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Abstract: This study considers the effects of a machine breakdown, inspection, and partial
backordering for deteriorating items. Most industries try to reduce facility unavailability by
implementing a regular inspection and preventive maintenance since there is a possibility that some
machines will breakdown during the production process. Moreover, an emergency purchase policy
can be provided for quick response to customer’s backorder. The system also produces imperfect
items with different rates before and after the inspection. Rework process and post-sales warranty are
launched for the defective items. Unlike previous studies, we applied a fixed-point approach and
renewal reward theorem to solve the deteriorating production-inventory model while considering
machine breakdown, inspection, and partial backordering. A case example and sensitivity analysis
are provided. The sensitivity analysis shows the important parameters that should be considered in
designing the inspection plan and the replenishment policy when facility unavailability and imperfect
items exist.

Keywords: production-inventory system; machine breakdown; inspection; renewal reward theorem;
partial backordering; deteriorating items

1. Introduction

Inventory management is the process whereby the appropriate inventory is kept to guarantee
the availability of stocks to the customers [1]. The inventory cost is one of the most dominant costs in
many enterprises in managing the production-inventory system. Moreover, after a certain period, a
production facility or machine used in the production process may not be available for several reasons.
For example, some of the facilities may be busy with producing other items, while others may undergo
random repairs. Regular maintenance is necessary for a well-performing machine. A maintenance
strategy consists of inspection, overhaul, repair, and replacement. Without maintenance, defective
equipment may result in losses and shortage costs.

The effect of a machine breakdown, imperfect item, quality planning, and deterioration are
correlated; these factors cannot be neglected in replenishment planning (see Figure 1). For example, a
regular inspection will reduce the probability of machine breakdown, which will affect the possibility
of shortages and the need for an emergency purchase. Machine inspection is also correlated to
its performance, which will affect the defective product rates. Wee & Widyadana [2,3] developed
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an economic production quantity (EPQ) model with preventive maintenance and reworked of
defective units for deteriorating items, such as in semiconductor and printed circuit board (PCB)
industries. Providing warranty policy is another alternative for overcoming the effect of the imperfect
quality problem [4,5]. Besides, emergency purchase [6] and shortage backorder [7,8] are additional
considerations in replenishment planning.
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Figure 1. The replenishment planning of economic production quantity (EPQ) deteriorating model. 
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Figure 1. The replenishment planning of economic production quantity (EPQ) deteriorating model.

This study extends previous studies and contributes a new economic production quantity
(EPQ) model while considering the effects of scheduled inspection, random machine breakdown,
unpredictable repair time, and imperfect items for deterioration items. The rework process is not
perfect. Therefore, a warranty is provided to compensate the customers. Moreover, a shortage is
allowed, in which the manufacturer considers an emergency purchase to overcome the shortage.
However, customers are impatient. Therefore, the shortage is partially backlogged. From our literature
review, no models simultaneously consider the situations mentioned above. This study uses the
renewal reward theorem to solve the production-inventory system. The approximate optimal solution
is then derived while using a fixed point iterative approach. The objective of the proposed model is to
minimize the total cost by determining the optimal production up-time period and the elapsed time of
implementing inspection time. This paper consists of the following: Section 1 shows the introduction
and Section 2 is the literature review. Section 3 is the notation and assumptions. An algorithm deriving
the approximate optimal solution is given in Section 4. Section 5 provides a numerical example,
sensitivity analysis, and some graphical illustrations. Finally, the conclusions are given in Section 6.

2. Literature Review

2.1. Economic Production Quantity with Machine Unavailability and Maintenance

Ideally, machines should restart a new production cycle when the inventory runs out. The causes of
stockout are the result of a machine breakdown, unscheduled demand, and/or unscheduled corrective
maintenance. Groenevelt et al. [9] investigated the effect of machine breakdown and corrective
maintenance on optimal production lot size. Moinzadeh and Aggarwal [10] examined the single-stage
model while considering the reorder and maximum inventory level with backorders. They assumed
an exponentially distributed breakdown intervals with constant restoration times. Giri et al. [11]
proposed the EPQ model while considering machine failure, repair time, and an acceptable production
rate. Recently, Peymankar et al. [6] studied the effects of certain contractual agreements on the EPQ
model, when considering machine breakdown. During the machine repair, the manufacturer has some
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options, such as purchasing the items from the free market or a predetermined supplier under contract.
Their study considered revenue sharing and price discount contract.

Most industries schedule preventive maintenance to avoid or minimize the frequencies of
machine breakdown. Abboud et al. [12] studied production lot-sizing, while assuming machine
unavailability due to maintenance or being used for other products and customer. Lin and Gong [13]
eliminated the assumption by considering random machine breakdown and a constant production
rate. Aghezzaf et al. [14] provided a maintenance planning model with an integrated point of view.
They investigated the inventory system with random item failure during the finite planning horizon.
Chakraborty et al. [15] considered the out of control and machine breakdown condition in the EPQ model.
Chakraborty et al. [16] extended their previous model by scheduling an inspection during the production
run. Liao et al. [17] incorporated perfect and imperfect preventive maintenance. Chung et al. [18]
considered random machine unavailability for the economic production deteriorating model to derive
the optimal production uptime period. Widyadana and Wee [19] considered deterioration and random
machine breakdown with stochastic repair time. Wee and Widyadana [2,3] considered stochastic
preventive maintenance time and imperfect quality with different rework rules. Cheng et al. [20]
extended the study by integrating the EPQ with quality control and condition-based maintenance
under MTS production policy. The cost minimization model is solved while using a simulation method.
Moreover, Al-Salamah [21] proposed an artificial bee colony heuristic to solve EPQ with imperfect
quality and random machine breakdown. Recently, Marchi et al. [22] considered the learning effect and
energy consumption in an EPQ with machine breakdown and defective items. Chiu et al. [23] studied
EPQ with stochastic machine failure and random defective rate while considering a minimum service
level. Chiu et al. [24] extended the model and considered a multi-shipment policy. Tsao et al. [25]
incorporated the Industry 4.0 concept to support predictive maintenance.

2.2. Economic Production Quantity with Defective Item and Warranty

Perfect products are assumed in many EPQ models. However, defective items are common in
most manufacturing settings. Numerous studies have investigated the inventory control problem by
considering the effect of imperfect items, such as Lee and Rosenblatt [26], who considered process
deterioration results in defective products; they determined the optimal production cycle times and
the number of inspections. Hayek and Salameh [27] examined an optimal replenishment policy to
minimize the overall inventory cost while considering imperfect quality, shortage, and backorder for a
finite production model. Huang [28] studied an optimal integrated inventor model while considering
defective items in a small lot size. Goyal et al. [29] developed an approach to determine an optimally
integrated vendor-buyer inventory with imperfect quality.

Industries may offer warranties for the non-conforming items within a warranty period to reduce
the customer’s complaint. Yeh et al. [4] considered free minimal repair warranty and optimized
the production run length. An optimal production run length will keep the system in its in-control
state, hence reducing the defects and warranty cost. Wang and Sheu [5] considered the tradeoff

between manufacturing and warranty costs for products sold under free-repair warranty to find the
optimal lot size. Wang [30] extended the EPQ with free-repair warranty model assuming an increasing
production failure rate. Chen et al. [31] studied three different manufacturer’s pricing strategy in a
single-manufacturer dual-competing retailer supply chain with warranty period-dependent demand.
Sana [32] simultaneously considered rework, warranty, and preventive maintenance and determined
the optimal buffer inventory. Chiu et al. [33] considered abort/resume policy in EPQ system with
machine breakdown and imperfect items. Taleizadeh and Wee [34] examined a manufacturing system
with immediate rework and partial backordering. Sarkar and Saren [35] developed EPQ models that
considered warranty cost and the possibility of inspection errors due to product inspection policy.
Sett et al. [36] investigated an imperfect production system with preventive maintenance to obtain
the optimal buffer inventory and inspection policy. Recently, Cunha et al. [37] developed an EPQ
model considering a discount price for imperfect quality items to reduce the total production cost.
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Taleizadeh et al. [38] considered repair failure, partial backordering, and delayed payment policy in a
multi-item EPQ model. Nobil et al. [39] considered non-zero rework setup times in a multi-item EPQ.
Taheri-Tolgari et al. [40] considered two types of human inspection error in the EPQ model under
fuzzy environment.

2.3. Deterioration Factor

Deteriorating items experience damage, decay, obsolescence, pilferage, and loss of marginal value,
which cause reduced usefulness [7]. Misra [41] started the study on EPQ for deteriorating items with
some assumptions, such as constant demand, no shortages, and no constraint in space, production lot
size, and production setups. Further, the machine is assumed to always be in good condition. Goyal
and Gunasekaran [42] studied a deteriorating model by introducing the effects of some marketing
policies on the EPQ model. Skouri and Papachristos [43] modeled a deteriorating items EOQ model
with time-dependent partial backordering and proposed an algorithm to derive the optimal stopping
and restarting production times. Teng and Chang [44] modeled deteriorating items EPQ models while
assuming price and stock dependent demand. Law and Wee [45] discussed an integrated supply
chain model for both ameliorating and deteriorating items, following Weibull distribution. The model
incorporated partial backordering, multiple deliveries, and time discounting.

Chung et al. [18] formulated a production inventory deteriorating item model with random
machine unavailability to gain insight into the effect of optimal production uptime period. Palanivel and
Uthayakumar [46] developed an economic production quantity model for deteriorating items with price
dependent demand, time-dependent holding cost, and partial backordering under inflation. Chen [47]
investigated an imperfect manufacturing system to obtain the optimal retail price, replenishment cycle,
and the number of shipments. Recently, Daryanto et al. [48] studied the environmental impact of an
integrated inventory model while considering carbon emission, imperfect quality, and deterioration.

This research contributes a new EPQ model for deteriorating items under an imperfect production
system with random machine breakdown and a certain amount of imperfect quality products. Regular
inspection and preventive maintenance are scheduled. However, machine breakdown still occurs and
it needs a corrective repair. The rework process is not perfect. Therefore, a warranty is provided to
compensate the customers. Moreover, a shortage is allowed, in which the manufacturer considers an
emergency purchase to overcome the shortage. However, customers are impatient. Therefore, the
shortage is partially backlogged. From our literature review, although the study on EPQ model with
machine breakdown and imperfect quality items are a lot, no models simultaneously consider the
situations mentioned above. Table 1 presents the contribution of this research and other authors.

Table 1. Contribution of selected authors.

Author(s) EPQ Machine
Breakdown

Preventive
Maintenance Rework Warranty Emergency

Purchase
Partial

Backorder
Deteriorating

Items

Misra (1975)
√ √

Groenevelt et al.
(1992)

√ √

Wee (1993)
√ √ √

Yan & Cheng (1998)
√ √ √

Abboud et al.
(2000)

√ √ √

Yeh et al. (2000)
√ √

Wang & Sheu
(2003)

√ √ √

Skouri &
Papachristos (2003)

√ √ √

Giri et al. (2005)
√ √

Lin & Gong (2006)
√ √ √

Aghezzaf et al.
(2007)

√ √ √
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Table 1. Cont.

Author(s) EPQ Machine
Breakdown

Preventive
Maintenance Rework Warranty Emergency

Purchase
Partial

Backorder
Deteriorating

Items

Chakraborty et al.
(2008)

√ √ √

Chakraborty et al.
(2009)

√ √ √

Liao et al. (2009)
√ √ √ √

Chung et al. (2011)
√ √ √

Widyadana & Wee
(2011)

√ √ √

Wee & Widyadana
(2012)

√ √ √ √

Sana (2012)
√ √ √ √

Wee & Widyadana
(2013)

√ √ √ √

Chiu et al. (2013)
√ √

Palanivel &
Uthayakumar

(2015)

√ √ √

Taleizadeh & Wee
(2015)

√ √ √

Sarkar & Saren
(2016)

√ √

Sett et al. (2017)
√ √ √

Peymankar et al.
(2018)

√ √ √

Cheng et al. (2018)
√ √ √

Al-Salamah (2018)
√ √ √

Cunha et al. (2018)
√ √

Marchi et al. (2019)
√ √ √

Chiu et al. (2019a)
√ √ √

Chiu et al. (2019b)
√ √

Tsao et al. (2019)
√ √ √ √

Taleizadeh et al.
(2019)

√ √ √

Nobil et al. (2019)
√ √

Taheri-Tolgari et al.
(2019)

√ √ √ √

This paper
√ √ √ √ √ √ √ √

3. Notation and Assumptions

The proposed model is an EPQ model where a machine inspection is scheduled. However, a
machine breakdown still possibly occurs during the production up-time. Hence, it requires corrective
repair, and then a shortage may occur. In this case, partial backordering takes place and an emergency
purchase may be required. The system also produces imperfect items with different rates before and
after the inspection. Rework process and post-sales warranty are launched for the defective items. The
inventory also considers the effect of item deterioration. The objective of the model is to minimize the
total cost by determining the production up-time period and the elapsed time of implementing the
inspection time. The following notations and assumptions are used to develop the model.

3.1. Notation

p = production rate
d = demand rate
θ = deteriorating rate
Cs = setup cost
Hs = holding cost per unit
Sd = lost sales cost per unit
Cd = deteriorating cost per unit
Ih = inventory level
Im = maximum inventory level
I1 = inventory level in production up-time period
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I2 = inventory level in production down-time period
s = the elapsed time of implementing inspection time
Vsk = cost ratio of setup cost during inspection plan which is inversely proportional to s
Rrsk = variable risk cost per unit time which is proportional to s
CM = machine breakdown corrective cost
T1 = production up-time period
T2 = production down-time period
T3 = shortage period
Tp = machine breakdown period
T = total replenishment cycle length
θ1 = Defective rate before predetermined inspection time
θ2 = Defective rate after predetermined inspection time
CR = Rework cost per unit
h1 = Hazard rate of product produced before predetermined inspection time
h2 = Hazard rate of product produced after predetermined inspection time
Cw = Post-sale warranty cost per unit
CEp = Emergency purchase cost per unit from outside supplier
AEp = Setup cost per unit per unit time for emergency purchase
γ = backordering rate
µ = The arrival rate of machine breakdown
λ = The maintenance rate

3.2. Assumption

1. A single item with a constant rate of production, demand, and deteriorating is considered.
2. Production rate is greater than the demand rate.
3. The deteriorated items are not replaced.
4. Machine repair time is not dependent on the machine breakdown.
5. The probability of machine breakdown is exponentially distributed [3,10].

4. Model Development

Figure 2 provides the behavior of the inventory with machine breakdown, inspection, and partial
backordering. The production ends at T1, in which the machine does not breakdown and it reaches
the maximum inventory level (Im). The inventory decreases and reaches zero units due to demand
and deterioration at the time (T1 + T2). Hence, the machine starts the new cycle. Tp is the elapsed
time until breakdown state since there is a machine breakdown possibility during production up-time
period T1. It will require time to repair and reset the machine. During the repair and reset period, the
inventory also decreases. The shortage may occur at period T3, and partial backordering take place
because the repair time is stochastic in (T2 + T3) period. An emergency purchase may be required to
fulfill the backorder quantity from an outside supplier.

From Figure 2, the inventory levels are as follows:

dI1(t1)

dt1
+ θI1(t1) = p− d 0 ≤ t1 ≤ T1 (1)

And
dI2(t2)

dt2
+ θI2(t2) = −d 0 ≤ t2 ≤ T2 (2)

From the boundary condition of I1 (0) = 0 and I2 (T2) = 0, Equations (1) and (2) can be solved as:

I1(t1) =
p− d
θ

{
1− exp(−θt1)

}
0 ≤ t1 ≤ T1 (3)
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I2(t2) =
d
θ

{
exp[θ(T2 − t2)] − 1

}
0 ≤ t2 ≤ T2 (4)

Since I1 (T1) = I2 (0), then one has the relationship between T1 and T2:

I1(T1) =
p− d
θ

{
1− exp(−θT1)

}
=I2(0) =

d
θ

{
exp[θ(T2)] − 1

}
(5)

Using the Taylor series approximation (Misra, [41]), Equation (5) is rewritten as:

(p− d)(T1 −
1
2
θT2

1) � d(T2 +
1
2
θT2

2) (6)

Since θT2 is a small value, T2 in terms of T1 can be approximated as:

T2 �
(p− d)T1(1− 1

2θT1)

d
(7)

Most studies in deteriorating production-inventory system assume similar approximation.
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4.1. Relevant Cost Functions for Deteriorating Production-Inventory System

4.1.1. Holding Cost Function

The amount of inventory holding, Ih, is illustrated by the following equation:

Ih =

T1∫
t1=0

p− d
θ

{
1− exp(−θt1)

}
dt1 +

T2∫
t2=0

d
θ

{
exp[θ(T2 − t2)] − 1

}
dt2 (8)

Assuming that θ2T2
1 is very small, Equation (8) becomes

Ih = (p− d)
(

T1
2

2

(
1−

θT1

3

))
+ d

(
T2

2

2

)(
1 +

θT2

3

)
(9)

By substituting Equation (7) to Equation (9), one has

Ih = (p− d)
(

T1
2

2

(
1−

θT1

3

))
+

d
2

 (p− d)T1(1− 1
2θT1)

d

21 +
θ(p− d)T1(1− 1

2θT1)

3

 (10)
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Assuming that θ2T2
1 is very small, Equation (10) can be simplified as:

Ih =
p2

2d
T2

1

{(
1−

d
p

)
+

2θT1

d

{[
p
6
− d

(
1 +

d
p

(
d

2p
+

4
3

))]}}
(11)

Since there are possibilities of machine unavailable, based on the time point of a machine
breakdown, then Equation (11) can be formulated as:

Ih =


p2

2d T2
p

{(
1− d

p

)
+

2θTp
d

{[ p
6 − d

(
1 + d

p

(
d

2p + 4
3

))]}}
, f or Tp ≤ T1

p2

2d T2
1

{(
1− d

p

)
+ 2θT1

d

{[ p
6 − d

(
1 + d

p

(
d

2p + 4
3

))]}}
, f or Tp > T1

(12)

Here, assuming that f (Tp) is the probability density function (p.d.f.) of the machine breakdown
Tp and is exponentially distributed, i.e., f (Tp) = µe−µTp for Tp > 0. Therefore, the expected holding
cost becomes

HS × E[Ih] = HS

T1∫
Tp=0

[
p2

2d T2
p

{(
1− d

p

)
+

2θTp
d

{[ p
6 − d

(
1 + d

p

(
d

2p + 4
3

))]}}]
µe−µTpdTp

+ HS

∞∫
Tp=T1

[
p2

2d T2
1

{(
1− d

p

)
+ 2θT1

d

{[ p
6 − d

(
1 + d

p

(
d

2p + 4
3

))]}}]
µe−µTpdTp

(13)

4.1.2. Deterioration Cost

The deteriorated item is calculated by subtracting the production quantity by the demand during
T1 + T2, as follows:

Det = Quantities produced – the demand during (T1 + T2)= pT1 − d(T1 + T2) (14)

Substitute T2 derived from Equation (7) into Equation (14), it can be simplified as:

Det �


p
2 (1−

d
p )θT2

p f or Tp ≤ T1
p
2 (1−

d
p )θT2

1 f or Tp > T1
(15)

By using similar f (Tp), the expected deterioration cost becomes

Cd × E[Det] = Cd


T1∫

Tp=0

[
p
2
(1−

d
p
)θT2

p

]
µe−µTpdTp +

∞∫
Tp=T1

[
p
2
(1−

d
p
)θT2

1

]
µe−µTpdTp

 (16)

4.1.3. Inspection Cost, Risk Cost and Corrective Cost of the Machine

The setup cost and risk cost occur during inspection planning. The inspection setup cost will
increase when the inspection interval (s) decreases. However, the risk cost for inspection actions will
decrease due to early fault detection (Chung and Wee [49]). There is a trade-off between the setup cost
and the risk cost for inspection schedule when the inspection interval, s, is considered. Generally, the
inspection setup cost, which is defined as Vsk/s, is inversely proportional to the fraction of the elapsed
time, s, and the variable risk cost, defined as Rrsks, is proportional to s. The total inspection cost Cbs is

Cbs(s) =
(Vsk

s
+ Rrsks

)
(17a)
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When the production process shifts from the in-control state to out-of-control state, there is a need
to restore the production system. The expected corrective cost for machine breakdown during interval
of [0, T1] can be formulated as:

E[Cret] = CM

T1∫
tp=0

µ exp
(
−µtp

)
dtp = CM[1− exp(−µT1)] (17b)

4.1.4. Rework Cost

Tp is the elapse time when the facility shifts from in-control state to breakdown stat since there is
a possibility of machine breakdown during production up-time period T1. When the predetermined
inspection time s is considered, the amount of nonconforming item is Z, one has:

Z �


θ1pTp, f or 0 < Tp ≤ s
θ1ps + θ2p

(
Tp − s

)
, f or s < Tp ≤ T1

θ1ps + θ2p(T1 − s), f or Tp > T1

(18)

Where s is the time interval of predetermined inspection and θ1 and θ2 are the defective rates before
and after the inspection is conducted. From Equation (18), the expected rework cost can be derived as
E[RW] = CRE[Z]. While considering the machine breakdown, one has the expected rework cost as:

E[RW] =
s∫

Tp=0
CR

[
θ1pTp

]
µ exp

(
−µTp

)
dTp

+
T1∫

Tp=s
CR

[
θ1ps + θ2p

(
Tp − s

)]
µ exp

(
−µTp

)
dTp

+
∞∫

Tp=T1

CR[θ1ps + θ2p(T1 − s)]µ exp
(
−µTp

)
dTp

(19)

4.1.5. Post-sale Warranty Cost

The product may become unusable after sales. Therefore, this study considers the post-sale
warranty policy. Post-sale warranty policy is not only cost-effectiveness, but it can also improve
customer satisfaction. For the warrant period τ, the failure rates of the conforming items and the
nonconforming items with and without inspection are v1(τ) and v2(τ), respectively. The calculated
failure rates with a warranty period of K for which the conforming items and the nonconforming items

are h1 =
∫ K

0 v1(τ)dτ and h2 =
∫ K

0 v2(τ)dτ, respectively. If the calculated failure rates of the conforming
and nonconforming items follow Weibull distribution, and they are independent of the elapsed time
Tp, the hazard rates are:

h1 =
K∫

0
v1(τ)dτ =

K∫
0
(λ
ρ1
1 ρ1τρ1−1)dτ = (λ1K)ρ1 and

h2 =
K∫

0
v2(τ)dτ =

K∫
0
(λ
ρ2
2 ρ2τρ2−1)dτ = (λ2K)ρ2 , respectively.

(20)

where λi,i = 1,2 represent arrival rates and ρi,i = 1,2 are the shape parameters for the conforming
items and the nonconforming items during the warranty period K. Taking the nonconforming item, Z,
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which include the quantities of the conforming and nonconforming items into account, the amount of
unusable defective item resulting in free-repair warranty cost is

Zh �


pTp((1− θ1)h1 + θ1h2), for 0 < Tp ≤ s
ps((1− θ1)h1 + θ1h2) + p(Tp − s)((1− θ2)h1 + θ2h2), for s < Tp ≤ T1

ps((1− θ1)h1 + θ1h2) + p(T1 − s)((1− θ2)h1 + θ2h2), for Tp > T1

(21)

Consequently, referring to Equations (20) and (21), the expected post-sale warranty cost is
as follows.

E[PO] = CwE[Zh] = Cw

s∫
Tp=0

[
pTp((1− θ1)h1 + θ1h2)

]
µ exp

(
−µTp

)
dTp

+Cw

T1∫
Tp=s

[
ps((1− θ1)h1 + θ1h2) + p(Tp − s)((1− θ2)h1 + θ2h2)

]
µ exp

(
−µTp

)
dTp

+Cw

∞∫
Tp=T1

[ps((1− θ1)h1 + θ1h2) + p(T1 − s)((1− θ2)h1 + θ2h2)]µ exp
(
−µTp

)
dTp

(22)

4.1.6. Emergency Purchasing Cost for Partial Backorder and Lost Sale Cost

Figure 2 shows the inventory level with a partial backorder, because lost sales may occur due
to impatient customers after the production down-time period. The backorder demand will be met
by emergency purchasing and the number of partial backorder demands will be replenished at the
end of T3. The amount of emergency purchases is counted on the shortage period. Assuming the
backordering rate is γ, the expected emergent purchasing cost for partial backorder can be defined as:

E[EC] = CEpγdE[T3] = γCEpd


T1∫

Tp=0


∞∫

t=T2

(t− T2) f (t)dt

µe−µTpdTp

 (23a)

Taking into consideration the machine breakdown and the repair time in which the lost sale rate
is 1-γ, the expected lost sale cost is

E[LC] = (1− γ)SddE[T3] = (1− γ)Sdd


T1∫

Tp=0


∞∫

t=T2

(t− T2) f (t)dt

µe−µTpdTp

 (23b)

The setup cost of an emergency purchase from an outside supplier depends upon the demand
and shortage period. Consequently, the expected time-dependent setup cost for emergency purchases
can be derived as

E[SEp] = AEpdE[T3] = AEpd


T1∫

Tp=0


∞∫

t=T2

(t− T2) f (t)dt

µe−µTp dTp

 (23c)

4.1.7. Expected Deteriorating Economic Production Quantity Total Cost

The total cost of the EPQ model includes expected total setup cost Cs, holding cost HsE[Ih],
deteriorating cost CdE[Det], inspection cost Cbs(s), corrective cost E[Cret], rework cost E[RW], post-sale
warranty cost E[PO], partial emergency purchase E[Ec], setup cost E[SEp], and lost-sale cost E[Lc].
Therefore, the expected total cost, E[TC], can be expressed as:

E[TC] = Cs + HsE[Ih] + CdE[Det] + Cbs(s) + E[Cret] + E[RW]

+E[PO] + E[EC] + E[LC] + E[SEp]
(24)
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4.2. Expected Replenishment Time for the Proposed Model Considering Random Machine Unavailability

The replenishment time is changeable and is not a constant because the machine breakdown
and repair time is unpredictable. The total replenishment time (T) consists of the production up-time
period, the production down-time period, and the possible breakdown-repair time. Therefore, T for
different conditions can be written as:

T =


Tp + T2 +

∞∫
t=T2

(t− T2) f (t)dt, Tp ≤ T1

T1 + T2 +
∞∫

t=T2

(t− T2) f (t)dt, Tp > T1

(25a)

From Equation (25a), with the probability of machine breakdown, the expected T is

E[T] =
T1∫

Tp=0

Tp + T2 +
∞∫

t=T2

(t− T2) f (t)dt

µe−µTpdTp +
∞∫

Tp=T1

T1 + T2 +
∞∫

t=T2

(t− T2) f (t)dt

µe−µTpdTp (25b)

However, when Tp 5 T1, backorder or lost sale may occur during the production down-time. The
longer expected repair time can be represented, as follows:

E[T3] =

T1∫
Tp=0


∞∫

t=T2

(t− T2) f (t)dt

µe−µTpdTp (25c)

With the relationships among Tp, T1, and T2 in Equation (7), the expected T1 and T2 period can be
obtained as:

E[T1 + T2] =
T1∫

Tp=0

(
1 + (p− d)

(1−θTp/2)
d

)
Tpµe−µTpdTp +

∞∫
Tp=T1

(
1 + (p− d) (1−θT1/2)

d

)
T1µe−µTp dTp

�
p[1−exp(−µT1)]

dµ
(26)

Referring to Equations (25b), (25c), and (26), one has the expected T:

E[T] �
p[1− exp(−µT1)]

dµ
+

T1∫
Tp=0


∞∫

t=T2

(t− T2) f (t)dt

µe−µTpdTp (27)

The replenishment cycle length of T is a variable since machine breakdown is likely. We can
use renewal reward theorem to solve the variable replenishment cycle length. From Equations (24)
and (27), we can derive the expected total cost per unit time. One has:

E[TEC] =
E[TC]
E[T]

(28)

Moreover, the following properties can be utilized to optimize the expected total cost of the
proposed deteriorating economic production quantity model.

Property 1

For a function f : S→R1 defined by f (x) = g(x)/h(x) where g: S→ R1 and h: S→ R1, and S is a
nonempty convex set in En.

The following theme form literature shows the conditions for convexity and concavity:
(1) g is convex on S and g (x) ≥ 0 for each x ∈S,
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(2) h is concave on S, and h(x) ≥ 0 for each x ∈ S, and
(3) Both g and h are differentiable.

4.2.1. Machine Breakdown with an Exponentially Distributed Repair Time

In this case, the machine repair time is an exponentially distributed random variable. The
exponential p.d.f. with mean 1/λ is given as:

f (t) = λe−λt for λ > 0

The expected period of the shortage is derived from Equation (25c):

E[T3] =

T1∫
Tp=0


∞∫

t=T2

(t− T2)λe−λtdt

µe−µTpdTp (29a)

E[T3] =
exp

[
T1

(
λ(p−d)

2d (−2 + θT1) +
λp
d + µ

)]
− exp

[
λT1

(T1pθ
2d + 1− θT1

2

)]
exp

[
T1

(λp
d + µ

)] (29b)

From Equations (26) and (29a,b), the expected value of total replenishment time with the
exponential distribution of machine repair time can be expressed as:

E[T] = E[T1 + T2] + E[T3] (30a)

E[T] = p[1−exp(−µT1)]
dµ

+
exp

[
T1

(
λ(p−d)

2d (−2+θT1)+
λp
d +µ

)]
−exp

[
λT1

(
T1pθ

2d +1−
θT1

2

)]
exp

[
T1

(
λp
d +µ

)] (30b)

Consequently, neglecting the terms higher than λT2
1, µT2

1, and θT2
1 due to small values of λ, µ,

and θ, the value of the total replenishment cycle time is:

E[T] �
[
λ2

2
− pµ

(
µ+ 0.5

d

)
+
θ
2

]
T2

1 +
(p

d
+ µ

)
T1 (30c)

The lost sale and efficiency of machine utilization have been critical issues in the management of
production and inventory control due to the unpredictable conditions of repair. This paper discusses
the effects of repair time on production: the up-time period and the replenishment time length. Two
circumstances are studied when considering the replenishment time with or without the repair time.

Scenario A: Without repair time
Replenishment time considering machine breakdown with a negligible repair time

The total replenishment time can be represented in term of Tp, since there is a possibility of a
machine breakdown at the time of Tp and when the repair time is negligible, by Equation (7), as follows:

Tbrk = Tp + T2

= Tp + (p− d)Tp(1− 1
2θTp)/d ≈

pTp
d −

(p−d)θT2
p

2d

(31a)
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Tbrk is the replenishment time when the machine breakdown occurs. From Equation (31a), the
replenishment time length is of Tbrk and is equal to Tp + T2. Consequently, the expected value of total
replenishment time with respect to Tp is

E[Tbrk] ≈
pE

[
Tp

]
d
−

(p− d)θE
[
T2

p

]
2d

(31b)

By utilizing the algebraic calculation, the expected replenishment time without considering the
repair time is

E[Tbrk]≈
pE[Tp]

d
−
(p− d)θ

2d

(
σ2

Tp +ψ
2
)

(31c)

where ψ and σ2
Tp, respectively, represent the expected value and variance of the machine breakdown

elapsed time, Tp, i.e., ψ = E
[
Tp

]
=

∫
Tp f (Tp)dTp = 1/µ and E[T2

p] =
(
σ2

Tp +ψ
2
)
=

(
σ2

Tp +
(
E[Tp]

)2
)
.

The variance and the mean value of machine breakdown probability influence the optimal
expected replenishment time. From the (31c), the optimally expected production up-time can be
derived by solving the quadratic equation as

E
[
Tp

](1)∗
=

D̃−

√
(D̃)

2
−
[2d]

p
D̃ ·

(
(p− d)θ

2d
σ2

Tp + E[Tbrk]

) (32a)

E
[
Tp

](2)∗
=

D̃ +

√
(D̃)

2
−
[2d]

p
D̃ ·

(
(p− d)θ

2d
σ2

Tp + E[Tbrk]

) (32b)

where D̃ =
[(

1− d
p

)
θ
]−1

.
The Taylor’s series expansion is used to simplify E[Tp] in terms of E[Tbrk] due to the complexity of

Equation (32a), as following

E[Tp] =
d
p

[
1−

((
1− d

p

)
θ
)2
σ2

Tp

]−1
2

E[Tbrk]

+ 1
2

(
d
p

)2(
1− d

p

)
θ
[
1−

((
1− d

p

)
θ
)2
σ2

Tp

]−3
2
(E[Tbrk])

2
(33a)

In scenario A, for the given f (Tp), when λ, θ, and µ approach 0, then E[Tp]→ T1 and both roots of
the expected replenishment time can be derived by using L’Hospital’s rule:

Property 2

lim
λ→ 0
µ→ 0
θ→ 0

E[Tp]
(1)
→ T1 =

d
p

T and lim
λ→ 0
µ→ 0
θ→ 0

E[Tp]
(2)
→ T1 = −

d
p

T (33b)

Hence, we should choose the first root. From Equation (33b), this result is the same as the property
of the deterministic EPQ model. Note that, for Equation (32a) to exit, we must have

E[Tbrk] ≤


[

2d
p

(
1−

d
p

)
θ

]−1

−
(p− d)θ

2d
σ2

Tp

 (33c)
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The above equation shows that product deterioration and the variance of f (Tp) are significant.
When the probability of a machine breakdown is tiny, i.e., µ approaches 0, then σ2

Tp → 0 , E[Tbrk]→ T ,
and one has an upper bound for the replenishment time length is as follows:

E[Tbrk]→ T ≤


[

2d
p

(
1−

d
p

)
θ

]−1
 (33d)

Equation (33d) reduces it to be the replenishment cycle time length of the traditional deteriorating
production inventory model.

Scenario B: With repair time
General form: Replenishment time considering machine breakdown and repair time

Referred to Equation (30c), as shown below,

E[T] �
[
λ2

2
− pµ

(
µ+ 0.5

d

)
+
θ
2

]
T2

1 +
(p

d
+ µ

)
T1

Note that, Equation (30c) is a quadratic equation of T1. We solve Equation (30c) for T1 in order to
express T1 in term of E[T], which leads to the following two roots:

T(1)
1 = −A(µ,λ,θ) −

√
A2(µ,λ,θ) +

2dA(µ,λ,θ)
(p + µd)

E[T]

and

T(2)
1 = −A(µ,λ,θ) +

√
A2(µ,λ,θ) +

2dA(µ,λ,θ)
(p + µd)

E[T] (34)

where

A(µ,λ,θ) =
−(p + µd)

(−dλ2 − dθ+ 2µ2p + µp)

From the proposed model with repair time, Equation (34) is true when the following condition
exists:

E[T] ≤
A(µ,λ,θ)(p + µd)

−2d
=

(p + µd)2

2[µpd(1 + 2µ) − d2(λ2 + θ)]

(35)

Replenishment time without considering machine breakdown:

From Equations (30a–c) and (34), when the probability of machine breakdown is extremely small,
i.e., µ→ 0, the following rules are implemented to obtain both of the roots. The machine is assumed to
be in an excellent condition of performance. When µ approaches to 0, by using L’Hospital’s rule and
rearranging Equation (34), property 3 exists:

Property 3

For a given mean, ψ, variance, σ2
Tp

, and maintenance rate λ, when the probability of machine
breakdown approximates to zero, the production up-time period of the inventory system is:

lim
µ→0

T(1)
1 = d

p −
[
d(1− E[T])/

√
(p2 + 2d2λ2E[T] + 2d2θE[T])

]
and lim

µ→0
T(2)

1 = − d
p +

[
d(1− E[T])/

√
(p2 + 2d2λ2E[T] + 2d2θE[T])

] (36a)
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Replenishment time without considering machine breakdown and repair time:

If the defective factor can be quickly eradicated, the repair time can be neglected (property 3); the
production up-time period of inventory system reduces to be

lim
µ→ 0
λ→ 0

T(1)
1 = d

p −
[
d(1− E[T])/

√
(p2 + 2d2θE[T])

]

and lim
µ→ 0
λ→ 0

T(2)
1 = − d

p +
[
d(1− E[T])/

√
(p2 + 2d2θE[T])

] (36b)

Note that when the probability of machine breakdown approximates to zero, Equation (33a)
reduces to be same as Equation (36b).

Replenishment time without considering machine breakdown, repair time, and deterioration:

From Equations (33a) and (36b), when the probability of machine breakdown approximates to
zero, Tp approaches to T1, and E[Tbrk] approximates to predetermined replenishment time T. With
negligible repair time and deterioration (from property 3), the production up-time of the above roots
reduce to:

Property 4

lim
µ→ 0
λ→ 0
θ→ 0

T(1)
1 =

d
p

T and lim
µ→ 0
λ→ 0
θ→ 0

T(2)
1 = −

d
p

T (36c)

Hence, we should choose the first root as the solution of T1:

T∗1 = −A(µ,λ,θ) −

√
A2(µ,λ,θ) +

2dA(µ,λ,θ)
(p + µd)

E[T] (37)

where A(µ,λ,θ) = −(p+µd)
(−dλ2−dθ+2µ2p+µp) < 0.

4.3. Optimization of the Deteriorating Economic Production Quantity Model

The expected total system cost per unit time for the case with exponential distribution can be
formulated by substituting Equations (24) and (30a–c) into Equation (28).

Assuming that λT3
1, θ1T3

1, θ2T3
1, and θT3

1 approach to zero and when considering property 1,
Equation (28) can be rearranged as:

E[TEC] =
k1T2

1 + k2T1 + Ck

k3T2
1 + k4T1

(38a)

Where

k1 =
λ(1−γ)Sdd

2 (θ− µ)
( p

d + 1
)
+ HS

(
−3θd

2µ +
4θp
µ

)
− (1− γ)Sddpµ

(
µ+0.5

d +
µ(1+CM/((1−γ)Sdd))

p

)
+ d

[
γ
(
AEp + CEp

)]
·

[
pµ

( 0.5−µ
d

)
+ θ

2

]
+

pµ
2 [θ2(CR + h2Cw)(sµ− 1) − θ1µs(CR + h1Cw)] > 0,
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k2 = λ(1− γ)Sdd + θ2p(CR + h2Cw) + µ(CM + (1− γ)Sdd) + dµ
[
γ
(
AEp + CEp

)]
> 0,

k3 = λ2

2 − pµ
(µ+0.5

d

)
+ θ

2 < 0,

k4 =
( p

d + λ
)
> 0,

a1 =
µp
2 [CR(θ2 − θ1) + Cw(θ2h2 − θ1h1)],

a2 = [Rrsk + CRp(θ2 − θ1) − pCw(θ2h2 − θ1h1)],

and Ck = a1s2 + a2s + CS +
Vsk

s
(38b)

4.3.1. Optimal Conditions for Deriving the Optimal Solution of the Proposed Model

While considering Property 1, the following conditions are essential in deriving the
optimal solution.

Optimal condition (1):
Considering Equations (24) and (38a), taking the second derivative of E[TC] with respect to T1,

one has:
d2E[TC]

dT2
1

= 2k1 = 2
{
λ(1−γ)Sdd

2 (θ− µ)
( p

d + 1
)
+ HS

(
−3θd

2µ +
4θp
µ

)
−(1− γ)Sddpµ

(
µ+0.5

d +
µ(1+CM/((1−γ)Sdd))

p

)
+d

[
γ
(
AEp + CEp

)]
·

[
pµ

( 0.5−µ
d

)
+ θ

2

]
+

pµ
2 [θ2(CR + h2Cw)(sµ− 1) − θ1µs(CR + h1Cw)]

}
>0

(39a)

Hence, E[TC] is a convex function of T1.

Optimal condition (2):
Referring to Equation (30c), taking the second derivative of E[T] with respect to T1, one has:

d2E[T]
dT2

1

= 2k3 = 2
{
(θ+ λ2)

2
− pµ

(
µ+ 0.5

d

)}
< 0 (39b)

Therefore, E[T] is a concave function of T1.
As shown in the optimal conditions (1) and (2), the optimal T1 can be derived, since the expected

total cost function E[TEC] = E[TC]/E[T] is convex for small value of λ, µ, and T1, as well as satisfying
the following condition:

0 < λ <

√
2pµ

d
(0.5 + µ) − θ (39c)

(The proof is shown in Appendix A)

4.3.2. Derivation of Iterative Solutions to the Deteriorating Economic Production Quantity Model

The objective of the proposed model is to solve the optimal production up-time period, T1 and
the optimal elapsed time, s for the inspection plan. If E[TEC] can satisfy the property 1, taking the
first derivative of E[TEC] with respect to T1 and setting the result to zero, the solution of production
up-time T1 is derived

T∗1 =
Ckk3 +

√
C2

kk2
3 + Ckk2

4k1 −Ckk4k2k3

k1k4 − k2k3
(40a)

For the optimal elapsed time, s of implementing an inspection plan, one has

∂E[TEC]
∂s

=

pµ2(θ2(CR+h2Cw)−θ1(CR+h1Cw))T2
1

2 + 2a1s + a2 −
Vsk
s2

K3T2
1 + K4T1

(40b)
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Since µ2θ1 and µ2θ2 are very small, by setting the above result to zero and using the fixed-point
methodology, an iterative solution of s that considers T1 can be obtained as

sn =

√
Vsk

Ũn−1 + 2a1sn−1 + a2
(40c)

where Ũn−1 =
p
2µ

2[θ2(CR + h2Cw) − θ1(CR + h1Cw)] · T2
1, n−1 < 0.

Taking first derivative of sn with respect to T1, one has:

dsn

dT1
=


√

Vsk

Ũn−1 + 2a1sn−1 + a2


−1

·

(
−Vsk · Ũn−1

)
T1

(
Ũn−1 + 2a1sn−1 + a2

)2 < 0 (40d)

Since a2 > 0, µ→ 0 , sn−1, θ1, and θ2 are very small, then the terms of 2a1sn−1 and Ũn−1 approach
to zero and Equation (40d) is negative. When the effect of production up-time length (T1) on the
elapsed time of inspection (s) is negative, indicating that the T1 increases as the s decreases. This
indicates that, when the elapsed time interval of implementing inspection increases, the production
up-time length (T1) is shortened, which results in a more frequent production replenishment policy.

Moreover, the estimated range of elapsed time for performing an inspection sest
J can be obtained

by setting the terms of 2a1sn−1 and Ũn−1 in Equation (40c) to zero:

s∗n > sest
J =

√
Vsk
a2

or s∗n < sest
J = −

√
Vsk
a2

(41)

where a2 = Rrsk + p[CR(θ1 − θ2) −Cw(θ2h2 − θ1h1)]

A starting point of s can be derived from Equation (41).

Remarks:
One of the optimal conditions is obtained by letting the function in the square root of T1 larger

than zero since the square root value of the optimal T1 is positive. i.e., CK > 0.

4.4. Solution Procedure

We developed a solution procedure with a fixed point iterative method for obtaining the
approximate optimal solution, as shown in Equations (40a–d) and (41) of Section 4.3.2, since solving
the symbolic solutions of the planned production up-time T1 and the elapsed time of implementing
inspection time s is complex, as shown in Equations (38a,b) and (39a–c). This is due to the fact that the
objective function Equations (38a,b) of the proposed model is a nonlinear optimization problem and is
difficult to optimize through direct differentiation.

Step 1: If input parameteris λ not in the range of Equation (39c), the solution is infeasible.
Step 2: Initiate an integer value of n. Let n = 1, sn-1 = 0 and T1, n-1 = 0 at n = 1.
Step 3: Compute the parameter values of a1, a2, k1, k2, k3, k4, and Ck, n-1 using Equations (38a)

and (38b).
Step 4: Derive Ũn−1 = 0.5pµ2[θ2(CR + h2Cw) − θ1(CR + h1Cw)] · T2

1, n−1 in Equation (40c).

Step (4-1): From Equation (40c), calculate sn =

√
Vsk/(Ũn−1 + 2a1sn−1 + a2) using sn-1,

Ũn−1 and T1, n-1.
Step (4-2): Determine if sn = sn-1, let s* = sn; then, go to step 5. Otherwise, let n = n + 1

and compute Ck, n-1 and T1, n-1 using Equations (38b) and (40a); then return to
Step 4.
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Step 5: Calculate C∗k and T∗1 using Equations (38b) and (40a) and the optimal elapsed time of
inspection plan, s*. Finally, determine T∗2 using Equation (7), then solve Q* using pT1

* and
derive the optimal total system cost per unit time, E[TEC].

5. Case Example and Sensitivity Analysis

A Taiwan thin-film manufacturer (UNMC) produces various products of thin-film that is used in
automotive, printing, and electronic industries. A predetermined production up-time is scheduled.
The product is manufactured with a defective rate of θ1 before the inspection and with a defective
rate of θ2 after inspection. The defective rates can be reduced after the inspection is implemented.
There is a probability of machine breakdown in the factory. Shortages will occur when the machine
is unavailable after the production down-time due to preventive maintenance or unpredicted repair
time. Defective items are detected and reworked during production. Moreover, products during
storage incur deterioration loss due to manufacturing faulty, the nature of the material, and the
storage environment.

We modified the parameters from a thin film manufacturer to avoid copyright issues and simplify
the modeling. The resulting parameters are as follows:

θ= 0.01
P = 14,000 units
d = 8500 units
CS = $120
HS =$1.5
Cm = $10

Rrsk = $4500
Vsk = $20
Sd = $30
CR = $19
h1 = 0.003
h2 = 0.0025

θ1 = 0.0025
θ2 = 0.002
µ = 0.006
Cw = 35
AEp =120
λ = 0.009

Based on the stated solution procedures, the approximate optimal solutions while considering
deterioration are derived as (T1*, s*, ETC*) = (0.082084 year, 0.06569 year, and $11,066.99), respectively. If
deterioration approximates to zero, the solution is derived as in Table 2. This study uses the percentage
of total cost difference (PTCD) to analyze the sensitivity of the key parameters. The percentage of total
cost difference is defined as PTCD = (TC − TC*)/TC*.

Table 2. Sensitivity analysis when the deteriorating rate changes.

{θ} 0.008 0.009 {0.01} 0.011 0.012

T1 0.09177 0.086523 0.082084 0.078265 0.074934
s 0.065694 0.065694 0.065694 0.065694 0.065694
Q 505 476 451 430 412
T2 0.05936 0.055964 0.053091 0.05062 0.04846

ETC 9933.06 10,515.81 11,066.99 11,591.23 12,092.13
PTCD(%) −10.25% −4.98% 0.00% 4.74% 9.26%

Referring to Equation (40d), the production up-time length decreases as the elapsed time of
implementing inspection increases. It indicates that the manager should carry out a frequent production
replenishment strategy to optimize the expected total inventory system cost. The parameters are
increased and decreased by 10% and 20%. The results are given in Tables 2–13 and Figures 3–7. “*” is
the minimum total cost and “{•}” is the base column. There are some findings, as follows:

(a) For increasing {θ }, a lesser production-lot-size should be implemented to optimize the inventory
system (Table 2 or Figure 7). The achievement in the deterioration rate reduction will benefit the
economic production inventory system.

(b) For decreasing {θ1} and increasing {θ2}, the total sum of the production the up-time period
and down-time period tends to decrease. That investment on the defective rate reduction will
influence the production and delivery policies. In practice, when the defective rate decreases, a
frequent delivery policy should be implemented (Tables 3 and 4 or Figures 4 and 5).
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(c) When the variable risk cost tends to increase, the predetermined inspection period {s} also tends
to increase. (See Table 11 or Figure 3)

(d) The total cost is positively sensitive to {d}, {θ} and {Hs} (Table 2, Table 8, Table 13, and Figure 6).
When the unit holding cost increases, the production up-time period and down-time period tend
to decrease. That is, a manager may use a frequent and small lot-size policy when the unit holding
cost increases (Figures 4 and 5). The results are similar to the parameter of the deterioration
rate {θ}.

(e) The total cost is negatively sensitive to {p} and {µ} (Tables 7 and 9 and Figure 6). When the mean
time between breakdown {1/µ} increases, a frequent production policy is encouraged to be carried
out (Figure 7).

(f) When {Hs} increases, the manager should consider a smaller production-lot-size and shorter
cycle-time policies to lower the production inventory level (Table 13 and Figure 4, Figure 5, and
Figure 7).

(g) The production lot size, Q, is positively sensitive to {p}, the arrival rate of machine breakdown {µ}
and variable risk cost {Vsk}, and it is negatively sensitive to {d}, {Hs} and the deterioration rate
{θ}. In practice, when {d} increases and {p} decreases, the total sum of the production up-time
period and down-time period should be shortened (Table 2, Table 7, Table 8, Table 9, Table 10,
and Table 13, and Figure 7).

Table 3. Sensitivity analysis when defective rate before inspection changes.

{θ1} 0.002 0.00225 {0.0025} 0.00275 0.003

T1 0.08158 0.08184 0.082084 0.08233 0.08257
s 0.066663 0.066173 0.065694 0.065225 0.064766
Q 449 450 451 453 454
T2 0.05277 0.05293 0.053091 0.05325 0.05341

ETC 11,001.57 11,034.45 11,066.99 11,099.20 11,131.09
PTCD(%) −0.59% −0.29% 0.00% 0.29% 0.58%

Table 4. Sensitivity analysis when defective rate after inspection changes.

{θ2} 0.0016 0.0018 {0.002} 0.0022 0.0024

T1 0.08248 0.08228 0.082084 0.08189 0.08169
s 0.064949 0.065319 0.065694 0.066076 0.066465
Q 453 452 451 450 449
T2 0.05334 0.05322 0.053091 0.05296 0.05283

ETC 11,053.66 11,060.43 11,066.99 11,073.34 11,079.47
PTCD(%) −0.12% −0.06% 0.00% 0.06% 0.11%

Table 5. Sensitivity analysis when the hazard rate of sold product before inspection changes.

{h1} 0.0024 0.0027 {0.003} 0.0033 0.0036

T1 0.082081 0.082082 0.082084 0.082085 0.082086
s 0.065699 0.065697 0.065694 0.065691 0.065689
Q 451 451 451 451 451
T2 0.05309 0.053090 0.053091 0.053092 0.053093

ETC 11,066.63 11,0066.81 11,066.99 11,067.17 11,067.35
PTCD(%) 0.00% −0.54% 0.00% 0.00% 0.00%
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Table 6. Sensitivity analysis when the hazard rate of sold product after inspection changes.

{h2} 0.002 0.00225 {0.0025} 0.00275 0.003

T1 0.082086 0.082085 0.082084 0.082083 0.082082
s 0.065691 0.065692 0.065694 0.065695 0.065697
Q 451 451 451 451 451
T2 0.053092 0.053092 0.053091 0.053091 0.053090

ETC 11,066.93 11,066.96 11,066.99 11,067.02 11,067.05
PTCD(%) 0.00% 0.00% 0.00% 0.00% 0.00%

Table 7. Sensitivity analysis when the arrival rate changes.

{µ} 0.0048 0.0054 {0.006} 0.0066 0.0072

T1 0.073423 0.077874 0.082084 0.086087 0.089911
s 0.065694 0.065694 0.065694 0.065694 0.065694
Q 404 428 451 473 494
T2 0.047492 0.05037 0.053091 0.055679 0.058152

ETC 12,343.16 11,651.93 11,066.99 10,563.59 10,124.38
PTCD(%) 11.53% 5.29% 0.00% −4.55% −8.52%

Table 8. Sensitivity analysis when the demand rate changes.

{d} 6800 7650 {8500} 9350 10200

T1 0.079767 0.08090 0.082084 0.083321 0.084616
s 0.065694 0.065694 0.065694 0.065694 0.065694
Q 574 514 451 387 321
T2 0.08443 0.067125 0.053091 0.04142 0.03151

ETC 9109.88 10,105.41 11,066.99 11,993.88 12,885.30
PTCD(%) −17.68% −8.69% 0.00% 8.38% 16.43%

Table 9. Sensitivity analysis when the production rate changes.

{P} 11,200 12,600 {14,000} 15,400 16,800

T1 0.095234 0.087922 0.082084 0.077284 0.073247
s 0.065885 0.065789 0.065694 0.065599 0.065506
Q 275 360 451 533 608
T2 0.030236 0.04239 0.053091 0.062712 0.071497

ETC 11,859.74 11,449.98 11,066.99 10,713.00 10,387.06
PTCD(%) 7.16% 3.46% 0.00% −3.20% −6.14%

Table 10. Sensitivity analysis when the fixed risk cost changes.

{Rrsk} 3600 4050 {4500} 4950 5400

T1 0.078498 0.080359 0.082084 0.083694 0.085205
s 0.073184 0.069136 0.065694 0.062719 0.0601157
Q 432 442 451 460 468
T2 0.050773 0.051976 0.053091 0.054132 0.055109

ETC 10,597.38 10,841.13 11,066.99 11,277.80 11,475.74
PTCD(%) −4.24% −2.04% 0.00% 1.90% 3.69%
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Table 11. Sensitivity analysis when the variable risk cost changes.

{Vsk} 16 18 {20} 22 24

T1 0.078382 0.080306 0.082084 0.083740 0.085296
s 0.058758 0.062323 0.065694 0.068900 0.071964
Q 431 442 451 460 496
T2 0.0506977 0.051942 0.053091 0.04142 0.03151

ETC 10,582.21 10,834.14 11,066.99 11,283.88 11,487.18
PTCD(%) −4.38% −2.10% 0.00% 1.96% 3.80%

Table 12. Sensitivity analysis when the rework cost changes.

{CR} 15.2 17.1 {19} 20.9 22.8

T1 0.081985 0.082035 0.082084 0.082133 0.082133
s 0.065883 0.065788 0.065694 0.065600 0.065506
Q 451 451 451 452 452
T2 0.053028 0.053059 0.053091 0.053123 0.053155

ETC 10,989.72 11,028.36 11,066.99 11,105.61 11,144.22
PTCD(%) −0.70% −0.35% 0.00% 0.35% 0.70%

Table 13. Sensitivity analysis when the unit holding cost changes.

{HS} 1.2 1.35 {1.5} 1.65 1.8

T1 0.091799 0.08655 0.082084 0.078289 0.074957
S 0.065643 0.065644 0.065694 0.065695 0.065696
Q 505 476 451 430 412
T2 0.059372 0.055979 0.053091 0.050638 0.048484

ETC 9953.03 10,535.96 11,066.99 11,611.72 12,112.79
PTCD(%) −10.07% −4.80% 0.00% 4.92% 9.45%
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6. Conclusions

The inventory models applying differential calculus are commonly used in existing research. A
renewal reward approach is an alternate method for solving the inventory control of deteriorating items
with a random breakdown or machine unavailability. This paper develops an EPQ model that considers
facility unavailability and the imperfect items. The study assumed that a predetermined inspection
scheduled. Shortages are allowed during facility unavailability due to preventive maintenance
or unpredicted repair time. Imperfect quality rework, warranty, emergency purchase, and partial
backorder are incorporated. Our study uses the renewal reward method and the fixed-point approach
to solve the replenishment and inventory model. The approximate optimal solution is derived while
using a fixed point iterative approach. The sensitivity analysis shows that the deteriorating rate,
unit holding cost, and demand rate should be considered in designing the inspection plan and the
replenishment policy when facility unavailability and imperfect items exist.

Further research can be extended to consider the different partnership contract with supply chain
members. Revenue sharing or price discount contract with supplier and trade credit can be incorporated.
Furthermore, when considering the environmental aspect, such as from the production, maintenance,
rework, and inventory, another interesting future work is to develop a green production system.
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Appendix A

From optimal condition (2), since k3 < 0, the optimal condition of is

λ2

2
− pµ

(
µ+ 0.5

d

)
+
θ
2
< 0 (A1)

Rearrange (A1), the result is

λ2 <
pµ
d
(1 + 2µ) − θ (A2)
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From the inequality of (A2), the optimal range of λ is

0 < λ <

√
pµ
d
(1 + 2µ) − θ (A3)
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