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1. Introduction

We start with the following.

Definition 1 ([1,2]). Let f be a self-mapping on a metric space (X, d). For µ ∈ X, take

O (µ, n) = {µ, f µ, ..., f nµ} and O (µ, ∞) = {µ, f µ, ..., f nµ, ...} ,

where n ∈ N. The set O (µ, ∞) is called an orbit of f . Such (X, d) is said to be f -orbitally complete if each
Cauchy sequence in O (µ, ∞) converges in (X, d).

It is well known that every complete metric space is f -orbitally complete for each self-mapping f
on X. Its converse does not hold (see [1,2]).

Two very known and important generalizations of the Banach contraction principle [3] obtained
by Ćirić [1] and Geraghty [4] as follows:

Theorem 1 ([1]). Let (X, d) be an f -orbitally complete metric space and f : X → X be a quasi-contraction,
i.e., there is λ ∈ [0, 1) so that

d ( f µ, f τ) ≤ λ ·max {d (µ, τ) , d (µ, f µ) , d (τ, f τ) , d (µ, f τ) , d ( f µ, τ)} , (1)

for all µ, τ ∈ X. Then, f possesses a unique fixed point.
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Theorem 2 ([4]). Let (X, d) be a complete metric space and f : X → X be such that

d ( f µ, f τ) ≤ β (d (µ, τ)) d (µ, τ) , (2)

for all µ, τ ∈ X, where β : [0, ∞) → [0, 1) is such that β (tn) → 1 implies tn → 0 as n → ∞. Then, f has a
unique fixed point.

The concept of quasi-contractions has been generalized by Kumam et al. [2].

Definition 2 ([2]). A self-mapping f on a metric space (X, d) is called a generalized quasi-contraction if there
is λ ∈ [0, 1) so that

d (Tµ, Tτ) ≤ λ ·M (µ, τ) , (3)

for all µ, τ ∈ X, where

M (µ, τ) = max
{

d(µ, τ), d(µ, f µ), d(τ, f τ), d(µ, f τ), d( f µ, τ), d( f 2µ, µ), d( f 2µ, f µ), d( f 2µ, τ), d( f 2µ, f τ)
}

. (4)

Theorem 3 ([2]). Each generalized quasi-contraction self-mapping f on an f -orbitally complete metric space
admits a unique fixed point.

Given s ≥ 1. A function d : X × X → [0, ∞) is called a b-metric on a non-empty set X if for all
µ, τ, ξ ∈ X, d (µ, τ) = 0 iff µ = τ, d (µ, τ) = d (τ, µ) and d (µ, ξ) ≤ s [d (µ, τ) + d (τ, ξ)] . The concept
of b-convergence, b-completeness, b-Cauchyness in b-metric spaces can be found in [5–38].

Definition 3 ([39]). Given Ω : X × X → [0, ∞) and f : X → X, such f is called Ω-admissible if, for all
µ, τ ∈ X,

Ω (µ, τ) ≥ 1 implies Ω ( f µ, f τ) ≥ 1.

Definition 4 ([40]). The mapping f : X → X is called triangular Ω-admissible if for all µ, τ, ξ ∈ X,
(i) Ω (µ, τ) ≥ 1 implies Ω ( f µ, f τ) ≥ 1;
(ii) Ω (µ, ξ) ≥ 1 and Ω (ξ, τ) ≥ 1 implies Ω (µ, τ) ≥ 1.

Lemma 1 ([40]). Let f be a triangular Ω-admissible mapping. Suppose there is µ0 ∈ X so that Ω (µ0, f µ0) ≥ 1.
Define {µn} by µn = f nµ0. Then, Ω (µm, µn) ≥ 1 for all m, n ∈ N with m < n.

Very recently, Pant and Panciker [35] initiated the concept of generalized Ω-quasi-contraction in
b-metric spaces. Namely, they defined and proved the following:

Definition 5 ([35]). Let (X, d) be a b-metric space with constant s ≥ 1. The self-mapping f on X is called
a generalized Ω-quasi-contraction if there are Ω : X × X → [0, ∞) and a real number q with 0 < q < 1

s2

such that
Ω (µ, τ) d ( f µ, f τ) ≤ qM (µ, τ) , (5)

where M (µ, τ) is given by (4).

Lemma 2 ([35]). Let (X, d) be a b-metric space with s ≥ 1 and f : X → X be a generalized Ω−quasi
contraction such that

(A): f is triangular Ω-admissible;
(B): there is µ0 ∈ X so that Ω (µ0, f µ0) ≥ 1.
Then, for all p, k ∈ {1, 2, ..., n} with (p < k), we have

d
(

f pµ0, f kµ0

)
≤ qδ [O (µ0, n)] . (6)
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Theorem 4 ([35]). Let (X, d) be a f -orbitally complete b-metric space with s ≥ 1 and f : X → X be a
generalized Ω-quasi-contraction so that (A) and (B) of Lemma 2 hold. Then, f admits a fixed point.

The proofs of Lemma 2 and Theorem 4 are based on Lemma 1.
Motivated by Ćirić [1], Geraghty [4], Kumam et al. [2], Samet et al. [39] as well as Pant and

Panciker [35], we improve some related fixed point theorems in b-metric spaces. Our proofs are much
shorter and nicer than the ones in [35].

Corollary 1. Let (X, d) be a b-complete b-metric space with a constant s ≥ 1. Given Ω : X× X → [0, ∞) a
functional, let f : X → X be an Ω-quasi-contraction, i.e.,

Ω (µ, τ) d ( f µ, f τ) ≤ q ·m (µ, τ) , (7)

for all µ, τ ∈ X, where 0 ≤ q < 1 and m (µ, τ) = max {d (µ, τ) , d (µ, f µ) , d (τ, f τ) , d (µ, f τ) , d ( f µ, τ)} .
Suppose that
(i) f is Ω-admissible;
(ii) there is µ0 ∈ X so that Ω (µ0, f µ0) ≥ 1.
If q < 1

s2+s , then f admits a fixed point.

Chandok [41] defined the following.

Definition 6 ([41]). Let (X, d) be a b-metric space with constant s ≥ 1, f : X → X and Ω, ω : X ×
X → [0, ∞). The mapping f is said to be (Ω, ω)−admissible if Ω (µ, τ) ≥ 1 and ω (µ, τ) ≥ 1 implies
Ω ( f µ, f τ) ≥ 1 and ω ( f µ, f τ) ≥ 1 for all µ, τ ∈ X.

Definition 7 ([41]). Let Ω, ω : X × X → [0, ∞). A b-metric space (X, d) with a constant s ≥ 1 is
(Ω, ω)-regular if {µn} is a sequence in X such that µn → x ∈ X, Ω (µn, µn+1) ≥ 1, ω (µn, µn+1) ≥ 1, for
all n; then, there is a subsequence

{
µnk

}
of {µn} such that Ω

(
µnk , µnk+1

)
≥ 1, ω

(
µnk , µnk+1

)
≥ 1, for all

k ∈ N and Ω (µ, f µ) ≥ 1, ω (µ, f µ) ≥ 1.

The two following classes of functions are defined in [35].
(1) Θ denotes the family of functions θ : [0, ∞)→ [0, 1) so that, for any bounded sequence {tn} of

positive reals, θ (tn)→ 1 implies tn → 0;
(2) Ψ denotes the set of functions ψ : [0, ∞)→ [0, ∞) so that ψ is continuous, strictly increasing

and ψ (0) = 0.

Definition 8 ([35]). Let (X, d) be a b-metric space with constant s ≥ 1. The mapping f : X → X is called an
(Ω, ω)-Geraghty type contraction if there are θ ∈ Θ, ψ ∈ Ψ and Ω, ω : X× X → [0, ∞) such that

Ω (µ, f µ)ω (τ, f τ)ψ
(

s3d ( f µ, f τ)
)
≤ θ (ψ (N (µ, τ)))ψ (N (µ, τ)) , (8)

for all µ, τ ∈ X, where N (µ, τ) = max
{

d (µ, τ) , d (µ, f µ) , d (τ, f τ) , d(µ, f τ)+d(τ, f µ)
2s

}
.

Theorem 5 ([35]). Let (X, d) be a b-complete b-metric space with a constant s ≥ 1 and f : X → X be a
self-mapping. Suppose that the following assertions hold:

(A): f is (Ω, ω)-admissible;
(B): f is an (Ω, ω)-Geraghty type contraction;
(C): there is µ0 ∈ X so that Ω (µ0, f µ0) ≥ 1 and ω (µ0, f µ0) ≥ 1;
(D): either f is continuous, or (X, d) is (Ω, ω)-regular.
Then, f has a unique fixed point.
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Corollary 2 ([35]). Let (X, d) be a b-complete b-metric space with s ≥ 1 and f : X → X be a self-mapping.
Suppose that the following assertions hold:

(A): f is Ω-admissible;
(B): f is an Ω-Geraghty type contraction;
(C): there is µ0 ∈ X so that Ω (µ0, f µ0) ≥ 1;
(D): either f is continuous or (X, d) is Ω-regular.
Then, f admits a unique fixed point.

The proofs of Theorem 5 (and Corollary 2) are based on the following crucial lemma.

Lemma 3 ([8]). Let (X, d) be a b-metric space with s ≥ 1. Let {µn} and {τn} b-converge to µ, τ ∈ X,
respectively. We have

1
s2 d (µ, τ) ≤ lim inf

n→∞
d (µn, τn) ≤ lim sup

n→∞
d (µn, τn) ≤ s2d (µ, τ) . (9)

In particular, if µ = τ, then lim
n→∞

d (µn, τn) = 0. In addition, for any ξ ∈ X,

1
s

d (µ, ξ) ≤ lim inf
n→∞

d (µn, ξ) ≤ lim sup
n→∞

d (µn, ξ) ≤ sd (µ, ξ) . (10)

2. Main Results

Instead of Lemma 3, we will use in this paper the next result to establish our main results.

Lemma 4. ([28], Lemma 3.1) Let {µn} be a sequence in a b-metric space (X, d, s ≥ 1) such that

d (µn+1, µn+2) ≤ λd (µn, µn+1) , n ≥ 0,

for some λ ∈ [0, 1
s ). Then, {µn} is a b-Cauchy sequence in X.

By Lemma 4, it would be good to note that each Picard sequence is b-Cauchy, and so the proofs of
some results (such as, the ones in the sequel) become shorter.

Remark 1. In many results based on b-metric spaces with a constant s ≥ 1, people often suppose that λ ∈ [0, 1
s )

instead of λ ∈ [0, 1), which is clearly a stronger condition due to the fact that [0, 1
s ) ⊆ [0, 1). To ensure this fact,

the following inequality is utilized:

d (µm, µn) ≤ sd (µm, µm+1) + s2d (µm+1, µm+2) + · · ·+ sn−m−1d (µn−2, µn−1) + sn−m−1d (µn−1, µn) , (11)

for n, m ∈ N and n > m.

Since there is a doubt in the proof of Theorem 3.5 of [35] (see [35], page 6, line 13: about the
inequality: d (Tu, TTnµ0) ≤ Ω (u, Tnµ0) d (Tu, TTnµ0)), we give the following new result.

Theorem 6. Let (X, d) be an f -orbitally b-complete b-metric space (with s > 1) and let f : X → X be a
generalized Ω-quasi-contraction where (A) and (B) of Lemma 2 both hold. If either f is continuous, or (X, d) is
Ω-regular, then f possesses a fixed point.
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Proof. By assumption, there is µ0 ∈ X so that Ω (µ0, f µ0) ≥ 1. We will show that the sequence
{µn = f nµ0}n∈N is b-Cauchy in the b-metric space (X, d) . Indeed, let µn 6= µn−1 for all n ∈ N.
According to (A) from Lemma 2, it follows that Ω (µn, µn+1) ≥ 1 for each n ≥ 0. Therefore,

d (µn+1, µn+2) ≤ Ω (µn, µn+1) d ( f µn, f µn+1) ≤ qM (µn, µn+1) , (12)

where

M (µn, µn+1) = max {d (µn, µn+1) , d (µn+1, µn+2) , d (µn, µn+2)}
≤ max {d (µn, µn+1) , d (µn+1, µn+2) , s (d (µn, µn+1) + d (µn+1, µn+2))}
= s (d (µn, µn+1) + d (µn+1, µn+2)) .

Hence,
d (µn+1, µn+2) ≤

qs
1− qs

d (µn, µn+1) = λd (µn, µn+1) , (13)

where λ = qs
1−qs < 1

s because q < 1
s2 .

Now, by ([28], Lemma 3.1), the sequence {µn = f nµ0} is b-Cauchy. Since (X, d) is f -orbitally
b–complete, there is u ∈ X so that lim

n→∞
f nµ0 = u. If f is continuous, then obviously f u = u. When

(X, d) is Ω-regular, we have (because Ω (u, µn) ≥ 1)

1
s

d (u, f u) ≤ d (u, µn+1) + d ( f µn, f u)

≤ d (u, µn+1) + Ω (u, µn) d ( f µn, f u)

≤ d (u, µn+1) + qM (µn, u) ,

where

M (µn, u) = max {d (µn, u) , d (µn, µn+1) , d (u, f u) , d (µn, f u) , d (u, µn+1) , d (µn+2, u) ,

d (µn+2, µn+1) , d (µn+2, u) , d (µn+2, f u)} .

Furthermore,

M (µn, u) ≤ max {d (µn, u) , d (µn, µn+1) , d (u, f u) , s (d (µn, u) + d (u, f u)) , d (u, µn+1) , d (µn+2, u) ,

d (µn+2, µn+1) , d (µn+2, u) , s (d (µn+2, u) + d (u, f u))}
→ max {0, 0, d (u, f u) , sd (u, f u) , 0, 0, 0, 0, sd (u, f u)}
= sd (u, f u) ,

as n→ ∞.
Hence,

1
s

d (u, f u) ≤ sqd (u, f u) or equivalently
1
s2 d (u, f u) ≤ qd (u, f u) ,

which is possible only if f u = u.�

Remark 2. If q < 1
s2 , then our approach gives a short and nice proof that a generalized Ω-quasi-contraction

f : X → X has a fixed point. However, the proof of the corresponding result in ([35], page 6, line 13+) is not
correct without the assumption that the b–metric space (X, d) is Ω-regular. This new compliment of the proof of
Theorem 3.5 in [35] is correct if q < 1

s2 .

We introduce the following.



Mathematics 2019, 7, 643 6 of 11

Definition 9. Let (X, d, s > 1) be a b-metric space. The mapping f : X → X is said to be an (Ω, ω)-type
contraction if there are Ω, ω : X× X → [0, ∞), ε > 1 and ψ ∈ Ψ such that

Ω (µ, f µ)ω (τ, f τ)ψ (s εd ( f µ, f τ)) ≤ ψ (N (µ, τ)) , (14)

for all µ, τ ∈ X, where N (µ, τ) = max
{

d (µ, τ) , d (µ, f µ) , d (τ, f τ) , d(µ, f τ)+d(τ, f µ)
2s

}
.

Remark 3. The contraction (14) generalizes the corresponding ones from ([35], Definition 4.3) in several directions.

Now, we can prove the next result.

Theorem 7. Let (X, d, s > 1) be a b-complete b-metric space, f : X → X, and Ω, ω : X × X → [0, ∞).
Suppose that the following assertions hold:

(A) f is (Ω, ω)-admissible;
(B) f is an (Ω, ω)-contraction;
(C) there is µ0 ∈ X so that Ω (µ0, f µ0) ≥ 1 and ω (µ0, f µ0) ≥ 1;
(D) either f is continuous or (X, d, s > 1) is (Ω, ω)-regular.

Then, f has a unique fixed point.

Proof. As in [35], page 5748, we get

ψ (d (µn+1, µn+2)) = ψ (d ( f µn, f µn+1))

≤ ψ (s εd ( f µn, f µn+1))

≤ Ω (µn, f µn)ω (µn+1, f µn+1)ψ (s εd ( f µn, f µn+1))

≤ ψ (N (µn, µn+1)) ,

or equivalently, s εd ( f µn, f µn+1) ≤ N (µn, µn+1) , where

N (µn, µn+1) = max
{

d (µn, µn+1) , d (µn+1, µn+2) ,
d (µn, µn+2)

2s

}
≤ max

{
d (µn, µn+1) , d (µn+1, µn+2) ,

d (µn, µn+1) + d (µn+1, µn+2)

2

}
≤ max {d (µn, µn+1) , d (µn+1, µn+2)}
≤ N (µn, µn+1) .

Hence, s εd ( f µn, f µn+1) ≤ max {d (µn, µn+1) , d (µn+1, µn+2)} .

It is not hard to see that s εd ( f µn, f µn+1) ≤ d (µn, µn+1). That is,

d (µn+1, µn+2) ≤
1
s ε

d (µn, µn+1) = λd (µn, µn+1) ,

where λ = 1
s ε < 1

s .
As in the proof of Theorem 6, the sequence {µn = f nµ0} is b-Cauchy in b-complete b-metric space,

so there is u ∈ X so that µn → u as n→ ∞. In the case that f is continuous, one writes

u = lim
n→∞

µn+1 = lim
n→∞

f µn = f
(

lim
n→∞

µn

)
= f u.
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In the case that (X, d) is (Ω, ω)-regular, there is
{

µnk

}
of {µn} so that Ω

(
µnk+1, µnk

)
≥ 1 and

ω
(
µnk+1, µnk

)
≥ 1 for all k ∈ N and Ω (u, f u) ≥ 1 and ω (u, f u) ≥ 1. Using Equation (14) with

µ = µnk and τ = u, we have

ψ
(
s εd

(
f µnk , f u

))
≤ Ω

(
µnk f µnk

)
ω (u, f u)ψ

(
s εd

(
f µnk , f u

))
≤ ψ

(
N
(
µnk , u

))
.

Consequently, s εd
(

f µnk , f u
)
≤ N

(
µnk , u

)
, where

N
(
µnk , u

)
= max

{
d
(
µnk , u

)
, d
(
µnk , f µnk

)
, d (u, f u) ,

d
(
µnk , f u

)
+ d

(
f µnk , u

)
2s

}

= max

{
d
(
µnk , u

)
, d
(
µnk , µnk+1

)
, d (u, f u) ,

d
(
µnk , f u

)
+ d

(
µnk+1, u

)
2s

}
.

Since 1
s d
(
µnk , f u

)
≤ d

(
µnk , u

)
+ d (u, f u), we get N

(
µnk , u

)
→ d (u, f u) as k→ ∞

On the other hand,
1
s

d (u, f u) ≤ d
(
u, µnk+1

)
+ d

(
f µnk , f u

)
,

that is,

1
s

d (u, f u) ≤ d
(
u, µnk+1

)
+

1
s ε

max

{
d
(
µnk , u

)
, d
(
µnk , µnk+1

)
, d (u, f u) ,

d
(
µnk , f u

)
+ d

(
µnk+1, u

)
2s

}
,

i.e., 1
s d (u, f u) ≤ 1

s ε d (u, f u) . Since ε > 1, the last inequality holds unless u = f u.
Now, suppose v is so that f u = u 6= v = f v. Putting µ = u and τ = v in (14),

ψ (s εd (u, v)) ≤ Ω (u, f u)ω (v, f v)ψ (s εd (u, v)) ≤ ψ (N (u, v)) ,

where

N (u, v) = max
{

d (u, v) , d (u, f u) , d (v, f v) ,
d (u, f v) + d (v, f u)

2s

}
= max

{
d (u, v) , 0, 0,

d (u, v)
s

}
= d (u, v) .

Hence, ψ (s εd (u, v)) ≤ ψ (d (u, v)) is possible only if u = v. The proof of the result is finished. �

Remark 4. It is not hard to check that Example 4.6 from [35] satisfies all conditions of Theorem 7 for ε ∈ (1, 3].
Indeed, since for all x, y ∈ X and for all ε ∈ (1, 3], it follows that

α (x, y) β (x, y)ψ (s εd (Tx, Ty)) ≤ α (x, y) β (x, y)ψ
(

s 3d (Tx, Ty)
)

≤ θ (ψ (N (x, y)))ψ (N (x, y)) .

That is,
α (x, y) β (x, y)ψ (s εd (Tx, Ty)) ≤ θ (ψ (N (x, y)))ψ (N (x, y)) ,

for all x, y ∈ X and for all ε ∈ (1, 3]. This means that Example 4.6. from [35] supports Theorem 7. On the
other hand, Theorem 7 extends the main result from [35] of {ε = 3} to ε ∈ (1, 3]. Thus, our results are genuine
generalizations of ones from [35].
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In [30], the authors introduced so-called Geraghty type functions. Denote by Ψ the set of
continuous increasing nonnegative functions ψ defined on [0, ∞) so that ψ−1 (0) = {0} . Take s ≥ 1.
Let F be the family of all nondecreasing functions β : [0, ∞)→ [0, 1

s ) so that

lim
k∞

β (lk) =
1
s

implies lim
k→∞

lk = 0.

Definition 10. Let T be a self-mapping on a b-metric space (M, d). T is a generalized Ω − ψ-Geraghty
contractive mapping if there are Ω : M×M→ [0, ∞), β ∈ F , ψ, φ ∈ Ψ and L ≥ 0 so that for

E (µ, τ) = max
{

d (µ, τ) , d (µ, Tµ) , d (τ, Tτ) ,
d (µ, Tτ) + d (τ, Tµ)

2s

}
and

N (µ, τ) = min {d (µ, Tµ) , d (τ, Tτ)} ,

we have
Ω (µ, τ)ψ

(
s3d (Tµ, Tτ)

)
≤ β (E (µ, τ))ψ (E (µ, τ)) + Lφ (N (µ, τ)) , (15)

for all µ, τ ∈ M.

Theorem 8. Let (M, d, s ≥ 1) be a b-complete b-metric space and T : M → M be a generalized Ω −
ψ-Geraghty contraction so that

(i) T is triangular Ω-orbital admissible;
(ii) there is µ0 ∈ M so that Ω (µ0, Tµ0) ≥ 1;
(iii) T is continuous.

Then, T has a fixed point.

Note that for the proof of the announced result in [30], the authors used Lemma 3. However,
our approach does not require this lemma and the proof is much shorter. Namely, we consider
the following:

Ω (µ, τ)ψ (s εd (Tµ, Tτ)) ≤ β (E (µ, τ))ψ (E (µ, τ)) + Lφ (N (µ, τ)) ,

where ε > 1, instead Equation (15). On the other hand,

d (µn+1, µn) ≤
1
s ε

d (µn, µn−1) , n ≥ 1.

This further implies that the sequence {µn} is b-Cauchy. The proof is now similar to its corresponding
one in [30].

Remark 5. Since β ([0, ∞)) ⊆ [0, 1), it is not hard to see that Equation (14) becomes

Ω(µ, τ)ψ(s3d(Tµ, Tτ)) ≤ ψ(E(µ, τ)) + Lφ(N(µ, τ),

that is, the Geraghty type case in b-metric spaces is superfluous.

It is worth mentioning the following:
Theorem 3 is a consequence of an old theorem of Hegedus [26]. In addition, Ćirić’s Definition of

quasi-contractions and Definition 2 are special cases of the following Definition of Hegedus [26].
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Definition 11 ([26]). A self-mapping T on a metric space X is called a generalized Banach contraction if, for all
x, y ∈ X, δ (x, y) < ∞ and d (Tx, Ty) ≤ λδ (x, y) for some λ < 1, where δ (x, y) = diam[O (x, ∞)∪O (y, ∞)].

Furthermore, Theorem 1 and Theorem 3 are special cases of the following theorem of Hegedus [26]
(by omitting the approximation part of the theorem).

Theorem 9 ([26]). Every generalized Banach contraction on a T-orbitally complete metric space has a unique
fixed point.

3. Conclusions

This paper contains much shorter and more elementary proof of ones given in existing literature
for some mappings in the context of b-metric spaces.
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25. Huang, H.; Vujaković, J.; Radenović, S. A note on common fixed point theorems for isotone increasing

mappings in ordered b-metric spaces. J. Nonlinear Sci. Appl. 2015, 8, 808–815. [CrossRef]
26. Hegedus, M. A New Generalization of Banach’s Contraction Principle and Some Fixed Point Theorems in Metric

Spaces; DM 78, 4; Karl Marx University of Economics: Budapest, Hungary, 1978.
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