one deduces that:

lim
n→∞

inf[1− γn
‖Φxn‖

2

d2
Qi,n

(Axn)
] > 0.

Thus, there exists N such that:

a := inf
n≥N

[1− γn
‖Φxn‖

2

d2
Qi,n

(Axn)
] > 0.

Then Inequation (18) reduces to:

d2
S(xn+1) ≤ d2

S(xn) − 2γn

t∑
i=1

αi a d2
Qi,n

(Axn) for all n ≥ N. (19)

Note that {Axn} is linearly focusing; there exists β > 0 such that:

βdQi(Axn) ≤ dQi,n(Axn) for all i ∈ {1, 2, · · · , t} . (20)

We can know from condition (b) that Qi
⋂

int(
⋂

r∈I\{i}
Qr) , ∅. By Lemma 1, we obtain that {Qi}

t
i=1

is bounded linearly regular. In view of Definition 1, there exists τ > 0 such that:

dQ(Axn) ≤ τmax{dQi(Axn), i = 1, 2, · · · , t},

that is:
1
τ

dQ(Axn) ≤ max{dQi(Axn), i = 1, 2, · · · , t} . (21)

Substituting Inequations (20) and (21) into Inequation (19), we obtain:

d2
S(xn+1) ≤ d2

S(xn) − 2γn

t∑
i=1

αi a β2d2
Qi
(Axn)

≤ d2
S(xn) − 2γnαaβ2 max{d2

Qi
(Axn), i ∈ I}

≤ d2
S(xn) − 2γn

aαβ2

τ2 d2
Q(Axn)

= d2
S(xn) − 2γnbd2

Q(Axn),

(22)

where α = min{αi, i ∈ I} and I = {1, 2, · · · , t} and b =
aαβ2

τ2 .
Since the MSSFP satisfies the bounded linear regularity property, there exists ν > 0 such that:

νdS(xn) ≤ dQ(Axn). (23)

Substituting Inequation (23) into Inequation (22), we get:

d2
S(xn+1) ≤ d2

S(xn) − 2γnbν2d2
S(xn) = (1− 2γnbν2)d2

S(xn) for all n ≥ N.

Let c := bν2, then:

d2
S(xn+1) ≤ (1− 2cγn)d2

S(xn) ≤ d2
S(xN)

n∏
i=N+1

(1− 2cγi) for all n ≥ N.
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Obviously, for each x̄ ∈ S, ‖xn+1 − x̄‖ is monotone decreasing for n, hence:

‖xl − xn‖ ≤ ‖xl − PS(xn)‖+ ‖xn − PS(xn)‖

≤ 2‖xn − PS(xn)‖ = 2dS(xn) for all l > n.

It follows that:

‖xl − xn+1‖ ≤ 2dS(xN)
n∏

i=N+1

√
1− 2cγi for all l ≥ n + 1.

Let q := e−c
∈ (0, 1), then:

n∏
i=N+1

√
1− 2cγi = exp{

1
2

n∑
i=N+1

ln(1− 2cγi)} ≤ q
∑n

i=N+1 γi .

Therefore:
‖xl − xn+1‖ ≤ 2dS(xN)q

∑n
i=N+1 γi for all l ≥ n + 1.

Since 0 < lim
n→∞

infγn ≤ lim
n→∞

supγn < min{1, 1
‖A‖2 }, it follows that {xn} is a Cauchy sequence and

converges to a solution x∗ of MSSFP (3), satisfying:

‖xn+1 − x∗‖ ≤ 2dS(xN)q
∑n

i=N+1 γi for all n ≥ N.

Let:
δ := max{2dS(xN)q−

∑N
i=1 γi , max{‖xi − x∗‖q−

∑i
j=1 γ j , i = 1, 2, ..., N}} > 0.

then:
‖xn − x∗‖ ≤ δq

∑n
i=1 γi .

Moreover, from (i) in Algorithm 1, one knows that:

0 < lim
n→∞

infγn.

Let γ = lim
n→∞

infγn, then there exists N1 such that γn > γ for n ≥ N1. It follows that:

‖xn − x∗‖ ≤ δq
∑N1

i=1 γiq(n−N1)γ = ωσn,∀n ≥ max{N, N1},

where ω = δq
∑N1

i=1(γi−γ), σ = qγ ∈ (0, 1). Hence, {xn} converges linearly to x∗. The proof is complete. �

When t = 1, Algorithm 1 reduces to an iterative algorithm for solving SFP (2).

Definition 5. SFP (2) is said to satisfy the bounded linear regularity property if for each r > 0 there exists a
constant τr > 0 such that:

τrdΓ(w) ≤ ‖Gw‖ for all w ∈ rB∩ S̄, (24)

where S̄ = C×Q, G = [A,−I] and w = (x, y) ∈ C×Q.

Corollary 1. Let SFP (2) satisfy the bounded linear regularity property (i.e., Inequation (24) holds). For an
arbitrary initial point w0 = (x0, y0) ∈ H, the sequence {wn} is defined by:

wn+1 = wn − γn[(wn − PSn wn) + G∗Gwn], (25)

where 0 < lim
n→∞

infγn ≤ lim
n→∞

supγn < min{1, 1
‖G‖2 }. Then, {wn} converges linearly to a solution of SFP (2).
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4. Numerical Experiments

Let H1 = R, H2 = R2, c : H1 → R and q : H2 → R be defined by:

c(x) = −x2 and q(y) = −(y2
1 + y2

2) for all x ∈ H1, y = (y1, y2) ∈ H2,

then C = {x ∈ R : c(x) ≤ 0} = R, Q = {y ∈ R2 : q(y) ≤ 0} = R2. Since C ⊆ Cn and Q ⊆ Qn, Cn = R,
Qn = R2. A : H1 → H2 and I : H2 → H2 are defined by:

A(x) = (x, 0) and I(y, z) = (y, z) for all (x, y, z) ∈ R3,

respectively. Let S = C×Q ⊆ H = H1 ×H2, G = [A,−I] : H→ H2 be defined by:

G(x, y, z) = (x− y,−z) for all (x, y, z) ∈ R3.

Then, ker G = {(x, x, 0) : x ∈ R} , ∅, the range of G is closed and the solution set of SFP is
S = (C×Q)

⋂
ker G = {(x, x, 0) : x ∈ R}. It is easy to know that the SFP satisfies the bounded linear

regularity property by Lemma 3.
Let w0 = (x0, y0, z0) ∈ C×Q. In view of Equation (25), we have:

xn+1 = (1− γn)xn + γnyn,

yn+1 = (1− γn)yn + γnxn,

zn+1 = (1− γn)zn.

In algorithm (25), we take γn = 0.6, n
n+1 . Moreover, we choose the error to be 10−10 and 10−20

and the initial value to be w0 = (5, 8, 3) and w0 = (100, 300, 50), respectively. In addition, under the
same conditions, we also compare with Dang’s Algorithm 3.1 in [13] to confirm the effectiveness of

our proposed algorithm. For convenience, we choose s = min{ ρ(G∗G)
1+ρ(G∗G)

, 1
1+ρ(G∗G)

} in Dang’s Algorithm
3.1. Then we have the following numerical results displayed in Figures 1–4. Note that we denote the
number of iterations and the logarithm of the error by using the x-coordinate and the y-coordinate of the
figures, respectively. We wrote all the codes in Wolfram Mathematica (version 10.3). All the numerical
results were run on a personal Asus computer with AMD A9-9420 RADEON R5, 5 COMPUTE. CORES
2C+3G 3.00 GHz and RAM 8.00 GB.

Figure 1. Initial conditions: x1 = 5, y1 = 8, z1 = 3. w∗ = (6.5, 6.5, 0), error = 10−10.
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Figure 2. Initial conditions: x1 = 5, y1 = 8, z1 = 3. w∗ = (6.5, 6.5, 0), error = 10−20.

Figure 3. Initial conditions: x1 = 100, y1 = 300, z1 = 50. w∗ = (200, 200, 0), error = 10−10.

Figure 4. Initial conditions: x1 = 100, y1 = 300, z1 = 50. w∗ = (200, 200, 0), error = 10−20.
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