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Abstract: Boiler efficiency is called to some extent of total thermal energy which can be recovered
from the fuel. Boiler efficiency losses are due to four major factors: Dry gas flux, the latent heat of
steam in the flue gas, the combustion loss or the loss of unburned fuel, and radiation and convection
losses. In this research, the thermal behavior of boilers in gas refinery facilities is studied and their
efficiency and their losses are calculated. The main part of this research is comprised of analyzing
the effect of various parameters on efficiency such as excess air, fuel moisture, air humidity, fuel and
air temperature, the temperature of combustion gases, and thermal value of the fuel. Based on the
obtained results, it is possible to analyze and make recommendations for optimizing boilers in the
gas refinery complex using response-surface method (RSM).
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1. Introduction

Steam boilers are designed to supply steam for heat transfer purposes due to considerable latent
heat value [1,2]. Steam is the main feed of several industries in case of direct or indirect utilization
since the heat transfer coefficient of steam is two times more than water. Therefore, it can be utilized
effectively in power production plants in order to generate electricity [3,4]. Thus, the boiler considered
as the most significant component in power plants, refineries, and so forth [5,6]. The working conditions
of a boiler should be always monitored. It must be highlighted that boilers are working under high
temperature and pressurized status, hence explosion is a serious risk, which is threatening in boiler
operations [7,8]. In the design procedure of the boilers, several aspects, including financial, fuel cost,
and maintenance factors should be covered and noticed. The complexity of the steam boiler makes it
challenging to perform common measurements since several factors affect the performance of the boiler.
Traditional evaluation methods of boiler performance are neither cost-effective nor time-saving [9,10].
Besides, to carry out a comprehensive, accurate analysis, the fuel composition should be analyzed
before and after the combustion process in detail [11,12].

The earlier studies on heat transfer and boiling were carried out by researchers such as Gongur
and Winterton [13] and Kandlikar [14]. The researchers collected a large amount of laboratory data by
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conducting several experiments. They achieved to present some correlations that could be employed to
estimate the boiling behavior with little error. In the current time, computational fluid dynamic (CFD)
methods have been used extensively to investigate the boiling regime and its associated involved
mechanisms. Judd and Hwang [15] proposed a model for the prediction of boiling heat, which
includes evaporation and natural heat transfer mechanisms. They found that the evaporation heat
transfer is a significant proportion of the total heat transfer. The application of various CFD models
for forced boiling simulation were studied by several researchers [16–20]. Various two-phase models
with different simulation approaches employed. In these studies, the conservation equations for
mass, momentum, and energy for each dissolved phase have been used. Additionally, a series of
empirical auxiliary relationships were utilized in the simulation procedure. Krepper et al. [21] provided
a model for the evaluation of the boiling mechanism. They investigated boiling in critical thermal
flux conditions. In their research, essential parameters such as rotation, cross-flow between adjacent
channels and bubble concentration regions were determined. By calculating the temperature of the bar
surface, critical areas were identified, and different geometries were evaluated through CFD modeling.
Rivera and Xicale [22] performed experimental evaluation and analytical assessment on an upstream
flow of water–lithium bromide in a uniform vertical heated tube and provided valuable laboratory
data for the saturated nucleate boiling heat transfer coefficients. Owhaib et al. [23] experimentally and
analytically investigated a flow of R-134a fluid in a quartz vertical circular tube which was uniformly
heated by a heater. Their primary purpose was to simulate the saturated and subcooled boiling of
the rising refrigerant in the vertical pipe through the pressurized steam that was flowed out of the
pipe. Stevanovic et al. [24] provided a single-dimensional multifluid model to predict two-phase
flow patterns in vertical pipes. The presented model was based on the conservation of mass, energy,
and momentum and was applicable to any fluid flow that has two-phase flow patterns. Yang et al. [25]
presented numerical simulations and practical experiments for modeling the behavior of the R-141b
refrigerant in a horizontal coil based on the fluid volume method and considering the multiphase flow
model. There was a good agreement between the numerical predictions of phase change with their
laboratory data. Kouhikamali [26] developed a numerical simulation for condensation in a vertical
cylinder under the forced convection regime. Condensation simulations were carried out using fluid
volume model and the effects of parameters such as hydraulic diameter, fluid velocity, Reynolds
number, wall temperature difference, and fluid saturation temperature on heat transfer coefficient were
investigated. Ozawa et al. [27] examined a range of thermal behaviors, including boiling patterns, heat
transfer, pressure drop, and critical thermal flux during high-pressure carbon dioxide boiling for a
horizontal microwave channel. The studied variables were tube diameter changes, mass flux, wall
thermal flux, and saturation temperature and pressure of the fluid. Saisorn et al. [28] examined the
R-134a refrigerant evaporation flow through horizontal and vertical mini channels in order to obtain
heat transfer data and also simulation and determination of fluid flow patterns. Dimensions of the
fixed tube were considered to be constant, and the parameters of the thermal flux, mass flux, and the
saturation pressure of the inlet fluid were analyzed to determine the flow of fluid in two horizontal
and upward flow conditions. Shen et al. [29] studied a downward fluid flow in a vertical tube for
a wide range of parameters such as pressure, mass flux, and thermal flux. Water considered as the
working fluid, and the thermal distribution diagram was plotted near the tube wall. In the following
study, the effect of the thermal flux of the wall on the heat transfer coefficient and wall temperature
were investigated, new experimental correlations were presented, and the heat transfer coefficient was
compared in a downstream current with a rising flow.

Chen et al. [30] investigated the engineering applications of constructal theory in China. Xie et al. [31]
applied constructal theory to optimize heat transfer performance and pressure drop of an evaporator boiler.
Behbahaninia et al. [32] presented a novel auditing approach to monitor the performance of steam boilers
based on exergy approach. This method was proposed based on ASME PTC (Performance Test Code
Standards) 4.1 to calculate the exergy loss and exergy efficiency. Some significant factors included exergy
destruction inside the boiler, exergy loss in the wall of the boiler, exergy destruction in the gas–air heater,
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exergy loss in the flue gas. It concluded that the major irreversibility of the boiler is due to inside exergy
destruction, i.e., more than 38%. In addition, the total exergy efficiency of the boiler was calculated by
53.7%. Li et al. [33] investigated the performance of a boiler in a biomass energy production plant and used
the exergy method. It was reported that the most irreversibilities originated from the combustion process.
It was found that the total exergy efficiency of the boiler could be increased by decreasing the excess air
and by augmenting the superheater temperature. Li, et al. [34] compared various scenarios in order to
prevent the inefficient working of a boiler in a 660 MW coal power plant. The authors recommended
that the approach of closing part of the 2nd air nozzle was the most beneficial approach among other
studied methods. In another study, Li et al. [35] analyzed the effect of increasing primary air ratio on
the performance of a boiler in a coal-fired power plant. It was monitored that increasing the primary
air temperature was more practical and also improved the thermal performance of the boiler instead
of increasing the air ratio. Javan et al. [36] performed an exergoeconomic optimization of a gas-fired
steam power plant by applying a genetic algorithm. Based on the results, the boiler was the most
exergy-destructive source in the power plant. Therefore, two approaches are presented and compared to
decrease the amount of exergy destruction in the boiler in order to improve the total efficiency of the power
plant: Reducing the amount of excess air and decreasing the outlet temperature of the boiler’s exhaust gas
through heat recovery approaches. It was stated that this optimization technique was able to lower the
total cost rate by 20% and decreased the dangerous environmental impact by 88%. Pattanayak et al. [37]
optimized the soot blowing frequency of a boiler in a coal-fired power plant in order to lower the hazardous
combustion emission and increase the boiler’s efficiency. Sobota [38] proposed an on-line monitoring
method to improve the efficiency of a steam boiler. Nikula et al. [39] proposed a data-driven model to
estimate and monitor the thermal performance of the boiler in order to achieve a higher efficiency boiler
with a reduction in emission pollutants. Vandani et al. [40] used a genetic algorithm and partial swarm
optimization techniques to improve the exergetic efficiency of boiler blowdown. It was stated that outlet
pressure and outlet temperature of the boiler played a significant role in improving the exergy efficiency.

In this research, the modeling of boiler efficiency was performed based on experimental data and
response-surface method (RSM). Steam flow rate and output temperature were selected as independent
variables. The dependent variable is considered as the boiler efficiency.

2. Modeling Fundamentals

Neural network approaches are magnificently powerful in the modeling of engineering applications [41–
44]. The neural network model is a data-driven model, so it requires experimental data to build the
model [45,46]. In this study, with the help of the neural network modeling, the target output is predicted
through two input data sets. Figure 1 illustrates the upper and lower limit of input and output data.
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The utilized input data in the neural network modeling process is listed in Table 1. Where,
.

m
represents the mass flow rate (kg/s), T is the temperature (◦C), and η states the boiler efficiency.

Table 1. The experimental data used to form the neural network model.

.
m T(◦C) η

.
m T(◦C) η

5.06277 179.8114 68.8229 10.3826 202.5607 68.3157
11.50799 217.4076 68.10162 8.112843 195.3354 66.59289
10.96721 227.7698 66.7485 12.47747 228.7439 66.83186
11.83226 195.8293 69.17249 15.45171 206.8831 69.76082

8.164 211.1887 66.49393 10.33337 222.0078 66.69333
8.230552 195.8363 67.13933 7.35201 199.2193 66.00094
15.4074 189.2565 69.76787 8.328303 202.0249 67.16067

12.80646 218.8824 68.03788 7.689097 220.9679 65.33974
9.523767 215.6007 67.21874 14.14401 229.5426 67.54719
15.35225 192.4996 69.97655 11.38288 205.2453 68.95443
7.509398 208.2864 66.27828 13.44131 226.1227 67.40915
11.39483 199.8923 68.57542 13.74267 216.4291 68.86722
13.96593 182.7876 68.82806 12.49931 207.5064 68.88944
10.24027 179.2494 67.70906 13.05674 228.3764 67.44843
10.84519 203.5396 68.7183 15.47826 220.874 68.30319
12.06786 192.4699 69.16695 13.38398 227.8997 67.56851
15.6384 195.6674 69.49326 15.45541 211.61 69.13087

14.51184 192.9422 69.69088 11.48975 197.7378 69.29713
7.618852 186.887 66.61787 8.318545 202.7819 66.87618
9.65485 198.7617 68.26366 7.606863 225.4183 64.83067

10.63276 214.2778 67.86751 13.88847 178.7724 69.11839
15.35098 188.5912 69.38854 9.938753 186.1481 67.56152
11.02739 212.649 68.18121 13.46965 202.5215 69.66543
9.276587 201.0394 67.34079 13.28742 206.2356 69.53684
12.75497 200.5314 69.42711 12.10742 181.1039 68.71523
11.60532 187.1125 68.66235 13.89687 212.2176 68.83852
15.68032 188.0465 69.69601 11.85233 224.261 67.02746
16.0319 210.0539 69.16832 11.68888 183.7009 68.7909

14.89612 191.9886 69.48701 11.78454 200.7642 69.38998
13.83662 207.1033 69.35699 16.04421 192.572 69.86828
14.1702 227.1288 67.70859 10.72913 229.2328 66.56324

15.69162 215.1525 68.53946 8.083356 209.6555 66.52948
7.57872 213.3194 65.88433 9.281896 191.195 67.60546

10.21025 227.8878 65.96942 13.60328 184.896 68.9027
6.986591 218.3174 65.18013 15.10385 206.3403 69.70184
14.99537 209.6018 69.78638 16.37641 221.0458 68.45829
11.87784 227.2961 66.81758 9.036371 221.5243 66.38769
10.50436 181.1014 67.63481 14.33667 221.3341 68.1886
9.147886 191.973 67.25517 12.62322 188.5932 69.35013
12.1442 229.3074 67.04037 10.86203 206.3097 68.49007

9.758881 218.1548 67.08144 11.90317 223.497 67.82707
7.609162 202.7184 66.5345 11.76321 184.292 68.53394
7.770549 213.4068 65.85192 13.27719 222.5302 67.67154
7.608856 199.6806 66.64859 14.17492 224.7884 67.86074
10.92877 197.7678 68.71765 9.880103 189.329 67.77672
8.143986 189.0901 66.894 7.815672 182.0029 66.12302
11.25155 197.9128 69.15146 14.97466 202.6592 69.45441
15.68414 179.5427 68.899
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Input and output data in an artificial neural network are divided into three categories of training,
validating, and testing, as demonstrated in Figure 2. Training data is used to create a model.
The validation data is used to check the quality and correctness of the training stage. Test data is not
used in the training phase and is used only for performance evaluation and examining the neural
network modeling.
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The neural network is expressed on the basis of a particular topology. The topology introduces
the structure of the network. In this investigation, a triple layer neural network, Figure 3, is used
to predict the output variable, the boiler efficiency. A sample 2-5-1 structure is depicted in Figure 4.
As can be seen, the number of neurons in the first, second, and third layers is 2, 5, and 1, respectively.
The number of neurons in the second layer, known as the hidden layer, is arbitrary. In this research,
five neurons were determined to be placed in the hidden layer. The selection of the neurons’ number
in the first and third layers is not arbitrary and is selected based on the number of input data to the
model. According to Figure 4, the neurons in each layer are connected by the edges to the neurons in
the adjacent layer. These edges determine the relationship between the input and output variables by
the weight coefficients assigned to them. This mathematical relation is discussed in the following.

Mathematics 2019, 7, x FOR PEER REVIEW 5 of 17 

 

15.68414 179.5427 68.899    

Input and output data in an artificial neural network are divided into three categories of training, 
validating, and testing, as demonstrated in Figure 2. Training data is used to create a model. The 
validation data is used to check the quality and correctness of the training stage. Test data is not used 
in the training phase and is used only for performance evaluation and examining the neural network 
modeling. 

 

Figure 2. Randomized classification of empirical data in order to construct a neural network model. 

The neural network is expressed on the basis of a particular topology. The topology introduces 
the structure of the network. In this investigation, a triple layer neural network, Figure 3, is used to 
predict the output variable, the boiler efficiency. A sample 2-5-1 structure is depicted in Figure 4. As 
can be seen, the number of neurons in the first, second, and third layers is 2, 5, and 1, respectively. 
The number of neurons in the second layer, known as the hidden layer, is arbitrary. In this research, 
five neurons were determined to be placed in the hidden layer. The selection of the neurons’ number 
in the first and third layers is not arbitrary and is selected based on the number of input data to the 
model. According to Figure 4, the neurons in each layer are connected by the edges to the neurons in 
the adjacent layer. These edges determine the relationship between the input and output variables 
by the weight coefficients assigned to them. This mathematical relation is discussed in the following. 

 
Figure 3. Triple layer neural network structure. 

Number of Inputs (93 data)

Test Data

15%

14 data

Validation Data

15%

14 data

Training Data

 70%

67 data

The structure of the Neural Network

First layer (Input 
layer) 

2 Neurons

Steam temperature 
and flow rate

Second layer 
(Hidden layer)

5 Neurons

Arbitrary selection 
of neuron numbers

Third layer (Output 
layer)

 1 Neuron

Boiler efficiency

Figure 3. Triple layer neural network structure.



Mathematics 2019, 7, 629 6 of 17
Mathematics 2019, 7, x FOR PEER REVIEW 6 of 17 

 

 

Figure 4. Sample schematic structure of a 2-5-1 neural network model: Two neurons in the input layer, 
five neurons in the hidden layer, and a neuron in the output layer. 

The connection between input data and output data is determined by a network of linked nodes, 
as shown in Figure 4. 

Input and output data are correlated with a series of weighted coefficients. There are 10 (2 × 5 = 
10) edges between the first layer and the second layer. There are 5 (5 × 1 = 5) edges between the second 
layer and the third layer. Each edge is assigned a weight. The weights of these edges are presented 
as a 5 × 2 matrix and a 5 × 1 matrix. The relationship between output and input data is expressed as 
follows: 𝜂 = 𝐿𝑊 𝑡𝑎𝑛ℎ     𝐼𝑊 𝑚𝑇 + 𝑏     + 𝑏  (1) 

The employed variables in the Equation (1) are listed and defined in Table 2. 

Table 2. Definition of required variables in modeling using neural network. 

Variable Definition Description 𝜼𝑵𝑵 Output of the neural network 
model 

Boiler efficiency, the final output of the neural network model 𝒎 1st input variable Steam mass flow rate, kg/s 𝑻 2nd input variable Temperature, ℃ 𝑰𝑾 𝟓 𝟐 Edge matrix between 1st and 
2nd layers 

Each of the edges between layer 1 and 2 is assigned a weight 𝑳𝑾 𝟏 𝟓 Edge matrix between 2nd 
and 3rd layers 

Each of the edges between layer 2 and 3 is assigned a weight 𝒃𝟏 𝟓 𝟏 Bias matrix of the 2nd layer 
After multiplying the weight matrix in the input signal, the 

results are summed with the bias. 𝒃𝟐 𝟏 𝟏 Bias matrix of the 3rd layer 
After multiplying the weight matrix in the input signal, the 

results are summed with the bias. 

3. Modeling Results of Boiler Efficiency Using Neural Network 

In this section, the obtained results from the modeling by means of neural network are compared 
with the actual results. The total number of data used in modeling is 95. Of these, 70% are for training, 
15% for validating, and the rest for testing the network. Figure 5 illustrates the graph error of the 

Neural network edges carrying weight 

Boiler Efficiency 

Steam 
Temperature 

Steam flow rate 

Figure 4. Sample schematic structure of a 2-5-1 neural network model: Two neurons in the input layer,
five neurons in the hidden layer, and a neuron in the output layer.

The connection between input data and output data is determined by a network of linked nodes,
as shown in Figure 4.

Input and output data are correlated with a series of weighted coefficients. There are 10 (2 × 5 = 10)
edges between the first layer and the second layer. There are 5 (5 × 1 = 5) edges between the second layer
and the third layer. Each edge is assigned a weight. The weights of these edges are presented as a 5 ×
2 matrix and a 5 × 1 matrix. The relationship between output and input data is expressed as follows:

η = [LW]1×5 × tanh
(
[IW]5×2 ×

[ .
m
T

]
2×1

+ [b1]5×1

)
+ [b2]1×1 (1)

The employed variables in the Equation (1) are listed and defined in Table 2.

Table 2. Definition of required variables in modeling using neural network.

Variable Definition Description

ηNN Output of the neural network model Boiler efficiency, the final output of the neural network model
.

m 1st input variable Steam mass flow rate, kg/s
T 2nd input variable Temperature, ◦C

[IW]5×2 Edge matrix between 1st and 2nd layers Each of the edges between layer 1 and 2 is assigned a weight
[LW]1×5 Edge matrix between 2nd and 3rd layers Each of the edges between layer 2 and 3 is assigned a weight

[b1]5×1 Bias matrix of the 2nd layer After multiplying the weight matrix in the input signal,
the results are summed with the bias.

[b2]1×1 Bias matrix of the 3rd layer After multiplying the weight matrix in the input signal,
the results are summed with the bias.

3. Modeling Results of Boiler Efficiency Using Neural Network

In this section, the obtained results from the modeling by means of neural network are compared
with the actual results. The total number of data used in modeling is 95. Of these, 70% are for
training, 15% for validating, and the rest for testing the network. Figure 5 illustrates the graph error of
the modeling results. The graph error is the difference between the output of the network and the
actual output.
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As it is monitored, the prediction error is approximately 1% in the positive and negative range
with the help of the neural network. In the following figures, the actual data (experimental) and
modeling data are presented separately for each of the three categories, i.e., categories of training,
validating, and testing.

Figures 6–8 demonstrate the error in the modeling data in percent for the three classes of train,
validation, and test, respectively. Based on these figures, the error data for training, validating,
and testing phases are obtained by 0.6, 0.5, and 1, respectively. Test data are not involved in the training
stage. Therefore, test data error is more than training and validation.
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The regression line diagram along with the mean squared error (MSE) and correlation coefficient
for each of the categories of training, validation, and test are shown in Figures 9–11. As it was expected,
the low error rate and high correlation coefficient indicate the proper performance of the neural
network in the prediction of the boiler efficiency. In Figures 9–11, the horizontal axis is real efficiency
and vertical axis demonstrates the modeling efficiency. Ideally, when the model error is zero, all points
are located on the line Y = T (first bisector quadrant line). In reality, there is a small amount of error
that causes the points to be scattered up and down the line. The best-passing equation from the points
in this graph along with the correlation coefficient as well as the MSE error are given in the following
figures for the train, validation, and test stages.
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The network performance with respect to modeling error and regression coefficient R2 are obtained
according to Table 3.

Table 3. The performance of the neural network in predicting the efficiency.

Train (70%) Validation (15%) Test (15%)

Number of data 67 14 14
Mean squared error (MSE) 0.043 0.079 0.053
Regression coefficient (R2) 0.986 0.981 0.979

The performance values (error and correlation coefficient) of the network are graphically depicted
in Figures 12 and 13, respectively, as follows:
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Figure 13. The correlation coefficient of training, validation, test, and all for artificial neural
network (ANN).

Most of the stopping training criteria are based on the mean square error control. Therefore, the MSE
curve was plotted as a function of the repetition of the training algorithm in Figure 14.

Monitoring MSE for test data and validation data was performed in the same way as training
data in various repetitions, and when the validation data error begins to increase, the training should
be stopped. The most generalization occurs at the 11th epoch.

The mean square error (MSE) during the training process is demonstrated in Figure 14.
Obviously, increasing the frequency led to gradually decrease in error of all three categories. With the
progress of the algorithm in each repetition, the mean square error for the validation data was calculated.
The algorithm does not stop until the validation error decreases, and training continues. When the
validation error is not decreasing in six consecutive repetitions, the training stops. The number six is
the stop training indicator, which is adjustable in the software. This number is known as the validation
check and is assumed as six by default in the software.

The point where the validation error reaches its minimum is considered as the output of the model.
For instance, in Figure 14 before the 11th epoch, the network error trend for the training, validation,
and testing data was decreasing and from repetition 11, the verification error was increasing, while the
training data error continued to decline. From Repeat 11 to Repeat 17 (six consecutive repetitions),
the validation error had an increasing trend, so the training algorithm ended and Repeat No. 11 was
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considered as an output. In other words, the training was stopped if the evaluation set error was
raised in six consecutive repetitions. This stop occurred at Repeat no. 11. It should be noted that the
algorithm calculates the mean squared error as follows:

MSE =
n∑

i=1

(ηNN − ηReal)
2

Ne
(2)

In Equation (2), ηNN denotes the obtained modeling efficiency, ηReal indicates the real measured
boiler efficiency, and Ne represents the total number of samples.Mathematics 2019, 7, x FOR PEER REVIEW 12 of 17 
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4. Optimization with the Help of the Response-Surface Method

The response-surface method or RSM is a collection of statistical techniques and applied
mathematics for creating empirical models. The purpose of response-surface is to optimize the
response (output variable), which is influenced by several independent variables (input variables).
In this study, two independent variables of flow rate and output steam temperature of the boiler,
and the dependent variable of efficiency are discussed.

In Figure 15, the fitted response surface on the boiler experimental data is presented, and as can
be seen, this surface is well suited with the experimental data. The constant coefficients obtained from
the RSM optimization for Equation (3) are presented in Table 4.

η
( .
m, T

)
= c0 + c1

.
m + c2T + c12

.
mT + c11

.
m2

+ c22T2 (3)
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Figure 15. Response-surface method (RSM) analysis (inputs: Flow rate and temperature).

Table 4. The optimal values of the constants which are obtained by RSM optimization.

Constants C0 C1 C2 C12 C11 C22

Optimized Value −31.372 1.690 0.8977 −0.00047 −0.05112 −0.00227

In Figure 16, the response surface along with the experimental data is presented in a 3-D graph.
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Figure 16. The fitted surface on the empirical data obtained from the boiler.

The efficiency surface has an optimal point, which is presented in Table 5 for its optimal value.

Table 5. The optimal boiler efficiency (obtained from the RSM).

Variable Objective Function 1st Independent Variable 2nd Independent Variable

Unit Efficiency (%) Flow rate (kg/s) Temperature (◦C)
Optimal value from RSM 69.8 15.7 195.9

5. Sensitivity Analysis of Effecting Variables

With the aid of sensitivity analysis, the effect of each independent variable can be obtained on
dependent variables (boiler efficiency). In the sensitivity analysis, all variables were assumed to be constant
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and only one variable within its permitted range was changed. In Figure 17, sensitivity analysis was
performed for the temperature variable. As can be monitored, the magnitude of the efficiency at 196
◦C results in its maximum value for almost all flow rates. As the flow rate increases and becomes close
to the designed flow rate of the boiler changes, the rate of change in efficiency will be slower in terms
of temperature.
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Figure 18 shows the sensitivity analysis for the flow rate independent variable. As can be seen,
in the flow rate of 15.7 kg/s, the amount of efficiency yielded to its maximum. With increasing
temperature, first, the efficiency increases and then decreases.
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6. Conclusions

The plant’s steam production and distribution units are designed and installed by the Iranian
energy engineering company “Garmagostar” in order to provide steam and heating loads of reboilers,
heaters, flares, sweetening packages, seawater treatment plant, and other steam utilities. The total
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number of data used in the modeling process was 95 which were categorized as 70% for training,
15% for validation, and the rest for the test procedure of the network. Modeling by means of neural
network yields to the prediction error in the range of ±1. The associated error of the training stage,
validation stage, and test stage were obtained less than 0.7%, 0.6%, and 0.8%, respectively. As expected,
the data test error was higher than training and validation due to the lack of participation in the test
data at the training and learning stage of the neural network. In the ideal status, when the model
error is zero, all points are placed on the line of Y = T (bisection of 1st and 3rd coordination sections).
In practice, there was a small amount of error that caused the points to be scattered up and down
the line. The best-passing equation of the points along with the correlation coefficient as well as the
mean square error were calculated for validation and test phases of the total data. Response-surface
method (RSM) is a set of statistical techniques and applied mathematics for constructing empirical
models. The target goal of the RSM is to optimize the response (output variable), which is influenced
by several independent variables (inputs). In this study, two independent variables of steam flow
rate and temperature of the generated steam and the dependent variable of efficiency are discussed.
The amount of efficiency at temperatures of 196 ◦C resulted in maximum efficiency for almost all
flow rates. As the flow rate increases and approaches the specific boiler design flow rate, the trend of
variations of efficiency in term of temperature became slower. Additionally, sensitivity analysis for the
flow rate variable was performed and it was monitored that the maximum amount of efficiency is
yielded at the flow rate of 15.7 kg/s. With increasing temperature, first, the efficiency increases and
then decreases.
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