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Abstract: In this paper, a multi-energy groups of a neutron diffusion equations system is analytically
solved by a residual power series method. The solution is generalized to consider three different
geometries: slab, cylinder and sphere. Diffusion of two and four energy groups of neutrons is
specifically analyzed through numerical calculation at certain boundary conditions. This study revels
sufficient analytical description for radial flux distribution of multi-energy groups of neutron diffusion
theory as well as determination of each nuclear reactor dimension in criticality case. The generated
results are compatible with other different methods data. The generated results are practically efficient
for neutron reactors dimension.
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1. Introduction

The nuclear reactor is a complex fuel system competition, with reflectors, coolants, control rods
and other parts. The design and analysis of such reactors for different operating methods is part of a
complex task involving several disciplines of nuclear engineering.

Among the most important is the determination of neutron flux distribution within the reactor
core and finding the critical dimension and mass. This issue has received considerable attention in the
field of reactor physics in the past decades.

The balance between neutron production from fission chain reaction and neutron loss due to
radiative capture and neutron leakage must be always achieved. This balance is known as criticality,
it can be mathematically represented by the steady-state neutron transport equation which can be
simplified using Fick’s law [1] to neutron diffusion equations. Because neutrons in a reactor have
different velocities it’s more convenient to represent their fluxes by multi-energy groups of neutron
diffusion equations.

The nuclear reactor theory defines the probability of taking place at certain reaction by the concept
of cross section which is defined as the effective size of a reacted nucleus. The cross section in nuclear
reactions could be characterized due to fission, σf; absorption, σa; scattering; or σγ radiative capture.
The macroscopic cross section is a product of atomic density of the target (N) and the cross section
(σ) : Σ = Nσ. It is appointed to the ith energy group cross section as Σi in multi-energy groups of
neutrons system, and for each nuclear reaction in the ith energy group its can be appointed for example
Σf2 is the second energy group macroscopic fission cross section, and especially in the scattering from
the ith energy group to jth energy group the macroscopic cross section will be in the specific form as
Σsij and the total scattering from the ith energy group to the all other energy groups will be

∑
Σsij.
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Neutrons of multi-energy groups move with different speeds inside the reactors. Our analysis is
focused on the two and four energy groups of neutrons systems due to the necessary simplification
that already applied at other alternative solution like classical methods and transport theory data [2].

The present study introduces sufficient analytical procedure based on residual power series
method (RPSM) [3–12] to provide general solution to multi-energy groups of neutron diffusion
equations in rectangular, cylindrical, and spherical geometries. RPSM is an effective technique to
solve multi-energy groups of neutron diffusion equations without discretization, perturbation or
linearization. RPSM constructs an approximate analytical solution in a practical truncated series form
by using the residual error concept.

The RPSM has many characteristic features [6]; Taylor’s expansion is obtained from the solution;
as a result, an exact solution is available when the solution is an elementary function. Moreover,
solutions and all derivatives are applicable to each arbitrary point in a determined interval. The RPSM
also requires small computational requirements at high resolution and less time.

Neutron diffusion equations are solved at several cases and neutron diffusion in a hemisphere with
mixed boundary conditions are presented [13]. Both homotopy analysis and Adomian decomposition
methods are used to find the solution of one energy group of neutron diffusion equation in hemispherical
and cylindrical reactors [14]. Moreover, the homotopy perturbation method is used to generate
particular solution of one energy group of neutron diffusion equations in hemispherical symmetry [15].
An alternative method is used to solve one energy group of a neutron diffusion equation in cylindrical
symmetry [16]. There are other efforts to solve different cases of neutron diffusion equations [17–21].

The present study provides general analytic approximate solution for the multi-energy groups
of neutron diffusion at any particular symmetry. The proposed RPSM does not only describe
neutron diffusions at different reactor geometries but it also provides associated flux distributions.
The developed analytical formalism is numerically computed, the obtained result is compared to
the available benchmark data generated from classical method and transport theory (when the data is
available) to show the efficient of RPSM.

The following outlines the study: in the following section, the multi-energy groups of neutron
diffusion is described analytically, and the outline of the RPSM is illustrated in Section 3. Section 4 covers
how RPSM is applied in solving equations. Numerical examples are given in Section 5 to illustrate the
capability of the proposed method. The study ends in Section 6 with some concluding observations.

2. Multi-Energy Groups of Neutron Diffusion System

The solution for multi-energy groups of neutron diffusion equations system of the following form
is assumed to have a unique solution in the interval of integration:

∇
2∅1(r) + C1,1∅1(r) + C1,2∅2(r) + C1,3∅3(r) + · · ·+ C1,n∅n(r) = 0,
∇

2∅2(r) + C2,1∅1(r) + C2,2∅2(r) + C2,3∅3(r) + · · ·+ C2,n∅n(r) = 0,
∇

2∅3(r) + C3,1∅1(r) + C3,2∅2(r) + C3,3∅3(r) + · · ·+ C3,n∅n(r) = 0,
∇

2∅n(r) + Cn,1∅1(r) + Cn,2∅2(r) + Cn,3∅3(r) + · · ·+ Cn,n∅n(r) = 0,

(1)

where Cii is known as a group buckling, Di is a group diffusion coefficient, and Ci j is a constant connects
between fluxes in different energy groups of neutrons. Respectively Cii, Ci j, and Di are defined as
following: 

Cii =
χiνi

∑
f i −(

∑
γi +

∑
Σsij)

Di
,

Ci j =
∑

Σsji+χiν j
∑

f j
Di

,
Di =

1
3(

∑
f i +

∑
sii +

∑
Σsij+

∑
γi)

.

(2)

The constants in Equation (2) have been defined in term of different macroscopic cross sections,
the number of neutrons produced per fission for each group (νi) and the fraction of fission neutrons
that emitted with energies in the ith group (χi).
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This system of equations describes behavior of the neutrons in the nuclear reactors where each
flux ∅i expresses the neutron flux with specific speed. Each flux is maximum at the center of the
reactor, its derivative vanishes, so the initial conditions can be written as

∅i(0) = hi, ∅′i (0) = 0, i = 1, 2, . . . , n (3)

where the fluxes ∅i(r), i = 1, 2, . . . , n are functions of independent variable r, and hi ∈ R. Throughout
it is assumed that ∅i(r), i = 1, 2, . . . , n are analytic functions for r ≥ 0.

The system of equations in Equation (1) can be simplified by taking into consideration the basic
nuclear reactor theory fact which issuer that the geometrical buckling B2 should be equal to the material
buckling for all energy groups in the criticality case, i.e.,

∇
2∅1(r) + B2∅1(r) = 0,
∇

2∅2(r) + B2∅2(r) = 0,
∇

2∅3(r) + B2∅3(r) = 0,
...

∇
2∅n(r) + B2∅n(r) = 0.

(4)

Substitution the values of B2 leads to

−B2∅1(r) + C1,1∅1(r) + C1,2∅2(r) + C1,3∅3(r) + · · ·+ C1,n∅n(r) = 0,
−B2∅2(r) + C2,1∅1(r) + C2,2∅2(r) + C2,3∅3(r) + · · ·+ C2,n∅n(r) = 0,
−B2∅3(r) + C3,1∅1(r) + C3,2∅2(r) + C3,3∅3(r) + · · ·+ C3,n∅n(r) = 0,

...
−B2∅n(r) + Cn,1∅1(r) + Cn,2∅2(r) + Cn,3∅3(r) + · · ·+ Cn,n∅n(r) = 0.

(5)

This system of equations shows that the ratio of each two fluxes is constant, classical solution,
like Cramer’s rule, determines the value of B2 as well as finds each flux separately for any number of
energy groups for any reactor geometry [22,23].

3. Basic Idea of the RPSM

The basic definition in addition to the basic theories of the RPSM and its applicability to different
types of differential equations is given in [3–6]. To provide convenience to the reader, we will provide
a review of the RPSM by illustrating the following algorithm:

Step 1: Write the nth-order differential equation in the following form:

∅(n)(r) = F
[
r,∅, ∅′,∅′′ , . . . , ∅(n−1)

]
, (6)

subject to the initial conditions

∅(i)(r0) = hi, i = 0, 1, 2, . . . , n− 1 (7)

where F is a function of r,∅, ∅′,∅′′ , . . . , ∅(n−1) and ∅ is unknown analytic function of r on a
neighborhood of r0.

Step 2: Assume the solution has the following form:

∅(r) =
∞∑

m=0

cm

m!
(r− r0)

m. (8)
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According to the initial conditions (7), the solution can be expressed in the form:

∅(r) =
n−1∑
m=0

hm

m!
(r− r0)

m +
∞∑

m=n

cm

m!
(r− r0)

m. (9)

Step 3: Define the kth-truncated series of ∅(r) as follows

∅k(r) =
n−1∑
m=0

hm

m!
(r− r0)

m +
k∑

m=n

cm

m!
(r− r0)

m, k = n, n + 1, n + 2, . . . . (10)

Step 4: Define the kth-residual functions as follows

Resk(r) = ∅(n)
k (r) − F

[
t,∅k, ∅′k,∅′′k , . . . , ∅(n−1)

k

]
, k = n, n + 1, n + 2, . . . . (11)

Step 5: Substitute the form of ∅k(r) into Equation (11).
Step 6: Obtain the (k− n)th derivative of Resk(r) as:

dk−n

drk−n
Resk(r), k = n, n + 1, n + 2, . . . . (12)

Step 7: Solve the following algebraic equations for k = n, n + 1, n + 2, . . ., equation by equation

dk−n

drk−n
Resk(r0) = 0, (13)

then obtain the values of the unknown coefficients; cn, cn+1, cn+2, . . . , ck, respectively.
Step 8: Collect the obtained forms of cm and ∅m(r) for each m = 0, 1, 2, . . . , k in term of expanded

series, then we obtain the kth-approximate solution to the Equations (6) and (7).
Step 9: If there are a pattern in the coefficients of the series as terms of some well-known elementary

functions, then we have the exact solution ∅(r).

4. Analytical Solution by the RPSM

RPSM is employed to find sufficient series solution for the multi-energy groups of neutrons
time-independent neutron diffusion system of Equation (1) for three nuclear reactor essential geometries,
namely spherical, cylindrical and slab reactors which will be studied respectively.

4.1. Multi-Energy Groups of Neutrons Spherical Reactor

The time-independent diffusion system of multi-energy groups of neutrons at spherical reactor
can be written as:

r∅′′1 (r) + 2∅′1(r) + r(C1,1∅1(r) + C1,2∅2(r) + C1,3∅3(r) + · · ·+ C1,n∅n(r)) = 0,
r∅′′2 (r) + 2∅′2(r) + r(C2,1∅1(r) + C2,2∅2(r) + C2,3∅3(r) + · · ·+ C2,n∅n(r)) = 0,
r∅′′3 (r) + 2∅′3(r) + r(C3,1∅1(r) + C3,2∅2(r) + C3,3∅3(r) + · · ·+ C3,n∅n(r)) = 0,

...
r∅′′n (r) +∅′n(r) + r(Cn,1∅1(r) + Cn,2∅2(r) + Cn,3∅3(r) + · · ·+ Cn,n∅n(r)) = 0.

(14)

The RPSM express the solution of Equation (14) subject to the initial conditions Equation (3) as
a power series expansion about the initial point r = 0. The series solution is supposed to take the
form ∅i(r) =

∑
∞

m=0 ai,mrm, i = 1, 2, . . . , n.
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Since ∅i(r),∅′i (r), i = 1, 2, . . . , n satisfy the initial conditions, the solutions will be ∅i(r) =

hi +
∑
∞

m=2 aimrm, i = 1, 2, . . . , n. Moreover, it could be approximately the kth-truncated series:

∅k
i (r) = hi +

k∑
m=2

aimrm, i = 1, 2 . . . , n. (15)

The coefficients ai,m, i = 1, 2, . . . , n, m = 2, 3, . . . , k, are determined by defining residual functions
and the kth-residual functions, respectively, as follows:

Resi(r) = r∅′′i (r) + 2∅′i (r) + r
n∑

j=1

Ci j∅ j(r), i = 1, 2, . . . , n (16)

Resk
i (r) = r

d2∅k
i (r)

dr2 + 2
d∅k

i (r)

dr
+ r

n∑
j=1

Ci j∅k
j(r), i = 1, 2, . . . , n (17)

Substitute Equation (15) into Equation (17), we have:

Resk
i (r) =

k∑
m=2

m(m− 1)aimrm−1 + 2
k∑

m=2
maimrm−1

+
n∑

j=1
Ci j

(
h jr +

k∑
m=2

a jmrm+1
)
, i = 1, 2, . . . , n

(18)

It is clear that, Resi(r) = lim
k→∞

Resk
i (r), i = 1, 2, . . . , n. Moreover, Resi(r) = 0, i = 1, 2, . . . , n for

r ≥ 0. This show that Resi(r), i = 1, 2, . . . , n is infinitely many times differentiable at r = 0. On the
other hand, dk−1

drk−1 Resi(0) = dk−1

drk−1 Resk
i (0) = 0, this fact is a basic rule in RPSM and its applications.

Now, to obtain second approximate solutions, k = 2 is placed in Equation (18), differentiate both
sides with respect to r and substitute r = 0, to conclude

d
dr

Res2
i (r) = 2ai2 + 4ai2 +

n∑
j=1

Ci jh j +

 n∑
j=1

3Ci ja j2

r2, i = 1, 2, . . . , n. (19)

The fact that dk−1

drk−1 Resk
i (0) = 0, i = 1, 2, . . . , n gives the following values for ai2:

ai2 =
−1

2 ∗ 3

n∑
j=1

Ci jh j, i = 1, 2, . . . , n (20)

Thus, the second truncated series solutions for Equation (14) can be written as

∅2
i (r) = hi −

1
2 ∗ 3

 n∑
j=1

Ci jh j

r2, i = 1, 2, . . . , n

Similarly, to find the third approximate solution, k = 3 is placed in Equation (18), differentiate both
sides twice with respect to r with substituting r = 0 and use the fact dk−1

drk−1 Resk
i (0) = 0, i = 1, 2, . . . , n, then

we get that ai3 = 0, i = 1, 2, . . . , n. Hence, the 3rd-truncated series is the same as the 2nd-truncated series.
Repeat same procedure for k = 4, k = 5 and k = 6, values of ai4, ai5 and ai6 are given in the

following formulas:

ai4 =
1

2 ∗ 3 ∗ 4 ∗ 5

n∑
l=1

Cil

n∑
j=1

Cl jh j, i = 1, 2, . . . , n,
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ai5 = 0, i = 1, 2, . . . , n,

ai6 =
−1

2 ∗ 3 ∗ 4 ∗ 5 ∗ 6 ∗ 7

n∑
r=1

Cir

n∑
l=1

Crl

n∑
j=1

Cl jh j, i = 1, 2, . . . , n. (21)

Define the recurrence relation: Ti,0 = hi, and Ti,m =
∑n

j=1 Ci jT j,(m−2), m = 2, 4, 6, . . ., then

ai0 = Ti,0,
ai2 = −1

3! Ti,2,
ai4 = 1

5! Ti,4, i = 1, 2, . . . , n,
ai6 = −1

7! Ti,6, i = 1, 2, . . . , n.

(22)

Therefore, the solution of the system (14) subject to the initial conditions (3) can be arranged in
the form

∅i(r) =
∞∑

k=0

(−1)k 1
(2k + 1)!

Ti,2kr2k, i = 1, 2, . . . , n. (23)

In a special case, if Ti,2k = 1, then

∅i(r) =
sin r

r
. (24)

It should be noted that the simplification of Equation (24) coincides with a one energy group of a
neutron diffusion system.

4.2. Multi-Energy Groups of Neutrons Cylindrical Reactor

The cylindrical reactor is considered by solving multi-energy groups of neutrons time-independent
neutron diffusion as follow:

r∅′′1 (r) +∅′1(r) + r(C1,1∅1(r) + C1,2∅2(r) + C1,3∅3(r) + · · ·+ C1,n∅n(r)) = 0,
r∅′′2 (r) +∅′2(r) + r(C2,1∅1(r) + C2,2∅2(r) + C2,3∅3(r) + · · ·+ C2,n∅n(r)) = 0,
r∅′′3 (r) +∅′3(r) + r(C3,1∅1(r) + C3,2∅2(r) + C3,3∅3(r) + · · ·+ C3,n∅n(r)) = 0,

...
r∅′′n (r) +∅′n(r) + r(Cn,1∅1(r) + Cn,2∅2(r) + Cn,3∅3(r) + · · ·+ Cn,n∅n(r)) = 0.

(25)

Using the same methodology of RPSM which used in treating the spherical reactor in the last
subsection we reach to:

Resk
i (r) = r

d2∅k
i (r)

dr2 +
d∅k

i (r)

dr
+ r

n∑
j=1

Ci j∅k
j(r), i = 1, 2, . . . , n. (26)

Substitute Equation (15) into Equation (26), we have:

Resk
i (r) =

k∑
m=2

m(m− 1)aimrm−1 +
k∑

m=2

maimrm−1 +
n∑

j=1

Ci j

h jr +
k∑

m=2

a jmrm+1

, i = 1, 2, . . . , n (27)

To obtain the second approximate solutions, we place k = 2 in Equation (27), differentiate both
sides of the equation with respect to r and substitute r = 0 in the resulting equation, we conclude

d
dr

Res2
i (r) = 2ai2 + 4ai2 +

n∑
j=1

Ci jh j +

 n∑
j=1

3Ci ja j2

r2, i = 1, 2, . . . , n. (28)
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The algebraic equations, d
dr Res2

i (0) = 0, i = 1, 2, . . . , n, give the following values for ai2:

ai2 =
−1

2 ∗ 2

n∑
j=1

Ci jh j, i = 1, 2, . . . , n. (29)

Thus, the second truncated series solutions (the second approximate solutions) for Equation (25)
can be written as

∅2
i (r) = hi −

1
2 ∗ 2

 n∑
j=1

Ci jh j

r2, i = 1, 2, . . . , n

Similarly, to find the third approximate solution, put k = 3 in Equation (27) and solve the algebraic
equations, d2

dr2 Res2
i (0) = 0, i = 1, 2, . . . , n, that give us ai3 = 0, i = 1, 2, . . . , n.

Repeat same procedure for k = 4, k = 5 and k = 6, the values of ai4, ai5 and ai6 will become
available as follows:

ai4 = 1
2∗2∗4∗4

n∑
l=1

Cil
n∑

j=1
Cl jh j, i = 1, 2, . . . , n,

ai5 = 0, i = 1, 2, . . . , n,

ai6 = −1
2∗2∗4∗4∗6∗6

n∑
r=1

Cir
n∑

l=1
Crl

n∑
j=1

Cl jh j, i = 1, 2, . . . , n.

(30)

Using of the recurrence relation: Ti,0 = hi, and Ti,m =
∑n

j=1 Ci jT j,(m−2), m = 2, 4, 6, . . ., will help us
write the series coefficients obtained as follows:

ai0 = Ti,0
ai2 = −1

2∗2 Ti,2
ai4 = 1

2∗2∗4∗4 Ti,4, i = 1, 2, . . . , n,
ai6 = −1

2∗2∗4∗4∗6∗6 Ti,6, i = 1, 2, . . . , n.

(31)

Thus, the solution of the cylindrical reactor system (25) with the conditions (3) can be expressed in
the following form:

∅i(r) =
∞∑

k=0

(−1)k 1

4k(k!)2 Ti,2kr2k, i = 1, 2, . . . , n. (32)

In a special case, if Ti,2k = 1, then
∅i(r) = J0(r) (33)

where J0(r) is a Bessel’s function of the first kind.
It is noted that the solution given in of Equation (33), is the same as the solution of one energy

group of a neutron diffusion system.

4.3. Multi-Energy Groups Slab Reactor

The final example is the slab reactor, the multi-energy groups of time-independent neutron
diffusion system of a slab reactor can be expressed as:

∅′′1 (r) + (C1,1∅1(r) + C1,2∅2(r) + C1,3∅3(r) + · · ·+ C1,n∅n(r)) = 0,
∅′′2 (r) + (C2,1∅1(r) + C2,2∅2(r) + C2,3∅3(r) + · · ·+ C2,n∅n(r)) = 0,
∅′′3 (r) + (C3,1∅1(r) + C3,2∅2(r) + C3,3∅3(r) + · · ·+ C3,n∅n(r)) = 0,

...
∅′′n (r) + (Cn,1∅1(r) + Cn,2∅2(r) + Cn,3∅3(r) + · · ·+ Cn,n∅n(r)) = 0.

(34)
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According to Equation (11), the kth-residual function of the Equation (34) will be as follows:

Resk
i (r) =

d2∅k
i (r)

dr2 +
n∑

j=1

Ci j∅k
j(r), i = 1, 2, . . . , n. (35)

Substitute Equation (15) into Equation (35), we have:

Resk
i (r) =

k∑
m=2

m(m− 1)aimrm−1 +
n∑

j=1

Ci j

h jr +
k∑

m=2

a jmrm+1

, i = 1, 2, . . . , n. (36)

For, k = 2, differentiate both sides of Equation (36) with respect to r and substitute r = 0, to obtain

d
dr

Res2
i (r) = 2ai2 +

n∑
j=1

Ci jh j +

 n∑
j=1

3Ci ja j2

r2, i = 1, 2, . . . , n. (37)

The solution of the algebraic equations, d
dr Res2

i (0) = 0, i = 1, 2, . . . , n gives the following values
for ai2:

ai2 =
−1
2

n∑
j=1

Ci jh j, i = 1, 2, . . . , n (38)

Thus, the second truncated series solutions for Equation (35) can be written as

∅2
i (r) = hi −

1
2

 n∑
j=1

Ci jh j

r2, i = 1, 2, . . . , n.

Like previous cases, the third approximate solution of the system in Equation (38) is the same as
the second approximate solution since the fourth coefficient of the series (15), ai3, is zero.

Repeat same procedure for k = 4, k = 5, and k = 6, values of ai4, ai5, and ai6 are given in the
following formulas:

ai4 = 1
2∗3∗4

n∑
l=1

Cil
n∑

j=1
Cl jh j, i = 1, 2, . . . , n,

ai5 = 0, i = 1, 2, . . . , n,

ai6 = −1
2∗3∗4∗5∗6

n∑
r=1

Cir
n∑

l=1
Crk

n∑
j=1

Ckjh j, i = 1, 2, . . . , n.

(39)

Again, by the recurrence relation: Ti,0 = hi, and Ti,m =
∑n

j=1 Ci jT j,(m−2), m = 2, 4, 6, . . ., we can
arrange the coefficients of the series as follows:

ai0 = Ti,0
ai2 = −1

2 Ti,2
ai4 = 1

4! Ti,4, i = 1, 2, . . . , n,
ai6 = −1

6! Ti,6, i = 1, 2, . . . , n.

(40)

Therefore, the solution of the slab reactor system (34) with the conditions (3) can be expressed in
the following form:

∅i(r) =
∞∑

k=0

(−1)k 1
(2k)!

Ti,2kr2k, i = 1, 2, . . . , n. (41)

In a special case, if Ti,2k = 1, then ∅i(r) = cos r which coincides with one energy group of a
neutron diffusion system as well.
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5. Practical Numerical Results

Generating numerical results requires specifying boundary conditions. The flux is assumed to
vanish at the surface of the reactor according zero flux boundary condition. Indeed, extrapolated
boundary condition (EBC) assumes the flux vanishes at small distance beyond the surface. Couple
boundary conditions are considered in such a way diffusion flux vanishes at the critical dimension.
As in the same procedure that used in previous works like [20,21], one of the fluxes is normalized (to
one) at the core of the reactor, and the other fluxes will be calculated depending on Equation (5) as
ratios of the normalized flux, for two energy groups of neutrons the ratio between thermal and fast
fluxes is given in the data source [2] which convenient with Equation (5) calculations.

Following numerical examples results are compare with the classical solutions, some of them are
also compared with transport theory data in case transport theory data is available.

It should be mentioned that, as any series solution, increasing the order of approximation increases
the accuracy of the solution. Therefore, to obtain accurate numerical solutions, all numerical values and
graphs are calculated for the 10th approximation of the power series solution obtained in Equations
(23), (32), and (41) and it is compared with the 10th approximation of the series solution obtained by
the classical method.

5.1. Two Energy Groups of Neutrons Numerical Example

The two energy groups of a neutron diffusion equations system is discussed in this section at three
cases; spherical reactor, infinite cylindrical reactor and slab reactor such diffusion system satisfies the
following form:

∇
2∅1(r) + C1,1∅1(r) + C1,2∅2(r) = 0,
∇

2∅2(r) + C2,1∅1(r) + C2,2∅2(r) = 0,
(42)

subject to the initial conditions
∅i) = I, ∅′i (0) = 0, i = 1, 2. (43)

Equation (42) consider only couple speeds of neutrons: fast and thermal, this simplification is
previous considered at existing transport data [2].

So, the fast and thermal fluxes for spherical reactor according to RPSM formula are given by

∅i(r) =
∞∑

k=0

(−1)k 1
(2k + 1)!

Ti,2kr2k, i = 1, 2, (44)

and the fluxes of the cylindrical reactor are given by

∅i(r) =
∞∑

k=0

(−1)k 1

4k(k!)2 Ti,2kr2k, i = 1, 2, (45)

whereas for slab reactor is

∅i(r) =
∞∑

k=0

(−1)k 1
(2k)!

Ti,2kr2k, i = 1, 2, (46)

The derived analytical formalism is computationally determined not only to verify the theory but
also to compare numerical results with a classical solution [22–25]. For this purpose, the Mathematics 9
software package is implemented to generate numerical solutions. The solution is obtained numerically
for cross sections related to interactions of fast and thermal neutron diffusing in 93% enriched Uranium
for geometries slab, sphere and cylinder geometries. Table 1 obtained from [2] is correspondingly used.
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Table 1. Two Group Data.

Fast Energy Group∑
f 1 = 0.0010484 cm−1 ∑

γ1 = 0.0010046 cm−1 ∑
S11 = 0.62568 cm−1∑

S12 = 0.029227 cm−1 ν1 = 2.5 χ1 = 1.0

Thermal Energy Group∑
f 2 = 0.050632 cm−1 ∑

γ2 = 0.025788 cm−1 ∑
S22 = 2.44383 cm−1∑

S21 = 0.0000 cm−1 ν2 = 2.5 χ2 = 0.0

According this data, values of Ci j, i, j = 1, 2 are determined as shown in Table 2.

Table 2. The values of the coefficients Ci j, i, j = 1, 2 are calculated from Equation (3).

C11 = −0.0564834 C12 = 0.249474 C21 = 0.220978 C22 = −0.577793

Following subsections show numerical results for each reactor geometry.

5.1.1. Spherical Reactor

The spherical reactor is studied by finding its critical radius of a 93% enriched Uranium and
distribution of both fast and thermal fluxes as well as their sum, the total flux.

To calculate the spherical reactor critical radius ac, Equation (44) is used, at ZF and EBC boundary
conditions, respectively. The generated data are listed in Table 3, other numerical data that generated
by classical methods and transport theory is illustrated for comparison.

Table 3. The critical radius ac of a 93 % enriched Uranium spherical reactor.

BC Classical Method RPSM Transport Theory

ZF 17.120 17.120 -
EBC 16.251 16.251 16.049836

This reactor critical radius (using RPSM) reproduced that of classical Method and it is in good
approximation with it and with our benchmark (Transport Theory).

The fluxes distribution in the spherical reactor is reported in Table 4 and plotted in Figure 1.
Table 4 provides the normalized thermal, fast and total flux values across the system for different
values of r/ac.

Table 4. The normalized thermal, fast and total fluxes in a spherical geometry.

Flux Method r/ac 0.0 0.25 0.50 0.75 1.0

Fast Classical 2.7671 2.5238 1.7802 1.0063 0.1835
RPSM 2.7671 2.5238 1.7802 1.0063 0.1835

Thermal Classical 1.0000 0.9121 0.6759 0.3637 0.0663
RPSM 1.0000 0.9121 0.6759 0.3637 0.0663

Total Classical 3.7671 3.4359 2.5460 1.3699 0.2498
RPSM 3.7671 3.4359 2.5460 1.3699 0.2498
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Figure 1. Two energy groups fluxes for a sphere made of 93% enriched U. Dotted line: Thermal flux,
Dashed line: Fast flux, Solid line: Total fluxes.

Table 4 and Figure 1 gives the values of the sub fluxes and their total, it is obvious that all fluxes
converge at the same point.

The RPSM values are compatible with those obtained from classical calculations [22–25] and
transport data for critical radius [2].

The sufficient of RPSM solution for two energy groups of neutrons system is evident, the method
can definitely reproduce canonical results for such geometry.

5.1.2. Infinite Cylindrical Reactor

RPSM is used in this section to calculate the reactor critical radius ac of 93% enriched Uranium
cylindrical reactor, Equation (45) is implemented with ZF and EBC boundary conditions, the results
are listed in Table 5.

Table 5. The cylindrical reactor critical radius for two boundary conditions

BC Classical Method RPSM

ZF 13.105 13.105
EBC 12.236 12.236

The flux distribution of such cylindrical reactor is reported in Table 5 at which fluxes values across
the system for different values of r/ac are listed. The RPSM values are compared with classical diffusion
calculations [22–25]. Transport results for both nuclear reactor critical radius and fluxes distribution
are unfortunately not available to compare with. Figure 2 illustrates graphically the fluxes distribution
in this fissile system, while the numerical values of them is tabulated in Table 6, the maximum value
of the flux is at the axis of the cylinder (r = 0), it decreases towards the surface as implied by the
symmetry of the system.
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Table 6. The normalized thermal, fast, and total fluxes values across a cylindrical geometry.

Flux Method r/ac 0.0 0.25 0.50 0.75 1.0

Fast Classical 2.7671 2.5534 1.9615 1.1268 0.2360
RPSM 2.7671 2.5534 1.9615 1.1268 0.2360

Thermal Classical 1.0000 0.9228 0.7089 0.4072 0.0853
RPSM 1.0000 0.9228 0.7089 0.4072 0.0853

Total Classical 3.7671 3.4761 2.6704 1.5340 0.3213
RPSM 3.7671 3.4761 2.6704 1.5340 0.3213

Applying RPSM is also sufficient for two energy groups of a neutron diffusion system at cylindrical
symmetry as shown in Figure 2 and Table 6.

5.1.3. Slab Reactor

The last two energy groups of neutrons computational analysis in this study is an infinite slab
geometry. To calculate the nuclear reactor critical dimension ac of a 93% enriched Uranium slab,
Equation (46) computationally implemented at ZF and EBC boundary conditions, the exact nuclear
reactor critical dimension results of both RPSM and Classical Method compared with transport theory
data is illustrated in Table 7.

Table 7. The slab reactor critical radius for two boundary conditions.

BC Classical Method RPSM Transport Theory

ZF 8.560 8.560 −

EBC 7.874 7.874 7.567

The fluxes distribution in the slab reactor is reported in Table 8 at which fluxes values across the
system for different values of r/ac are listed, the transport theory fluxes data is available to compare
with, the good agreement with it can be considered as one step forward.
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Table 8. The normalized thermal, fast and total fluxes values across a slab geometry.

Flux Method r/ac 0.0 0.2414 0.5029 0.74430 1.0

Fast Transport 2.6147 2.4666 1.9923 1.3178 0.3859
Classical 2.7671 2.6130 2.1192 1.4158 0.5014

RPSM 2.7671 2.6130 2.1192 1.4158 0.5014
Thermal Transport 1.0000 0.8893 0.7140 0.4546 0.0555

Classical 1.0000 0.9443 0.7659 0.5117 0.1812
RPSM 1.0000 0.9443 0.7659 0.5117 0.1812

Total Transport 3.6147 3.3559 2.7063 1.7724 0.4414
Classical 3.7671 3.5574 2.8851 1.9275 0.6826

RPSM 3.7671 3.5574 2.8851 1.9275 0.6826

Figure 3 illustrates the flux distribution of a slab fissile material, the RPSM values are compared to
those obtained from classical diffusion calculations as well as from transport theory.
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5.2. Multi-Energy Groups of Neutrons Numerical Example

Four energy groups of a neutron diffusion equations case is discussed as one step forward, it is
represented by the following system:

∇
2∅1(r) + C1,1∅1(r) + C1,2∅2(r) + C1,3∅3(r) + C1,4∅4(r) = 0,
∇

2∅2(r) + C2,1∅1(r) + C2,2∅2(r) + C2,3∅3(r) + C2,4∅4(r) = 0,
∇

2∅3(r) + C3,1∅1(r) + C3,2∅2(r) + C3,3∅3(r) + C3,4∅4(r) = 0,
∇

2∅4(r) + C4,1∅1(r) + C4,2∅2(r) + C4,3∅3(r) + C4,4∅4(r) = 0,

(47)

subject to the initial conditions:

∅i(0) = hi, ∅′i (0) = 0, i = 1, 2, 3, 4. (48)

The spherical reactor, infinite cylindrical reactor and slab reactor are considered respectively, in
addition to assuming four different speeds of neutrons.
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So, the solution of spherical reactor for four energy groups of neutrons according to RPSM formula
are given by

∅i(r) =
∞∑

k=0

(−1)k 1
(2k + 1)!

Ti,2kr2k, i = 1, 2, 3, 4, (49)

and the fluxes of the cylindrical reactor are given by

∅i(r) =
∞∑

k=0

(−1)k 1

4k(k!)2 Ti,2kr2k, i = 1, 2, 3, 4, (50)

where that for slab reactor is

∅i(r) =
∞∑

k=0

(−1)k 1
(2k)!

Ti,2kr2k, i = 1, 2, 3, 4. (51)

The derived analytical formalism is computationally determined not only to verify the theory,
but also to compare numerical results classical solution [22–25], Mathematics 9 software package is
implemented to generate numerical solutions. The solution is obtained numerically for cross sections
related to interactions of four energy groups of neutrons for slab, sphere and cylinder geometries.
The following data, Table 9, obtained from [25], is used correspondingly.

Table 9. Group data.

Group 1 (1.35 Mev – 10 Mev)

ν1
∑

f1 = 0.0096 cm−1 ∑
a = 0.0049 cm−1 ∑

S12 = 0.0831 cm−1∑
S13 = 0.00

∑
S14 = 0.00 D1 = 2.162 cm

χ1 = 0.575

Group 2 (9.1 kev - 1.35 Mev)

ν2
∑

f2 = 0.0012 cm−1 ∑
a2 = 0.0028 cm−1 ∑

S21 = 0.00 cm−1∑
S23 = 0.0.0585 cm−1 ∑

S24 = 0.00 cm−1 D2 = 1.087 cm
χ2 = 0.425

Group 3 (0.4 ev – 9.1 kev)

ν3
∑

f3 = 0.0.0177 cm−1 ∑
a3 = 0.0.0305 cm−1 ∑

S31 = 0.00 cm−1∑
S32 = 0.00cm−1 ∑

S34 = 0.0651 cm−1 D3 = 0.632 cm
χ3 = 0.0

Group 4 (0.0 ev – 0.4 ev)

ν4
∑

f4 = 0.1851 cm−1 ∑
a4 = 0.1210 cm−1 ∑

S41 = 0.00 cm−1∑
S42 = 0.00cm−1 ∑

S43 = 0.00cm−1 D4 = 0.354 cm
χ4 = 0.0

values of Ci j, i, j = 1, 2, 3, 4 are calculated from Equation (3) and are shown in Table 10.

Table 10. The values of the coefficients Ci j, i, j = 1, 2, 3, 4.

C11 = −0.038150 C12 = 0.000319 C13 = 0.004707 C14 = 0.049229
C21 = 0.080202 C22 = −0.055925 C23 = 0.083370 C24 = 0.148820
C31 = 0.092563 C32 = 0.092563 C33 = −0.151266 C34 = 0.092563
C41 = 0.183898 C42 = 0.183898 C43 = 0.183898 C44 = −0.341808

Unfortunately, the transport theory data is not available to compare with for all critical reactors
dimensions nor for their fluxes values.

The following subsections illustrate numerical results for three kinds of reactors geometry.
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5.2.1. Spherical Reactor

The spherical reactor is studied by finding its critical radius of the reactors and distribution of
four fluxes as well as their sum.

The critical radius ac for spherical reactor is calculated at ZF and EBC boundary conditions,
respectively. The generated data are listed in Table 11.

Table 11. The spherical reactor critical radius ac.

BC Classical Method RPSM

ZF 8.770 8.770
EBC 7.905 7.905

The values of the fluxes in the reactor is given in Table 12 and Figure 4. Table 12 provides four
fluxes and their total flux values across the system, it is clear (in both Table 12 and Figure 4) that all
fluxes decreases when the reactor radius increases and vanishes at the critical radius.

Table 12. The four groups fluxes and total flux in spherical reactor geometry.

Flux Method r/ac 0.0 0.25 0.50 0.75 1.0

Group 1 Classical 1.0000 0.918535 0.697804 0.400643 0.107646
RPSM 1.0000 0.918535 0.697804 0.400643 0.107646

Group 2 Classical 4.1716 3.83172 2.91093 1.67131 0.449052
RPSM 4.1716 3.83172 2.91093 1.67131 0.449052

Group 3 Classical 2.7361 2.5132 1.90926 1.0962 0.294531
RPSM 2.7361 2.5132 1.90926 1.0962 0.294531

Group 4 Classical 3.0931 2.84115 2.1584 1.23924 0.332964
RPSM 3.0931 2.84115 2.1584 1.23924 0.332964

Total Classical 11.0008 10.1046 7.67639 4.40739 1.18419
RPSM 11.0008 10.1046 7.67639 4.40739 1.18419
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Figure 4. Four energy groups fluxes and total flux for a spherical reactor. Dotted-dotted dashed line:
∅1(r), Dotted line: ∅2(r), Dotted dashed line: ∅3(r), Dashed line: ∅4(r), Solid line: Total fluxes.

RPSM results (as well as for classical method) for multi-energy groups of neutrons system in
spherical reactor assure and improve the calculations of that of two energy groups of neutrons.
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5.2.2. Infinite Cylindrical Reactor

Now, RPSM is used in this section to calculate the infinite cylindrical reactor critical radius ac,
Equation (50) is implemented with ZF and EBC boundary conditions, the results are listed in Table 13.

Table 13. Cylindrical reactor critical radius for two boundary conditions.

BC Classical Method RPSM

ZF 6.71303 6.71303
EBC 5.84763 5.84763

The critical radius calculations using RPSM is confirmed using classical method calculation (there
is no transport theory data to compare with as in the case of two energy groups).

The flux distribution of such cylindrical reactor is reported in Table 14 at which fluxes values
across the system for different values of r/ac are listed. The RPSM values are compared with classical
diffusion calculations [22–25]. Figure 5 illustrates fluxes distribution in this fissile system, the maximum
value of the flux is at the axis of the cylinder (r = 0), it decreases towards the surface as implied by the
symmetry of the system.

Table 14. The four groups fluxes and total flux in cylindrical reactor geometry.

Flux Method r/ac 0.0 0.25 0.50 0.75 1.0

Group 1 Classical 1.0000 0.9326 0.743977 0.471824 0.169557
RPSM 1.0000 0.9326 0.743977 0.471824 0.169557

Group 2 Classical 4.1716 3.8904 3.10354 1.96824 0.707317
RPSM 4.1716 3.8904 3.10354 1.96824 0.707317

Group 3 Classical 2.7361 2.55169 2.0356 1.29096 0.463925
RPSM 2.7361 2.55169 2.0356 1.29096 0.463925

Group 4 Classical 3.0931 2.88465 2.30122 1.45941 0.524462
RPSM 3.0931 2.88465 2.30122 1.45941 0.524462

Total Classical 11.0008 10.2593 8.18434 5.19044 1.86526
RPSM 11.0008 10.2593 8.18434 5.19044 1.86526  

 
 

 
Figure 5. Four energy groups fluxes and total flux for a cylindrical reactor. Dotted-dotted dashed line: ∅ଵ(𝑟), Dotted line: ∅ଶ(𝑟), Dotted dashed line: ∅ଷ(𝑟), Dashed line: ∅ସ(𝑟), Solid line: Total fluxes. 

5.2.3. Slab Reactor 

Computational analysis of four energy groups of neutrons at an infinite slab geometry is also 
performed. To calculate the critical dimension aୡ in slab reactors, Equation (51) implemented at ZF 
and EBC boundary conditions, the results are listed in Table 15. 

Table 15. The slab reactor critical radius for both boundary conditions. 

BC Classical Method RPSM 
ZF 4.38485 4.38485 

EBC 3.51945 3.51945 
The four energy groups of neutron fluxes values in the slab reactor is reported in Table 16 and 

all fluxes are plotted in Figure 6; this figure illustrates the flux distribution of a slab fissile material.  
The RPSM values are compared to those obtained from classical diffusion calculations.  

Table 16. The four groups fluxes and total flux in slab reactor geometry. 

Flux Method 𝒓/𝒂𝒄 𝟎. 𝟎 𝟎. 𝟐𝟓 𝟎. 𝟓𝟎 𝟎. 𝟕𝟓 𝟏. 𝟎 
Group 1 Classical  1.0000 0.950736 0.807797 0.585267 0.305072 

 RPSM  1.0000 0.950736 0.807797 0.585267 0.305072 
Group 2 Classical  4.1716 0.950736 0.807797 0.585267 0.305072 

 RPSM  4.1716 0.950736 0.807797 0.585267 0.305072 
Group 3 Classical  2.7361 2.60131 2.21021 1.60135 0.834709 

 RPSM  2.7361 2.60131 2.21021 1.60135 0.834709 
Group 4 Classical  3.0931 2.94075 2.49862 1.81031 0.943628 

 RPSM  3.0931 2.94075 2.49862 1.81031 0.943628 
Total  Classical  11.0008 10.4588 8.88641 6.4384 3.35604 
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Figure 5. Four energy groups fluxes and total flux for a cylindrical reactor. Dotted-dotted dashed line:
∅1(r), Dotted line: ∅2(r), Dotted dashed line: ∅3(r), Dashed line: ∅4(r), Solid line: Total fluxes.



Mathematics 2019, 7, 633 17 of 20

5.2.3. Slab Reactor

Computational analysis of four energy groups of neutrons at an infinite slab geometry is also
performed. To calculate the critical dimension ac in slab reactors, Equation (51) implemented at ZF and
EBC boundary conditions, the results are listed in Table 15.

Table 15. The slab reactor critical radius for both boundary conditions.

BC Classical Method RPSM

ZF 4.38485 4.38485
EBC 3.51945 3.51945

The four energy groups of neutron fluxes values in the slab reactor is reported in Table 16 and all
fluxes are plotted in Figure 6; this figure illustrates the flux distribution of a slab fissile material. The
RPSM values are compared to those obtained from classical diffusion calculations.

Table 16. The four groups fluxes and total flux in slab reactor geometry.

Flux Method r/ac 0.0 0.25 0.50 0.75 1.0

Group 1 Classical 1.0000 0.950736 0.807797 0.585267 0.305072
RPSM 1.0000 0.950736 0.807797 0.585267 0.305072

Group 2 Classical 4.1716 0.950736 0.807797 0.585267 0.305072
RPSM 4.1716 0.950736 0.807797 0.585267 0.305072

Group 3 Classical 2.7361 2.60131 2.21021 1.60135 0.834709
RPSM 2.7361 2.60131 2.21021 1.60135 0.834709

Group 4 Classical 3.0931 2.94075 2.49862 1.81031 0.943628
RPSM 3.0931 2.94075 2.49862 1.81031 0.943628

Total Classical 11.0008 10.4588 8.88641 6.4384 3.35604
RPSM 11.0008 10.4588 8.88641 6.4384 3.35604  

 
 

 
Figure 6. Four energy groups fluxes and total flux for a slab reactor. Dotted-dotted dashed line: ∅ଵ(𝑟), 
Dotted line: ∅ଶ(𝑟), Dotted dashed line: ∅ଷ(𝑟), Dashed line: ∅ସ(𝑟), Solid line: Total fluxes. 

6. Error Analysis 

Since the transport theory data for four energy groups of neutrons is not available for 
comparison, we compared the results obtained in RPSM with the results obtained in the classical 
method only. In fact, both RPSM and classical methods provide us with series solutions. It is noted 
that the general terms in both series are different, but both solutions give us the same numerical 
results at the same order of approximation. Therefore, we will make another comparison between 
the results obtained by RPSM and classical method by calculating the residual errors (Tables 17 and 
18). For the sake of brevity, we will limit the comparison to one case, the spherical reactor for the four 
energy groups of neutron diffusion. 

The residual errors for the system in Equation (47) is defined as follows: 𝑅𝑒𝑠௜(𝑟) = ቚ𝑟∅௜ᇱᇱ(𝑟) + 2∅௜ᇱ(𝑟) + 𝑟 ቀ𝐶𝑖,1∅ଵ(𝑟) + 𝐶𝑖,2∅ଶ(𝑟) + 𝐶𝑖,3∅ଷ(𝑟) + 𝐶𝑖,4∅ସ(𝑟)ቁቚ , 𝑖= 1,2,3,4, (52) 

and the 𝑘th-residual error is defined as: 

𝑅𝑒𝑠௜௞(𝑟) = อ𝑟 𝑑2𝑑𝑟2 ∅௜௞ + 2 𝑑𝑑𝑟 ∅௜௞(𝑟)
+ 𝑟 ቀ𝐶௜,ଵ∅ଵ௞(𝑟) + 𝐶௜,ଶ∅ଶ௞(𝑟) + 𝐶௜,ଷ∅ଷ௞(𝑟) + 𝐶௜,ସ∅ସ௞(𝑟)ቁอ , 𝑖 = 1,2,3,4, (53) 

where ∅௜௞ is the 𝑘th-approximation of ∅௜, 𝑖 = 1,2,3,4. 

Table 17. The value of the 10th-residual error ( 𝑅𝑒𝑠௜ଵ଴, 𝑖 = 1,2,3,4) for the results obtained by classical 
method. 𝑟 
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Figure 6. Four energy groups fluxes and total flux for a slab reactor. Dotted-dotted dashed line: ∅1(r),
Dotted line: ∅2(r), Dotted dashed line: ∅3(r), Dashed line: ∅4(r), Solid line: Total fluxes.

6. Error Analysis

Since the transport theory data for four energy groups of neutrons is not available for comparison,
we compared the results obtained in RPSM with the results obtained in the classical method only.
In fact, both RPSM and classical methods provide us with series solutions. It is noted that the general
terms in both series are different, but both solutions give us the same numerical results at the same
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order of approximation. Therefore, we will make another comparison between the results obtained
by RPSM and classical method by calculating the residual errors (Tables 17 and 18). For the sake of
brevity, we will limit the comparison to one case, the spherical reactor for the four energy groups of
neutron diffusion.

Table 17. The value of the 10th-residual error (Res10
i , i = 1, 2, 3, 4) for the results obtained by

classical method.

r Res1(r) Res2(r) Res3(r) Res4(r)

0.0 0 0 0 0
0.5 0 1.11022× 10−16 8.32667× 10−17 1.11022× 10−16

1.0 2.77556× 10−17 2.22045× 10−16 2.22045× 10−16 2.22045× 10−16

5.0 1.60982× 10−15 6.21725× 10−15 4.88498× 10−15 5.55112× 10−15

10. 3.042870× 10−9 1.26935× 10−8 8.32559× 10−9 9.41198× 10−9

20. 6.381350× 10−3 2.66202× 10−2 1.746× 10−2 1.97384× 10−2

Table 18. The value of the 10th-residual error (Res10
i , i = 1, 2, 3, 4) for the results obtained by RPSM.

r Res1(r) Res2(r) Res3(r) Res4(r)

0.0 0 0 0 0
0.5 0 0 2.77556× 10−17 5.55112× 10−17

1.0 0 1.11022× 10−16 0 1.11022× 10−16

5.0 1.554310× 10−15 5.9952× 10−15 4.21885× 10−15 3.77476× 10−15

10. 3.042866× 10−9 1.26935× 10−8 8.32559× 10−9 9.41198× 10−9

20. 6.381350× 10−3 2.66202× 10−2 1.746× 10−2 1.97384× 10−2

The residual errors for the system in Equation (47) is defined as follows:

Resi(r) =
∣∣∣r∅′′i (r) + 2∅′i (r) + r(Ci,1∅1(r) + Ci,2∅2(r) + Ci,3∅3(r) + Ci,4∅4(r))

∣∣∣, i = 1, 2, 3, 4, (52)

and the kth-residual error is defined as:

Resk
i (r) =

∣∣∣∣∣∣r d2

dr2∅
k
i + 2

d
dr
∅k

i (r) + r
(
Ci,1∅k

1(r) + Ci,2∅k
2(r) + Ci,3∅k

3(r) + Ci,4∅k
4(r)

)∣∣∣∣∣∣, i = 1, 2, 3, 4, (53)

where ∅k
i is the kth-approximation of ∅i, i = 1, 2, 3, 4.

7. Conclusions

RPSM is applied in solving multi-energy groups of a neutron diffusion equation for different reactor
geometries. This method successfully analyzes both two and four energy groups of neutron diffusion
systems numerically. The flux distributions of multi-energy groups of a neutron diffusion system are
presented and the determination of each nuclear reactor critical radius is illustrated. The calculated data
is compatible with other compared methods such as the classical method and the available transport
theory data. The efficiency of RPSM appears in introducing it as a new approximate method which
can reproduce nuclear reactor fluxes directly, without using additional methods, the numerical results
can be reached easily too. Moreover, RPSM, like other analytical methods, provided a series solution
for multiple energy groups of neutron diffusion equations and gave us the same results obtained in
classical and homotopy perturbation methods at the same order of approximation because we deal
with linear equations. Despite all this, the advantage of this method is the ease, and speed of the
solution in RPSM. We expect that the RPSM application on nonlinear equation models will prove to be
more accurate than other analytical methods.
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