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1. Introduction

In [1], B.-Y.Chen introduced slant submanifolds of an almost Hermitian manifold, as those
submanifolds for which the angle θ between JX and the tangent space is constant, for any tangent
vector field X. They play an intermediate role between complex submanifolds (θ = 0) and totally real
ones (θ = π/2). Since then, the study of slant submanifolds has produced an incredible amount of
results and examples in two different ways: various ambient spaces and more general submanifolds.

On the one hand, J. L. Cabrerizo, A. Carriazo, L. M. Fernández, and M. Fernández analyzed slant
submanifolds of a Sasakian manifold in [2], and B. Sahin did so in almost product manifolds in [3].
The study of slant submanifolds in a semi-Riemannian manifold has been also initiated: B.-Y. Chen,
O. Garay, and I. Mihai classified slant surfaces in Lorentzian complex space forms in [4,5]. K. Arslan, A.
Carriazo, B.-Y. Chen, and C. Murathan defined slant submanifolds of a neutral Kaehler manifold in [6],
while A. Carriazo and M. J. Pérez-García did so in neutral almost contact pseudo-metric manifolds
in [7]. Moreover, M. A. Khan, K. Singh, and V. A. Khan introduced slant submanifolds in LP-contact
manifolds in [8], and P. Alegre studied slant submanifolds of Lorentzian Sasakian and para Sasakian
manifolds in [9]. Finally, slant submanifolds of para Hermitian manifolds were defined in [10].

On the other hand, some generalizations of both slant and CR submanifolds have also been defined
in different ambient spaces, such as semi-slant [11–13], hemi-slant [14,15], bi-slant [16], or generic
submanifolds [17].

In this paper, we continue on this line, introducing semi-slant, hemi-slant, and bi-slant
submanifolds of para Hermitian manifolds.

2. Preliminaries

Let M̃ be a 2n-dimensional manifold. If it is endowed with a structure (J, g), where J is a (1, 1)
tensor and g is a semi-defined metric, satisfying:

J2X = X, g(JX, Y) + g(X, JY) = 0, (1)
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for any vector fields X, Y on M̃, it is called a para Hermitian manifold. It is said to be para Kaehler if,
in addition, ∇̃J = 0, where ∇̃ is the Levi–Civita connection of g.

Let now M be a semi-Riemannian submanifold of (M̃, J, g). The Gauss and Weingarten formulas
are given by:

∇̃XY = ∇XY + h(X, Y), (2)

∇̃XV = −AV X +∇⊥X N, (3)

for any tangent vector fields X, Y and any normal vector field V, where h is the second fundamental
form of M, AV is the Weingarten endomorphism associated with V, and ∇⊥ is the normal connection.

The Gauss and Codazzi equations are given by:

R̃(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))− g(h(Y, Z), h(X, W)), (4)

(R̃(X, Y)Z)⊥ = (∇̃Xh)(Y, Z)− (∇̃Yh)(X, Z), (5)

for any vectors fields X, Y, Z, W tangent to M.
For every tangent vector field X, we write:

JX = PX + FX, (6)

where PX is the tangential component of JX and FX is the normal one. For every normal vector
field V,

JV = tV + f V,

where tV and f V are the tangential and normal components of JV, respectively.
For such a submanifold of a para Kaehler manifold, taking the tangent and normal part and using

the Gauss and Weingarten formulas (2) and (3):

(∇XP)Y = ∇XPY− P∇XY = AFYX + th(X, Y), (7)

(∇X F)Y = ∇⊥X FY− F∇XY = −h(X, PY) + f h(X, Y), (8)

for all tangent vector fields X, Y.
In [10], we introduced the notion of slant submanifolds of para Hermitian manifolds, taking into

account that we cannot measure the angle for light-like vector fields:

Definition 1 ([10]). A semi-Riemannian submanifold M of a para Hermitian manifold (M̃, J, g) is called slant
submanifold if for every space-like or time-like tangent vector field X, the quotient g(PX, PX)/g(JX, JX)

is constant.

Remark 1. It is clear that, if M is a para-complex submanifold, then P ≡ J, and so, the above quotient is equal to
one. On the other hand, if M is totally real, then P ≡ 0 and the quotient equals zero. Therefore, both para-complex
and totally real submanifolds are particular cases of slant submanifolds. A neither para-complex nor totally real
slant submanifold will be called a proper slant.

Three cases can be distinguished, corresponding to three different types of proper slant submanifolds:

Definition 2 ([10]). Let M be a proper slant semi-Riemannian submanifold of a para Hermitian manifold
(M̃, J, g). We say that it is of:
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Type 1 if for any space-like (time-like) vector field X, PX is time-like (space-like), and
|PX|
|JX| > 1,

Type 2 if for any space-like (time-like) vector field X, PX is time-like (space-like), and
|PX|
|JX| < 1,

Type 3 if for any space-like (time-like) vector field X, PX is space-like (time-like).

These three types can be characterized as follows:

Theorem 1 ([10]). Let M be a semi-Riemannian submanifold of a para Hermitian manifold (M̃, J, g). Then,

(1) M is a slant of Type 1 if and only if for any space-like (time-like) vector field X, PX is time-like (space-like),
and there exists a constant λ ∈ (1,+∞) such that:

P2 = λId. (9)

We write λ = cosh2 θ, with θ > 0.
(2) M is a slant of Type 2 if and only if for any space-like (time-like) vector field X, PX is time-like (space-like),

and there exists a constant λ ∈ (0, 1) such that:

P2 = λId. (10)

We write λ = cos2 θ, with 0 < θ < 2π.
(3) M is a slant of Type 3 if and only if for any space-like (time-like) vector field X, PX is space-like (time-like),

and there exists a constant λ ∈ (−∞, 0) such that:

P2 = λId. (11)

We write λ = − sinh2 θ, with θ > 0.

In every case, we call θ the slant angle.

Remark 2. It was proven in [10] that Conditions (9), (10), and (11) also hold for every light-like vector field,
as every light-like vector field can be decomposed as a sum of one space-like and one time-like vector field.
Furthermore, every slant submanifold of Type 1 or 2 must be a neutral semi-Riemannian manifold.

Para-complex and totally real submanifolds can also be characterized by P2. In [10], we did not
consider that case, but it will be useful in the present study.

Theorem 2. Let M be a semi-Riemannian submanifold of a para Hermitian manifold (M̃, J, g). Then,

1) M is a para-complex submanifold if and only if P2 = Id.
2) M is a totally real submanifold if and only if P2 = 0.

Proof. If M is para-complex, P2 = J2 = Id directly. Conversely, if P2 = Id, from:

g(JX, JX) = g(PX, PX) + g(FX, FX),

we have:
−g(X, J2X) = −g(X, P2X) + g(FX, FX),

then
−g(X, X) = −g(X, X) + g(FX, FX),

and hence, g(FX, FX) = 0, which implies F = 0.
The second statement can be proven in a similar way.
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3. Slant Distributions

In [11], N. Papaghiuc introduced slant distributions in a Kaehler manifold. Given an almost
Hermitian manifold, (Ñ, J, g), and a differentiable distribution D, it is called a slant distribution if
for any nonzero vector X ∈ Dx, x ∈ Ñ, the angle between JX and the vector space Dx is constant,
that is it is independent of the point x. If PDX is the projection of JX over D, they can be characterized
as P2

D = λI. This, together with the definition of slant submanifolds of a para Hermitian manifold,
aims us to give the following:

Definition 3. A differentiable distribution D on a para Hermitian manifold (M̃, J, g) is called a slant
distribution if for every non-light-like X ∈ D, the quotient g(PDX, PDX)/g(JX, JX) is constant.

A distribution is called invariant if it is a slant with slant angle zero, that is if
g(PDX, PDX)/g(JX, JX) = 1 for all non-light-like X ∈ D. It is called anti-invariant if PDX = 0
for all X ∈ D. In other cases, it is called a proper slant distribution.

With this definition, every one-dimensional distribution defines an anti-invariant distribution in
M̃, so we are just going to take under study non-trivial slant distributions, that is with dimensions
greater than one. Just like for slant submanifolds, we can consider three cases depending on the casual
character of the implied vector fields.

Obviously, a submanifold M is a slant submanifold if and only if TM is a slant distribution.

Definition 4. Let D be a proper slant distribution of a para Hermitian manifold (M̃, J, g). We say that it is of:

Type 1 if for every space-like (time-like) vector field X, PDX is time-like (space-like), and
|PDX|
|JX| > 1,

Type 2 if for every space-like (time-like) vector field X, if PDX is time-like (space-like), and
|PDX|
|JX| < 1,

Type 3 if for every space-like (time-like) vector field X, PDX is space-like (time-like).

These slant distributions can be characterized as slant submanifolds as in Theorem 1 [10].

Theorem 3. Let D be a distribution of a para Hermitian metric manifold M̃. Then,

(1) D is a slant distribution of Type 1 if and only for any space-like (time-like) vector field X, PDX is time-like
(space-like), and there exits a constant λ ∈ (1,+∞) such that:

P2
D = λI (12)

Moreover, in such a case, λ = cosh2 θ.
(2) D is a slant distribution of Type 2 if and only for any space-like (time-like) vector field X, PDX is time-like

(space-like), and there exits a constant λ ∈ (0, 1) such that:

P2
D = λI (13)

Moreover, in such a case, λ = cos2 θ.
(3) D is a slant distribution of Type 3 if and only for any space-like (time-like) vector field X, PDX is space-like

(time-like), and there exits a constant λ ∈ (0,+∞) such that:

P2
D = λI (14)

Moreover, in such a case, λ = sinh2 θ.

In each case, we call θ the slant angle.



Mathematics 2019, 7, 618 5 of 15

Proof. If D is a slant distribution of Type 1, for any space-like tangent vector field X ∈ D, PDX and JX
are also time-like, where we have used (1). They satisfy |PDX|/|JX| > 1. Therefore, there exists θ > 0
such that:

cosh θ =
|PDX|
|JX| =

√
−g(PDX, PDX)√
−g(JX, JX)

. (15)

Considering PDX instead of X, we obtain:

cosh θ =
|P2

DX|
|JPDX| =

|P2
DX|
|PDX| . (16)

Now,
g(P2

DX, X) = g(JPDX, X) = −g(PDX, JX) = −g(PDX, PDX) = |PDX|2. (17)

Therefore, using (15), (16), and (17):

g(P2
DX, X) = |PDX|2 = |P2

DX||JX| = |P2
DX||X|.

Since both X and P2
DX are space-like, it follows that they are collinear, that is P2

DX = λX.
Finally, from (15), we deduce that λ = cosh2 θ.

Everything works in a similar way for any time-like tangent vector field Y ∈ D, but now, PDY
and JY are space-like, and so, instead of (15), we should write:

cosh θ =
|PDY|
|JY| =

√
g(PDY, PDY)√

g(JY, JY)
.

Since P2
DX = λX, for any space-like or time-like X ∈ D, it also holds for light-like vector fields,

and so, we have that P2
D = λIdD.

The converse is just a simple computation.
For the second case, let D be a slant distribution of Type 2, for any space-like or time-like vector

field X ∈ D, |PDX|/|JX| < 1, and so, there exists θ > 0 such that:

cos θ =
|PDX|
|JX| =

√
−g(PDX, PDX)√
−g(JX, JX)

.

Proceeding as before, we prove that g(P2
DX, X) = |P2

DX||X|, and as both X and P2
DX are space-like

vector fields, it follows that they are collinear, that is P2
DX = λX. The converse is just a direct

computation.
Finally, if D is a slant distribution of Type 3, for any space-like vector field X ∈ D, PDX is also

space-like, and there exists θ > 0 such that:

sinh θ =
|PDX|
|JX| =

√
g(PDX, PDX)√
−g(JX, JX)

.

Once more, we can prove that g(P2
DX, X) = |P2

DX||X| and P2
DX = λX. Again, the converse is a

direct computation.

Remember that an holomorphic distribution satisfies JD = D, so every holomorphic distribution is
a slant distribution with angle zero, but the converse is not true. It is called a totally real distribution
if JD ⊆ T⊥M; therefore, every totally real distribution is anti-invariant but the converse does not
always hold. For holomorphic and totally real distributions, the following necessary conditions are
easy to prove:

Theorem 4. Let D be a distribution of a submanifold of a para Hermitian metric manifold M̃.
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(1) If D is a holomorphic distribution, then |PDX| = |JX|, for all X ∈ D.
(2) If D is a totally real distribution, then |PDX| = 0, for all X ∈ D.

However, the converse results do not hold if D is not TM; in such a case TM = D⊕ ν, and for a
unit vector field X:

JX = PDX + PνX + FX.

Therefore from:

g(JX, JX) = g(PDX, PDX) + g(PνX, PνX) + g(FX, FX),

and |PDX| = |JX|, in the case that PDX is also space-like, it is only deduced that:

g(PνX, PνX) + g(FX, FX) = −2,

or, in the case it is time-like,
g(PνX, PνX) + g(FX, FX) = 0.

Therefore, in general FX 6= 0, and D is not invariant.
Similarly, it can be shown that the converse of the second statement does not always hold.

Theorem 5. Let M be a semi-Riemannian submanifold of a para Hermitian metric manifold M̃.

1) The maximal holomorphic distribution is characterized as D = {X/FX = 0}.
2) The maximal totally real distribution is characterized as D⊥ = {X/PX = 0}.

Proof. For the first statement, if a distribution D is holomorphic, obviously FeD = 0. For the converse,
consider D = {X/FX = 0}. We should prove that it is a holomorphic distribution. Let X ∈ D,
JX = TX be tangent to M, and:

g(FJX, V) = g(J2X, V) = g(X, V) = 0,

for all V ∈ T⊥M. Therefore, FJX = 0. That implies JX ∈ D for all X ∈ D, so D is holomorphic.
The second statement is trivial.

4. Bi-Slant, Semi-Slant and Hemi-Slant Submanifolds

In [11], semi-slant submanifolds of an almost Hermitian manifold were introduced as those
submanifolds whose tangent space could be decomposed as a direct sum of two distributions,
one totally real and the other a slant distribution. In [16], anti-slant submanifolds were introduced as
those whose tangent space is decomposed as a direct sum of an anti-invariant and a slant distribution;
they were called hemi-slant submanifolds in [14]. Finally, in [12], the authors defined bi-slant submanifolds
with both distributions slant ones.

Definition 5. A semi-Riemannian submanifold M of a para Hermitian manifold (M̃, J, g) is called a
bi-slant submanifold if the tangent space admits a decomposition TM = D1 ⊕ D2 with both D1 and D2

slant distributions.
It is called a semi-slant submanifold if TM = D1 ⊕ D2 with D1 a holomorphic distribution and D2 a

proper slant distribution. In such a case, we will write D1 = DT .
It is called a hemi-slant submanifold if TM = D1 ⊕ D2 with D1 a totally real distribution and D2 a

proper slant distribution. In such a case, we will write D1 = D⊥.

Remark 3. As we have said before, being holomorphic (totally real) is a stronger condition than being a slant
with slant angle zero (π/2).
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We write πi, the projections over Di and Pi = πi ◦ P, i = 1, 2.
Let us consider two different para Kaehler structures over R4:

J =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , g =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,

and:

J1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , g1 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

Using the examples of slant submanifolds of R4 given in [10] and making products, we can obtain
examples of bi-slant submanifolds in R8. To present different examples with all the combinations of
slant distributions, we consider the following para Kaehler structures over R8:

J2 =

(
J Θ
Θ J

)
, g2 =

(
g Θ
Θ g

)
,

J3 =

(
J1 Θ
Θ J

)
, g3 =

(
g1 Θ
Θ g

)
,

J4 =

(
J1 Θ
Θ J1

)
, g4 =

(
g1 Θ
Θ g1

)
,

where Θ is the corresponding null matrix.

Example 1. For any a, b, c, d ∈ R with a2 + b2 6= 1, and c2 + d2 6= 1,

x(u1, v1, u2, v2) = (au1, v1, bu1, u1, cu2, v2, du2, u2)

defines a bi-slant submanifold in (R8, J2, g2), with slant distributions D1 = Span
{

∂

∂u1
,

∂

∂v1

}
and D2 =

Span
{

∂

∂u2
,

∂

∂v2

}
. We can see the different types in the Table 1:

Table 1. Types for Example 1.

D1 D2

Type 1 a2 + b2 > 1, b2 < 1 c2 + d2 > 1, c2 < 1

Type 2 a2 + b2 > 1, b2 > 1 c2 + d2 > 1, c2 > 1

time-like Type 3 a2 + b2 < 1 c2 + d2 < 1

(R8, J2, g2)

P2
1 =

a2

−1 + a2 + b2 Id1

P2
2 =

c2

−1 + c2 + d2 Id2

Remark 4. The decomposition of TM into two slant distributions is not unique, for example, if we choose D̃1 =

Span
{

∂

∂u1
,

∂

∂v2

}
and D̃2 = Span

{
∂

∂u2
,

∂

∂v1

}
in the previous example, both distributions are anti-invariant,

that is P(D̃1) = D̃2 and P(D̃2) = D̃1; therefore, P1 = 0 and P2 = 0. However, they are not totally
real distributions.
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Example 2. Taking a = 0 in the previous example, we obtain a semi-slant submanifold, and taking b = 1,
we obtain a hemi-slant submanifold.

Example 3. For any a, b, c, d with a2 − b2 6= 1, c2 − d2 6= 1:

x(u1, v1, u2, v2) = (u1, av1, bv1, v1, u2, cv2, dv2, v2),

defines a bi-slant submanifold, with slant distributions D1 = Span
{

∂

∂u1
,

∂

∂v1

}
and D2 = Span

{
∂

∂u2
,

∂

∂v2

}
.

We can see the different types in the Table 2:

Table 2. Types for Example 3.

D1 D2

Type 1 b2 − a2 < 1, b2 > 1 d2 − c2 < 1, d2 > 1

Type 2 b2 − a2 < 1, b2 < 1 d2 − c2 < 1, d2 < 1

space-like Type 3 b2 − a2 > 1 d2 − c2 > 1

(R8, J2, g2)

P2
1 =

a2

1 + a2 − b2 Id1

P2
2 =

c2

1 + c2 − d2 Id2

Type 1 b2 − a2 > 1, a2 > 1 d2 − c2 < 1, d2 > 1

Type 2 b2 − a2 > 1, a2 < 1 d2 − c2 < 1, d2 < 1

space-like Type 3 b2 − a2 < 1 d2 − c2 > 1

(R8, J3, g3)

P2
1 =

a2

1 + a2 − b2 Id1

P2
2 =

c2

1 + c2 − d2 Id2

Type 1 b2 − a2 > 1, a2 > 1 d2 − c2 > 1, c2 > 1

Type 2 b2 − a2 > 1, a2 < 1 d2 − c2 > 1, c2 < 1

space-like Type 3 b2 − a2 < 1 d2 − c2 < 1

(R8, J4, g4)

P2
1 =

a2

1 + a2 − b2 Id1

P2
2 =

c2

1 + c2 − d2 Id2

Now, we are interested in those bi-slant submanifolds of an almost para Hermitian manifold that
are Lorentzian. Let us remember that the only odd-dimensional slant distributions are the totally real
ones and that Type 1 and 2 are neutral distributions. Taking this into account, the only possible cases
are the following:

(i) M2s+1
1 with TM = D1 ⊕ D2, where D1 is a one-dimensional, time-like, anti-invariant distribution

and D2 is a space-like, Type 3 slant distribution.
(ii) M2s+2

1 with TM = D1 ⊕ D2, where D1 is a two-dimensional, neutral, slant distribution of Type 1 or
2 and D2 is a space-like, Type 3 slant distribution.

With Examples 1 and 3, we can obtain examples for Case (ii). It only remains to construct a
Case (i) example.

Example 4. Consider in R6 the almost para Hermitian structure given by:

J5 =

 J Θ

Θ
0 1
1 0

 , g5 =

 g Θ

Θ
1 0
0 −1

 ,

with Θ the corresponding null matrix.
For any k > 1,

x(u, v, w) = (u, k cosh v, v, k sinh v, w, 0)
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defines a bi-slant submanifold in (R6, J5, g5) with D1 = Span
{

∂

∂w

}
a totally real distribution and

D2 = Span
{

∂

∂u
,

∂

∂v

}
a Type 3 slant distribution with P2

2 =
1

k2 − 1
Id|D2

.

We can present a bi-slant submanifold, with the same angle for both slant distributions, that is not
a slant submanifold.

Example 5. The submanifold of (R8, J2, g2) defined by:

x(u1, v1, u2, v2) = (u1, v1 + u2, u1, u1, u2, v2,
√

3u2, u2 − v1),

is a bi-slant submanifold. The slant distributions are D1 = Span
{

∂

∂u1
,

∂

∂v1

}
and D2 = Span

{
∂

∂u2
,

∂

∂v2

}
,

with P2
1 =

1
2

Id1 and P2
2 =

1
2

Id2. It is not a slant submanifold.

5. Semi-Slant Submanifolds of a Para Kaehler Manifold

It is always interesting to study the integrability of the involved distributions.

Proof. Let M be a semi-slant submanifold of a para Hermitian manifold. Both the holomorphic and
the slant distributions are P invariant.

Proof. Let be TM = DT ⊕ D2 the decomposition with DT holomorphic and D2 the slant distribution.
Of course DT is invariant as JDT = DT implies PDT = DT . Now, consider X ∈ D2,

JX = P1X + P2X + FX.

Given Y ∈ DT , g(P1X, Y) = g(JX, Y) = −g(X, JY) = 0, as DT is invariant. Moreover, for all
Z ∈ D2, g(P1X, Z) = 0. Therefore P1X = 0 and PX = P2X, so PD2 ⊆ D2.

Theorem 6. Let M be a semi-slant submanifold of a para Kaehler manifold. The holomorphic distribution is
integrable if and only if h(X, JY) = h(JX, Y) for all X, Y ∈ DT .

Proof. For X, Y ∈ DT , PX = JX, FX = 0, PY = JY, and FY = 0. From (8), it follows that F[X, Y] =
h(X, PY)− h(Y, PX). Then, [X, Y] ∈ DT , that is DT is integrable, if and only if h(X, JY) = h(JX, Y).

Theorem 7. Let M be a semi-slant submanifold of a para Kaehler manifold. The slant distribution is integrable
if and only if:

π1(∇XPY−∇YPX) = π1(AFYX− AFXY), (18)

for all X, Y ∈ D2, where π1 is the projection over the invariant distribution DT .

Proof. From (7), P1∇XY = π1(∇XPY− th(X, Y)− AFYX). Then:

P1[X, Y] = π1(∇XPY−∇YPX + AFXY− AFYX).

Then, (18) is equivalent to P1[X, Y] = 0. As P1[X, Y] = π1P[X, Y] = 0, it holds if and only if P[X, Y] ∈
D2. Finally, from Theorem 5, D2 is P invariant, so we obtain [X, Y] ∈ D2.

Now, we study the conditions for the involved distributions being totally geodesic.

Proof. Let M be a semi-slant submanifold of a para Kaehler manifold M̃. If the holomorphic
distribution DT is totally geodesic, then (∇XP)Y = 0, and ∇XY ∈ DT for any X, Y ∈ DT .
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Proof. For a para Kaehler manifold taking X, Y ∈ DT , (7)–(8), leads to:

∇XPY− P∇XY− th(X, Y) = 0, (19)

− F∇XY + h(X, PY)− f h(X, Y) = 0. (20)

If DT is totally geodesic, (∇XP)Y = 0 and F∇XY = 0, which imply the result.

Proof. Let M be a semi-slant submanifold of a para Kaehler manifold M̃. The slant distribution D2 is
totally geodesic if and only if (∇X F)Y = 0, and (∇XP)Y = AFYX for any X, Y ∈ D2.

Proof. If D2 is a totally geodesic distribution, from (7) and (8), taking X, Y ∈ D2:

∇XPY− AFYX− P∇XY = 0, (21)

∇⊥X FY− F∇XY = 0. (22)

which implies the given conditions. On the converse, if (∇XP)Y = AFYX, then th(X, Y) = 0,
which implies Jh(X, Y) = f h(X, Y). From (8) and ∇F = 0, it holds that h(X, PY) = nh(X, Y).
Then, for PY ∈ D2:

λh(X, Y) = h(X, P2Y)= f 2h(X, Y) = J2h(X, Y) = h(X, Y),

and as D2 is a proper slant distribution, λ 6= 1, it must be h(X, Y) = 0 for all X, Y ∈ D2.

Given two orthogonal distributions D1 and D2 over a submanifold, it is called a D1 − D2-mixed
totally geodesic if h(X, Y) = 0 for all X ∈ D1, Y ∈ D2.

Proof. Let M be a semi-slant submanifold of a para Hermitian manifold M̃. M is a mixed totally
geodesic if and only if AN X ∈ Di for any X ∈ Di, N ∈ T⊥M, i = 1, 2.

Proof. If M is a DT − D2 mixed totally geodesic, for any X ∈ DT , Y ∈ D2,

g(AN X, Y) = g(h(X, Y), N) = 0,

which implies AN X ∈ DT . The same proof is valid for X ∈ D2 and for the converse.

Proof. Let M be a semi-slant submanifold of a para Kaehler manifold M̃. If ∇F = 0, then either M is
DT −D2-mixed totally geodesic or h(X, Y) is a eigenvector of f 2 associated with the eigenvalue of one,
for all X ∈ DT , Y ∈ D2.

Proof. Let be X ∈ DT , Y ∈ D2, if ∇F = 0, from (8), f h(X, Y) = h(X, PY).
As DT is holomorphic, that is J-invariant, D2 is P-invariant. Therefore,

f 2h(X, Y) = f h(X, PY) = h(X, P2Y) = h(X, P2
2 Y) = λh(X, Y),

with λ = cosh2 θ (cos2 θ, sinh2 θ, respectively). However, also:

f 2h(Y, X) = f h(Y, PX) = h(Y, P2X) = h(Y, X).

From both equations, either h(X, Y) = 0 or it is an eigenvalue of f 2 associated with λ = 1.

Proof. Let M be a mixed totally geodesic semi-slant submanifold of a para Kaehler manifold M̃. If DT
is integrable, then PAN X = AN PX, for all X ∈ DT and N ∈ T⊥M.
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Proof. From Theorem 6, h(X, JY) = h(Y, JX) for all X, Y ∈ DT ,

g(JAN X, Y) = −g(AN X, PY) = −g(N, h(X, PY)) = −g(N, h(Y, PX)) = −g(AN PY, Y).

Given Z ∈ D2,
g(JAN X, Z) = −g(AN X, PZ) = −g(N, h(X, PZ)) = 0,

because M is mixed totally geodesic. From both equations, PAN X = AN PX, which finishes
the proof.

Finally, the mixed totally geodesic characterization can be summarized with:

Theorem 8. Let M be a proper semi-slant submanifold of a para Kaehler manifold M̃. M is a DT − D2-mixed
totally geodesic if and only if (∇XP)Y = AFYX and (∇X F)Y = 0, for all X, Y in different distributions.

Proof. On the one hand, if M is a DT − D2-mixed totally geodesic, let X, Y belong to different
distributions. From (7) and (8), both conditions are deduced.

On the other hand, from (7) and (∇XP)Y = AFYX, it is deduced th(X, Y) = 0. From (8) and
(∇X F)Y = 0, it is deduced:

h(X, PY) = f h(X, Y), (23)

for all X, Y in different distributions.
Therefore, for X ∈ DT and Y ∈ D2:

f 2h(X, Y) = h(X, P2Y) = λh(X, Y)

and also:
f 2h(Y, X) = h(Y, P2X) = h(Y, X).

As M is a proper semi-slant submanifold, λ 6= 1, and h(X, Y) = 0, so M is a mixed totally geodesic.

6. Hemi-Slant Submanifolds of a Para Kaehler Manifold

We will also study the integrability of the involved distributions for a hemi-slant submanifold.

Proof. Let M be a hemi-slant submanifold of a para Hermitian manifold. The slant distribution is
P invariant.

Proof. Let be TM = D⊥ ⊕ D2, the decomposition with D⊥ totally real, and D2 the slant distribution.
Consider X ∈ D2,

JX = P1X + P2X + FX.

Given Y ∈ D⊥, g(PX, Y) = g(JX, Y) = −g(X, JY) = 0, as D⊥ is totally real, therefore PD2 ⊆ D2.
As P2

2 = λId, given X ∈ D2, X = P
(

1
λ X
)

, then X ∈ PD2, and it is proven that PD2 = D2.

Lemma 1. Let M be a hemi-slant submanifold of a para Kaehler manifold. The totally real distribution is
integrable if and only if AFXY = AFYX for all X, Y ∈ D⊥.

Proof. For X, Y ∈ D⊥, PX = 0, JX = FX, PY = 0, and JY = FY. From (7), it follows that P[X, Y] =
AFXY− AFYX. Then, [X, Y] ∈ D⊥, that is D⊥ is integrable, if and only if AFXY = AFYX.

The following result is known for hemi-slant submanifolds of Kaehler manifolds [14]. We obtain
the equivalent one for hemi-slant submanifolds of para Kaehler manifolds:

Theorem 9. Let M be a hemi-slant submanifold of a para Kaehler manifold. The totally real distribution is
always integrable.
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Proof. From the previous lemma, it is enough to prove g(AFXY, Z) = g(AFYX, Z), for X, Y ∈ D⊥ and
Z tangent. Then,

g(AFXY, Z) = g(h(Y, Z), FX) = g(−th(Y, Z), X) =

using (7):
= g(P∇ZY + AFYZ, X) = g(AFYZ, X) = g(AFYX, Z),

which finishes the proof.

Now, we study the integrability of the slant distribution.

Theorem 10. Let M be a hemi-slant submanifold of a para Kaehler manifold. The slant distribution is integrable
if and only if:

π1(∇XPY−∇YPX) = π1(AFYX− AFXY), (24)

for all X, Y ∈ D2, where π1 is the projection over the totally real distribution D⊥.

The proof is analogous to the one of Theorem 7.

Lemma 2. Let M be a hemi-slant submanifold of a para Kaehler manifold M̃. The totally real distribution D⊥
is totally geodesic if and only if (∇X F)Y = 0, and P∇XY = −AFYX for any X, Y ∈ D⊥.

Proof. From (7) and (8) for X, Y ∈ D⊥:

− P∇XY− AFYX− th(X, Y) = 0, (25)

∇⊥X FY− F∇XY− f h(X, Y) = 0, (26)

which imply the given conditions.

The same proof of Lemma 5 is valid for the slant distribution of a hemi-slant distribution.

Lemma 3. Let M be a hemi-slant submanifold of a para Kaehler manifold M̃. The slant distribution D2 is
totally geodesic if and only if (∇X F)Y = 0, and P∇XY = −AFYX for any X, Y ∈ D2.

Remember that the classical De Rham–Wu Theorem [18,19], says that two orthogonal,
complementary, and geodesic foliations (called a direct product structure) in a complete and simply
connected semi-Riemannian manifold give rise to a global decomposition as a direct product of two
leaves. Therefore, from the previous lemmas, it is directly deduced:

Theorem 11. Let M be a complete and simply-connected hemi-slant submanifold of a para Kaehler manifold M̃.
Then, M is locally the product of the integral submanifolds of the slant distributions if and only if (∇X F)Y = 0,
and P∇XY = −AFYX for both any X, Y ∈ D⊥ or X, Y ∈ D2.

Finally, we can also study when a hemi-slant submanifold is mixed totally geodesic. We get a
result similar to Proposition 8, but now the proof is much easier.

Proof. Let M be a hemi-slant submanifold of a para Kaehler manifold M̃. M is a D⊥−D2-mixed totally
geodesic if and only if (∇XP)Y = AFYX and (∇X F)Y = 0, for all X, Y in different distributions.

Proof. Again, if M is a D⊥ − D2-mixed totally geodesic and X, Y belong to different distributions,
from (7) and (8), both conditions are deduced.

Now, if we suppose both conditions, from (7) and (8), it is deduced that th(x, Y) = 0 and
h(X, PY) = f h(X, Y). Therefore, taking X ∈ D2 and Y ∈ D⊥, we get th(X, Y) = 0 and f h(X, Y) = 0.
Therefore, h(X, Y) = 0 and M is a mixed totally geodesic.
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7. CR-Submanifolds of a Para Kaehler Manifold

CR-submanifolds have been intensively studied in many environments [20]. Moreover, there are
also some works about CR submanifolds of para Kaehler manifolds [21]. A semi-Riemannian
submanifold M of an almost para Hermitian manifold is called a CR-submanifold if the tangent bundle
admits a decomposition TM = D⊕ D⊥ with D a holomorphic distribution, that is JD = D, and D⊥ a
totally real one, that is JD ⊆ T⊥M.

Now, we make a study similar to the one made for generalized complex space forms in [22].
Examples of CR-submanifolds can be obtained from Example 1. Taking a = 1, d = 0,

D1 = Span
{

∂

∂u1
,

∂

∂v1

}
is a totally real distribution, and D2 = Span

{
∂

∂u2
,

∂

∂v2

}
is a holomorphic

distribution. Moreover:

(1) D1 is Type 1 if b2 < 1
(2) D1 is Type 2 if b2 > 1,
(3) D2 is Type 2 if c2 > 1,
(4) D2 is Type 3 if c2 < 1.

Therefore, we obtain examples of CR-submanifolds of Types 1-2, 1-3, 2-2, and 2-3. Taking
a = 0, d = 1 we can obtain the Types 2-1, 2-2, 3-1, and again 3-2 examples.

For a para Kaehler manifold with constant holomorphic curvature for every non-light-like vector
field, that is R̃(X, JX, JX, X) = c, the curvature tensor is given by:

R̃(X, Y)Z =
c
4
{g(X, Z)Y− g(Y, Z)X + g(X, JZ)JY− g(Y, JZ)JX + 2g(X, JY)JZ}; (27)

such a manifold is called a para complex space form.

Theorem 12. Let M be a slant submanifold of a para Kaehler space form M̃(c). Then, M is a proper CR
submanifold if and only if the maximal holomorphic subspace Dp = Tp M

⋂
JTp M, p ∈ M, defines a non-trivial

differentiable distribution on M such as:

R̃(D, D, D⊥, D⊥) = 0,

where D⊥ denotes the orthogonal complementary of D on TM.

Proof. If M is a CR submanifold, from (27):

R̃(X, Y)Z = 2g(X, JY)JZ,

for all X, Y ∈ D and Z ∈ D⊥, and this is normal to M; therefore, the equality holds.
On the other hand, let Dp = Tp M

⋂
JTp M be, and suppose R̃(D, D, D⊥, D⊥) = 0. Again,

from (27),
R̃(X, JX, Z, W) =

c
2

g(X, X)g(JZ, W),

for every X ∈ D, Z, W ∈ D⊥. Taking X 6= 0, a non-light-like vector, it follows that g(JZ, W) =

0. Then, JZ is orthonormal to D⊥, and it is normal. Therefore, D⊥ is anti-invariant, and M is a
CR submanifold.

There is a well-known result for CR submanifolds of a complex space form M̃(c) [22] establishing
that if the invariant distribution is integrable, then the holomorphic sectional curvature determined by
a unit vector field, X ∈ D, is upper bounded by the global holomorphic sectional curvature. That is,
for every unit vector field X:

H(X) = R(X, JX, JX, X) ≤ c.
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The situation in the semi-Riemannian case, for a para complex space form, is completely different.
From (27) and (4), for every non-light-like tangent unit vector field X, it holds that:

R(X, JX, JX, X) = c + g(h(X, X), h(JX, JX))− g(h(X, JX), h(X, JX)).

Now, if D is integrable, from Theorem 6, h(JX, JX) = h(X, J2X) = h(X, X), and then:

H(X) = c + ‖h(X, X)‖2 − ‖h(X, JX)‖2.

A submanifold is called totally umbilical if there exists a normal vector field L such as h(X, Y) =
g(X, Y)L for all tangent vector fields X, Y. Totally geodesic submanifolds are particular cases with L = 0.

Theorem 13. There do not exist proper CR totally umbilical submanifolds of a para complex space form M̃(c)
with c 6= 0.

Proof. From (27), it follows that:

(R̃(X, Y)Z)⊥ =
c
4
{g(X, JZ)FY− g(Y, JZ)FX + 2g(X, JY)FZ},

for all X, Y, Z tangent vectors fields. Supposing M is a proper CR submanifold, we can choose two
non-light-like vector fields X ∈ D and Z ∈ D⊥; for them:

(R̃(X, JX)Z)⊥ =
c
2

g(X, X)FZ.

However, for a totally umbilical submanifold, Codazzi’s equation (5) gives:

(R̃(X, Y)Z)⊥ = ∇⊥X g(Y, Z)L− g(∇XY, Z)L− g(Y,∇XZ)L−∇⊥Y g(X, Z)L + g(∇YX, Z)L + g(X,∇YZ)L = 0.

Comparing both equations, if c 6= 0, it follows that FZ = 0, which is a contradiction.

Moreover, the same proof is valid for asserting:

Corollary 1. There do not exist proper semi-slant totally umbilical submanifolds of a para complex space form
M̃(c) with c 6= 0.

Author Contributions: The authors contributed equally to this work.

Funding: The work was supported by the MINECO-FEDER grant MTM2014-52197-P., the PAIDI group FQM-327
(Junta de Andalucía, Spain). The second author is also supported by the Instituto de Matemáticas de la Universidad
de Sevilla (IMUS).

Acknowledgments: The authors would like to thank Benjamin Olea for his useful comments on some aspects of
this paper and the referees for their suggestions, which have improved it.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, B.Y. Slant inmersions. Bull. Austral. Math. Soc. 1990, 41, 135–147. [CrossRef]
2. Cabrerizo, J.L.; Carriazo, A.; Fernández, L.M.; Fernández, M. Slant submanifolds in Sasakian manifolds.

Glasgow Math. J. 2000, 42, 125–138. [CrossRef]
3. Sahin, B. Slant submanifolds of an almost product Riemannian manifold. J. Korean Math. Soc. 2006, 43,

717–732. [CrossRef]
4. Chen, B.-Y.; Garay, O. Classification of quasi-minimal surfaces with parallel mean curvature vector in

pseudo-Euclidean 4-space E4
2. Results Math. 2009, 55, 23–38. [CrossRef]

http://dx.doi.org/10.1017/S0004972700017925
http://dx.doi.org/10.1017/S0017089500010156
http://dx.doi.org/10.4134/JKMS.2006.43.4.717
http://dx.doi.org/10.1007/s00025-009-0386-9


Mathematics 2019, 7, 618 15 of 15

5. Chen, B.Y.; Mihai, I. Classification of quasi-minimal slant surfaces in Lorentzian complex space forms.
Acta Math. Hungar. 2009, 122, 307–328. [CrossRef]

6. Arslan, K.; Carriazo, A.; Chen, B.Y.; Murathan, C. On slant submanifolds of neutral Kaehler manifolds.
Taiwan. J. Math. 2010, 14, 561–584. [CrossRef]

7. Carriazo, A.; Pérez-García, M.J. Slant submanifolds in neutral almost contact pseudo-metric manifolds.
Diff. Geom. Appl. 2017, 54, 71–80. [CrossRef]

8. Khan, M.A.; Singh, K.; Khan, V.A. Slant submanifolds of LP-contact manifolds. Diff. Geo. Dyn. Syst. 2010, 12,
102–108.

9. Alegre, P. Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds. Taiwan. J. Math. 2013, 17,
897–910. [CrossRef]

10. Alegre, P.; Carriazo, A. Slant submanifolds of para Hermitian manifolds. Mediterr. J. Math. 2017, 14, 214.
[CrossRef]

11. Papaghiuc, N. Semi-slant submanifolds of a Kaehlerian manifold. Ann. St. Univ. Iasi. Tom. 1994, 40, 55–61.
12. Cabrerizo, J.L.; Carriazo, A.; Fernández, L.M.; Fernández, M. Semi-slant submanifolds of a Sasakian

manifolds. Geom. Dedicata 1999, 78, 183–199. [CrossRef]
13. Li, H.; Liu, X. Semi-slant submanifolds of a locally product manifold. Ga. Math. J. 2005, 12, 273–282.
14. Sahin, B. Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 2009, 95,

207–226. [CrossRef]
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