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Abstract: The purpose of this study is to create a bi-level programming model for the optimal bus stop
spacing of a bus rapid transit (BRT) system, to ensure simultaneous coordination and consider the
interests of bus companies and passengers. The top-level model attempts to optimize and determine
optimal bus stop spacing to minimize the equivalent costs, including wait, in-vehicle, walk, and
operator costs, while the bottom-level model reveals the relation between the locations of stops and
spatial service coverage to attract an increasing number of passengers. A case study of Chengdu,
by making use of a genetic algorithm, is presented to highlight the validity and practicability of the
proposed model and analyze the sensitivity of the coverage coefficient, headway, and speed with
different spacing between bus stops.
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1. Introduction

Bus rapid transit (BRT) provides a punctual, fast, safe, and comfortable service for travelers
through the use of dedicated road space. Combined with the advantages of conventional public
transport and rail transit systems, it has the advantages of accommodating large volumes of passengers,
is fast running, and flexible. Therefore, BRT has increasingly become one of the more popular means of
public transport, which is worth promoting since the cost for the development of a rail transit system
is very high. BRT, which involves a lower level of investment, is quicker and more effective, has a
shorter period of deployment, and has immense potential for implementation and development in
many large and medium-sized cities [1,2].

Compared with conventional public transport systems, BRT has been known to be more effective
in terms of passenger flow distribution. The implementation of a BRT system is generally regarded to
be an effective way of mitigating the problems associated with automobiles, such as road congestion,
inefficient energy consumption, and air pollution [3,4]. The advantages of BRT have been well proven
in real-world services and during actual operation in cities such as Curitiba in Brazil, Bogota in
Colombia, Brisbane in Australia, and Los Angeles in the United States, amongst others. It has been
considered to be a low-cost efficiency solution for traffic congestion in China’s cities, such as Beijing,
Guangzhou, Chongqing, Dalian, and Ji’nan [5–7]. Bus stop locations are usually not placed at optimal
distances and the determining factors for placing bus stops at a particular location need to be balanced
between the interests of passengers as well as the bus operators.

The spacing of bus stops is correlated to the operation efficiency, costs, and service level of a
BRT system. The stop spacing distance generally applied by the US transit agencies varies between
91 and 305 m in central business districts [8]. The average stop spacing distance in US cities was
198 m, whereas the optimal spacing used to be approximately 396 m [9]. Passenger flow, attraction,
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and accessibility increase when the bus stop spacing is relatively short, and, conversely, if bus stop
spacing is wide apart and infrequent, the level of accessibility decreases, and a number of potential
passengers are lost as a result. Bus stops located with short and frequent spacing shorten the walking
time for passengers; however, this implies that buses will stop more frequently, thereby increasing
the passenger’s travel time. In contrast, if bus stops are placed further apart with larger spacing
distances, the walking time for passengers increases. Mylona et al. indicated that appropriate bus stop
consolidation (an 8% increment in stop spacing) had no significant effects on passenger activities (i.e.,
boarding and alighting) but could largely improve bus running time (i.e., a 9% reduction) [10]. This
paper investigates the stop spacing problem of the BRT system, which is considered to be an important
issue with respect to enhancing the attraction of the urban public transport system.

2. Overview of Solutions

At the macro level, when setting up a BRT station, it is important to take into account how
convenient transfers are, passenger demand, and the nature of land use along the proposed line. At
the meso-level, stop placing is related to the service radius and “reasonable” stop spacing distances.
Finally, at the micro-level, stop placement is closely related to traffic conditions and the condition of
the line at intersections of adjacent sections. The matter of stop spacing has long been understood
and studied, yet it is still difficult to determine optimal locations. In order to minimize passenger
travel times, Vuchic and Newell found that several factors influencing the optimal stop spacing for
line-haul passenger transportation, for example, passenger distribution along the line, access speed,
and standing time at stops [11]. Based on the automatic vehicle location systems and automatic cost
acquisition systems, Tétreault and El-Geneidy studied the impact of stop location selections on trip
times in transfer hub. It was found that optimized stop placing can significantly save total travel
times [12].

To summarize previous studies, the key factors to consider when determining stop spacing and
locations are the distribution and potential benefits for passengers, bus operators, and governments.
Additionally, a number of academics have also considered the interests of passengers, bus operators,
and the government to optimize stop spacing as part of their research. When considering the benefits
to passengers, the bus stop spacing optimization model has been widely used for minimizing travel
costs or travel times as the objective function [13–15].

Based on the bus operation costs and passenger travel times, Wirasinghe and Nadia,
comprehensively studied the optimization issue of average stop spacing [14]. Academics have
proposed a set-cover-based iterative algorithm to address this problem, which makes use of the
minimum number of bus stops to maximize the stop coverage and minimize total pedestrian (walking)
distances [16–20]. The studies can partly be categorized into a non-deterministic polynomial problem,
which refers to the existence of non-deterministic problems that can be solved by a polynomial
algorithm and belongs to a non-deterministic polynomial operation problem, and an enumeration
and heuristic search algorithm are used in the process of solving the model. To better understand
optimum stop spacing and the influence of different stop spacing methods on passenger and bus travel
times, as well as the transit system, a multi-objective optimization model is developed to establish
the relationship between stop spacing and average passenger travel times [21–23]. Stop spacing is an
important determinant when planning a transit system since it has an influence on the service level,
as well as the operational costs. A mathematical model is developed, and the objective function is
user travel time, which is minimized by optimized stop spacing and headway [10,24,25]. The bi-level
programming model is often used to optimize bus stop spacing. The objective function of the top-level
programming model is to minimize the total cost incurred to passenger and bus operators while for the
lower level, the problem of bus traffic assignment is addressed [26–29]. To minimize the total residence
time at stops and the number of bus stops required for efficient operations, a bi-objective optimization
model has been proposed by Chen et al.; furthermore, the issues of stop congestion and its effect on
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road traffic flow has also been considered in the model. The results showed that the formulated model
could solve problems faced in real-world situations [30].

Government requirements are also an important factor in determining stop spacing, including
increasing the attractiveness of public transport and maximizing social benefits, which involve a
trade-off between the interests of passengers and operating companies. Tirachini discussed the
influence of station spacing on the operation times of buses and constructed an analytical model for
the benefit of bus operators. The objective function includes a maximum reduction in operating costs
under the appropriate level of public transport services [15]. Furthermore, the objective of several
studies has been to maximize social welfare, that is, consumer surplus plus government revenue minus
the operating costs of the public transport companies [30,31].

Recently, many studies have been conducted on the sensitivity analysis of stop spacing related
parameters. These studies have found that when the demand is high, the two variables of bus demand
and stop placing are independent; however, stop placing and line length are negatively correlated [25].
Alonso et al. assume that the departure frequency is constant, and the results from their model also
indicate a negative correlation between stop placing and bus trip frequency [28]. In contrast, an
opposing conclusion can be drawn—that when bus fleet size is a given, there is a positive correlation
between stop spacing and bus trip volume [15].

This brief review of the literature suggests that the stop spacing problem can be optimized in
many aspects. Despite the increasing attention devoted to the study of the model choice of bus stop
spacing, the current literature has certain gaps that are the motivation for this research.

The contributions of this paper are threefold. Most of the previous studies were conducted on
the premise of ideal assumptions. For example, it is assumed that stop spacing is not related to the
passenger flow. In fact, the changes in stop spacing can simultaneously cause changes in spatial and
time accessibility, resulting in changes in demand for public transportation and thus affecting the
setting of the spacing. In our study, situations where the passenger flow demand is affected by different
stop spacing are considered, and the coverage coefficient of the stop is applied to the model.

In addition, some studies have analyzed the stop scope or stop locations separately and give
less importance to the impact of a public transit network. Although passenger travel densities with
simplification or a hypothesis are measured, the investigation is inadequate and the resulting stop
spacing cannot be applied practically in real-world situations. In actual operation, many BRT platforms
are set according to intersections, which only consider the priority given to buses. In addition, the
influence of the location of an intersection on the placing of stops and spacing is not well established.
Comprehensive methodologies that address the issue of stop placement in BRT systems are in short
supply. This paper attempts to fill this gap in the existing body of the available research literature.

Finally, following previous studies, our approach proposes an optimization bi-level programming
objective function. This function can address and solve for the optimal location of each stop. The
two-layer optimization model takes full account of the influence of the location of the intersections and
aims to achieve the optimal benefit for operators as well as passengers. In addition, the model can
provide a reference for the optimal spacing of bus stops based on a real case study.

3. Model Development

3.1. Top-Level Model Establishment

For the top-level model, the influence of BRT station spacing on costs are analyzed, including user
cost (Cu) and operator cost (Co). Therefore, taking the minimum equivalent cost of BRT route as the
objective value ( f1), the optimal stop spacing model is set up as follows:

min f1 = Cu + Co (1)
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The passenger travel time can be classified into three categories: wait time, in-vehicle travel time,
and walk time [32]. Therefore, the user one-way cost associated with these time categories can be
formulated as Equation (2), shown below:

Cu = C1 + C2 + C3 (2)

where C1, C2, and C3 represent wait cost, in-vehicle cost, and walk cost, respectively.

3.1.1. Wait Cost

The wait cost is defined as the product of the value of wait time (φ1) and the total wait time for all
the passengers (t1), and is related to average wait time of each stop and the BRT demand of each stop.
Thus, the total wait cost is the sum of the wait cost of all stops as follows:

C1 = φ1 × t1 (3)

t1 =
n∑
i

qiti (4)

where n represents the total number of stops, and qi and ti are BRT demand and average wait time at
stop i, respectively.

Given that the BRT demand is assumed to be uniformly distributed along the BRT route, qi is
equal to the BRT passenger flow attraction in relation to the stop spacing (qs) divided by n, where n is
equal to the route length (l) divided by the stop spacing (s). Here, the average wait time (ti) can simply
be considered equal to half of the BRT headway (h). Thus,

qi = qs/n (5)

n = dl/se+ 1 (6)

ti = h/2 (7)

3.1.2. In-Vehicle Cost

The in-vehicle cost is related to the total in-vehicle time (t2, i.e., the unimpeded running time and
the time caused by the delay) and the value of in-vehicle time (φ2).

C2 = φ2 × t2 (8)

t2 includes the time for vehicle acceleration and deceleration (tad), the dwell time at the stop
station (ts), the dwell time caused by traffic signals (tw), and the unimpeded running time of vehicles
(tr) [33,34].

t2 = tad + ts + tw + tr (9)

The acceleration and deceleration of the BRT vehicles are often caused by the intermediate stop
stations and signal intersections. Therefore, the amount of vehicle acceleration and deceleration is
also related to the spacing between stops and signal intersections. When the spacing between the
stop platforms and signalized intersections is within 50 m, the driver can go through the intersection
without stopping, whereas for instances where the spacing is in excess of 50 m, the driver may stop at
the intersection. The total one-way travel time attributed to acceleration and deceleration of a BRT
vehicle can be determined as follows:

tad = (ρ× nc + n− 1) × [vs × (a + d)/(a× d)] (10)
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where nc is the number of signalized intersections which are located at a considerable distance from
stops, and the spacing is at least at a distance of 50 m; ρ is the possibility that vehicles adequately stop
for red lights at intersections, that is, ρ = (T − g)/T; the average effective green time and average cycle
time of signalized intersection are g and T, respectively; vs is the speed of stops; and a and d are the
average values of acceleration and deceleration, respectively.

Considering the safety of passengers, BRT vehicles have a maximum recommended and permissible
speed (vmax) limit. When stop spacing is closer together, or signalized intersections are located close
together, vehicles are unable to achieve their maximum speed; therefore, the speed of stops is expressed
as follows:

vs = min

vmax,

√
2× a× d× (xa + xd)

a + d

 (11)

where xa is the distance travelled during acceleration of the BRT vehicle, xd is the distance travelled
during deceleration of the BRT vehicle.

The dwell time at the stop station is related to the residence time of the intersection, which includes
the time when the vehicle doors open and close while passengers may alight and board. Thus,

ts = n× h× τ× qi + (n− 1) × k (12)

where τ is the time required per person to alight or board a bus, and k is the time for the opening and
closing of doors.

The dwell time caused by traffic signals primarily occurs at signalized intersections, which is
related to the mean of (T − g). Therefore, the dwell time caused by traffic signals is denoted as follows:

tw = 0.5× (T − g) × ρ× ns (13)

where ns is the number of signalized intersections.
The unimpeded running time of vehicles is determined by

tr = l/v− 0.5× tad (14)

where v is the normal speed in the running time.

3.1.3. Walk Cost

The walk cost can be represented by the value of the walk time (φ3) and the total walk time for all
the passengers (t3), which is related to total demand and the average walk time (ta).

C3 = φ3 × t3 (15)

t3 = qs × ta (16)

The average walk time is related to en-route access to the bus stop. For simplicity, the average
walk time is a quarter of the stop spacing divided by the walk speed of passengers (vp).

ta =
s

4× vp
(17)

3.1.4. Operator Cost

The operator cost is related to the BRT headway, the round-trip BRT travel time (t4), and the
average vehicle operating cost (φ4) [32]. The operator cost can be derived as follows:

Co = φ4 × t4/h (18)
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The round-trip BRT travel time is as the product of the total in-vehicle time and the BRT
headway. Thus,

t4 =

{
t2 + h if the BRT is loop line
2× (t2 + h) otherwise

(19)

3.2. Construction of a Bottom-Level Model

The bottom-level model investigates the impact of the BRT passenger flow attraction in relation
to stop spacing (qs). The coverage coefficient of the bus stops caused by stop spacing ( f2(s)) has a
linear relationship with the attracted traffic under the hypothesis that the volume of traffic on a road
is constant, qs = q0 f2(s), where q0 denotes potential bus traffic and f2(s) has a value between 0 and
1. Therefore, in order to calculate the maximum impact coefficient of BRT bus station coverage, the
optimal stop spacing model is established as follows:

max f2(s) (20)

Some academics have found that the walking distance (dw) of residents around a BRT line to
stations determines the probability of choosing BRT, from which the coverage coefficient of bus stops
is obtained [31]. Some studies show that residents within 300 meters of a bus station have a higher
probability of taking the bus and are more stable, while the probability of taking the bus more than
300 meters gradually decreases [24,27,35,36]. BRT is one of the urban public transportation systems
that has great advantages in attracting passengers. Therefore, assuming that passengers will choose
BRT when the dw ranges from 0 to 300 m, the probability of passengers choosing a BRT (p(dw)) is a
decreasing function when the dw ranges between 300 to 700 m, expressed as the following:

p(dw) =

{
1 0 ≤ dw ≤ 300m

−
1

400 dw + 7
4 300m ≤ dw ≤ 700m

(21)

According to formula (22), the service area of a BRT can be divided into two categories. Suppose
D1 represents an area within 300 m from a BRT stop and D2 represents an area where the distance ranges
between 300 and 700 m to a stop. When BRT stop spacing approaches a value of 0, the probability (p)
of passengers in D1 choosing BRT is 1 and the probability (p) of the passengers within D2 choosing
BRT is between 0 and 1. The probability of passengers choosing to travel by BRT is mathematically
integrated in the heterogeneous region D1 and D2.

It is assumed that the service level between up-run and down-run direction is symmetrical to the
BRT line. It is only possible to analyze the up-run direction of the line to produce robust calculations.
The actual service area of the up-run direction of the line is Cup. When the stop spacing approaches a
value of 0, the ideal stop service area is Cid, and includes the maximum values of D1 (D1max) and D2

(D2max).
The ratio of the integral value of the rapid transit station to the maximum value of the integral, as

the coverage factor of the BRT stop has been quoted. For robust and convenient calculations, only the
up-run direction of the line needs to be considered. Therefore, the formula obtained by integration is
as follows [20]:

f2(s) =
Cup

Cid
=

s

D1+D2

p
(
|x|+

∣∣∣y∣∣∣)dxdy

s

D1max+D2max

p
(
|x|+

∣∣∣y∣∣∣)dxdy
=


a0+(nt−1)·a1

a0+250l s ≤ 600m
a0+(nt−1)·a2

a0+250l 600m < s ≤ 1400m
nt·a0

a0+250l s > 1400m

(22)

a0 is a non-repeated service area between adjacent stops; and a1 and a2 are repeat service areas
between adjacent stops in an area where stop spacing is between 0–300 m and 300–700 m, respectively.
a0, a1, and a2 can be calculated separately as follows:
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a0 =

300∫
0

√

3002−x2∫
0

dxdy +

700∫
0

700−x∫
√

3002−x2

700− x− y
400

dxdy (23)

a1 =

s/2∫
0

√

3002−x2∫
0

dxdy +

s/2∫
0

700−x∫
√

3002−x2

700− x− y
400

dxdy (24)

a2 =

300∫
0

√

3002−x2∫
0

dxdy +

s/2∫
0

700−x∫
√

3002−x2

700− x− y
400

dxdy (25)

The ideal stop service area Cid is as expressed as follows:

Cid =
x

D1max+D2max

p
(
|x|+

∣∣∣y∣∣∣)dxdy= 2a0 +

l∫
0

300∫
0

dxdy +

l∫
0

700∫
300

700− y
400

dxdy (26)

The minimum value of stop spacing (smin) should not be lower than the minimum value of BRT
stop spacing (sp) specified in the general specification and should not be lower than the range of
attraction. This can be shown as follows: smin = min[700, sp]. The maximum value of stop spacing
(smax) should not exceed the maximum sp and twice the range of non-attraction. It can be shown as
follows: smax = min[1400, 2× sp]. Assuming that the spacing is extremely wide apart, this will increase
the walk times for passengers while the travelling time for passengers will increase if spacing is very
close together as a result of stopping and frequent parking. Therefore, stop spacing must be within a
reasonable range and as follows:

smin ≤ s ≤ smax (27)

4. Case Study

A BRT operation loop line K1 of Chengdu has been determined and a circuit diagram is presented
in Figure 1 below. The route of K1 with 23 intersections was 28.3 km, the number of stops is 29 and
the average stop spacing is about 1 km. In 2017, the line K1 and reverse line K2 were equipped with
270 vehicles with a top speed of 45 km/h and an average operating speed of 25 km/h. The BRT headway
is 40 s during peak passenger hours and the shortest BRT headway is 28 s. The average daily passenger
load is 290,000 persons, with a maximum of 350,000 persons. For the identified BRT line K1, the
variables and parameter values in the hypothetical model were calculated and are shown in Table 1.Mathematics 2019, 7, x FOR PEER REVIEW 8 of 15 
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Table 1. Variables and parameters.

Symbol Definitions Unit Value

f1 Equivalent cost (objective value of the top-level model)

Cu User cost

Co Operator cost

C1 Wait cost

C2 In-vehicle cost

C3 Walk cost

φ1 Value of wait time /s 0.2

φ2 Value of in-vehicle time /s 0.1

φ3 Value of walk time /s 0.2

φ4 Average vehicle operating cost /(vehicle-s) 0.5

t1 Total wait time for all the passengers s

t2 Total in-vehicle time s

t3 Total walk time for all the passengers s

t4 Round-trip BRT travel time s

tad Time for the vehicle acceleration and deceleration s

ts Dwell time at the stop station s

tw Dwell time caused by traffic signals s

tr Unimpeded running time of vehicles s

n Total number of stops stops

qi BRT passenger flow at stop i persons

ti Average wait time at stop i s

qs BRT demand attraction in relation to stop spacing persons

l BRT route length km 28.3

s BRT stop spacing m

ti Average wait time s

h BRT headway s

nc
Number of signalized intersections which are located at a considerable
distance from stops, and the spacing is at least at a distance of 50 m intersections

ρ Possibility that vehicles adequately stop for red lights at intersections 0.5

T Average cycle time of signalized intersection s 80

g Average cycle time of signalized intersection s 40

vp Walk speed of passengers m/s 1.2

a Average value of acceleration m/s2 0.6

d Average value of deceleration m/s2 1

v Normal speed m/s

vs Speed of stops m/s

vmax Maximum recommended and permissible speed m/s 60

xa Distance travelled during acceleration of the BRT vehicle m

xd Distance travelled during deceleration of the BRT vehicle m
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Table 1. Cont.

Symbol Definitions Unit Value

τ Time required per person to alight or board a bus s 3

k Time for the opening and closing of doors s 3

ns Number of signalized intersections intersections 23

f2(s) The coverage coefficient of bus stops caused by stop spacing

q0 Potential bus traffic persons 320,000

dw Walking distance m

p(dw) Probability of passengers choosing a BRT

D1 Area within 300 m from a BRT stop m2

D2 Area where the distance ranges between 300 and 700 m to a stop m2

p Probability of passengers in D1 and D2 choosing BRT

Cup Actual service area of the up-run direction of the line m2

Cid Ideal stop service area m2

D1max Maximum value of D1 m2

D2max Maximum value of D2 m2

a0 Non-repeated service area between adjacent stops m2

a1
Repeat service areas between adjacent stops in an area where stop
spacing is between 0 to 300 m m2

a2
Repeat service areas between adjacent stops in an area where stop
spacing is between 300 to 700 m m2

smin Minimum value of stop spacing m

smax Maximum value of stop spacing m

sp BRT stop spacing m

4.1. Model Verification

Each parameter value was substituted into the case study in the program using the genetic
algorithm to solve the proposed model. According to the model’s solution needs, the iterations of the
genetic algorithm were set as 19. To better verify the proposed model, the BRT headway and normal
speed were 40 s and 45 km/h, respectively, which were taken from current K1 line data; the different
values of stop spacing were considered ranging from 300 to 2100 m with a step of 100 m, and the
substitution value of nc varied directly as the stop spacing.

Figure 2 shows that the changes in the solution of the equivalent cost and coverage coefficient of
bus stops, which indicates that the algorithm was guaranteed to be convergent. Hence, the change trend
of the equivalent cost and coverage coefficient of bus stops in the solution can reveal the effectiveness
of the up-level model and the bottom-level model in the proposed model, respectively.

Figure 3 shows the relationships between different costs (in-vehicle, walk, operator, and equivalent
costs) and the bus stop spacing. It can be seen that with an increase in stop spacing, the wait cost
remains unchanged, the walk cost increases rapidly, and the in-vehicle and operator costs both decrease
gradually. These findings correspond with the anticipated results based on the proposed model
formula, and are in accordance with the factual operational status of BRT. Furthermore, when the stop
spacing increases, the equivalent cost reduces quickly and increases slowly within the stop spacing
range of 300–800 m and 800–2100 m, respectively. This indicates that the impact on equivalent costs
is greater when stop spacing is closer together. In addition, the optimal stop spacing is 800 to 900 m
(the minimum value of equivalent costs) and nearly equal to the current stop spacing of the line KI.



Mathematics 2019, 7, 625 10 of 14

To summarize, the proposed model applied on the bus stop spacing problem of BRT can obtain a
reasonable optimal solution.
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4.2. Sensitivity Analysis

In this section, we analyzed the sensitivity of the coverage coefficient of bus stops, BRT headway,
and normal speed. While the headway and speed changed, the trends of different costs (including
wait, in-vehicle, walk, operator, and equivalent costs) almost remained unchanged with the increase of
stop spacing. Therefore, we only discussed the equivalent costs in sensitivity analysis of BRT headway
and normal speed.

4.2.1. Coverage Coefficient of Bus Stops

Figure 4 shows that the coverage coefficient of bus stops decreases as the bus stop spacing
increases, and this relationship is inversely proportional. However, to ensure that BRT stops serve
more passengers, simply shortening stop spacing is unrealistic. With reference to the trend of the
coverage coefficient in Figure 2, the optimal stop spacing is not the minimum value because interests of
bus operators must also be considered while sparing no effort to serve more passengers at a lower cost.
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4.2.2. BRT Headway

Based on the actual headway of the line KI (h = 40 s), different headway values (30, 35, 40, 45,
and 50 s) were extracted to study the sensitivity of BRT headway. Figure 5 shows that the larger the
headway is, the less the equivalent cost is, which indicates that the operator cost has a decisive effect
on the equivalent cost as the headway value is changed. As the headway values is increasing, the
optimal stop spacing is decreasing (30 s is 900–1000 m, 35 s and 40 s are 800–900 m, and 45 s and
50 s are 700–800 m). Likewise, to reduce the operator cost (i.e., increase the headway value), simply
shortening stop spacing is unrealistic, because the optimal stop spacing is also decided by the wait cost
and other factors (e.g., regional road planning and passenger flow distribution).
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4.2.3. Normal Speed

Different normal speed values (35, 40, 45, 50, and 55 km/h) were extracted to study the sensitivity
of normal speed according to the actual running speed of the line KI (v = 45 km/h). Figure 6 shows
that the larger the speed is, the less the equivalent cost is, which indicates that the in-vehicle cost
plays an important role in the equivalent cost as the speed value is changed. When the normal speed
was set to different values, there is a similar optimal stop spacing (800–900 m). Beyond all doubt, the
increase of the speed can improve the operation state of BRT, but it is limited to the road safety, vehicle
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performance, and passenger comfort, which is another challenge for researchers and planners who are
interested in optimization problems of BRT.
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5. Conclusions

The purpose of this study is to create a bi-level programming model for the optimal bus stop
spacing of a BRT system, in order to ensure the simultaneous coordination and consider the interests
of bus companies and passengers.

Firstly, this paper summarized previous studies and analyzed the advantages and disadvantages
of their findings. Then, a bi-level programming model, including the top-level model and micro-level
model, was established to obtain the optimal stop spacing for a BRT system to realize the lowest cost for
operators and provide maximum benefit to passengers. In the top-level model, for considering travel
cost of passengers, a desired objective is presented to minimize the weighted sum of running time of
the line, the time at the stop station, and the construction costs of the stop. In the micro-level model,
another objective is presented to maximize the coverage coefficient of stops to make BRT services meet
more passengers. Finally, the case study of BRT in Chengdu is presented to highlight the performance
and benefits of the proposed model, where we have analyzed the relationship and sensitivity between
model parameters and optimal stop spacing.

Compared with other models, based on the premise of stop spacing and stop selection, the factors
affecting the determination of stop spacing have been fully considered. During this process, equivalent
costs are introduced to simplify the calculation process. This also introduced a new variable, the
coverage of stop service scope, to fully ensure that the interests of passengers have been considered,
thereby increasing the practical value of the BRT optimal stop spacing model.

However, BRT stop spacing optimization involves a number of complicated factors, and the
method proposed in this paper is primarily from a theoretical perspective. Although the model
considers the interests of bus operators and passengers, its objective function is selective as there are
many influencing factors. In some aspects, there are some inevitable drawbacks, whereby the model
is only suitable for studying the influence of certain parameters on stop spacing. This reduces the
scope of the model and its research value. Therefore, we will further our research from two aspects in
future work:

The developed model can be enhanced as another stop spacing optimization problem by
considering the alternative lines of normal bus transit and metro. With that, the stop site and
spacing can be influenced to avoid the repeated stops, which is already in increasing accordance with
the truth.
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The proposed model should be applied in more BRT lines of different cities. With that, the
related parameters can be better calibrated, which can enhance the practical application value of the
proposed model.
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