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Abstract: In the present paper, we study the normality of the toric rings of stable set polytopes,
generators of toric ideals of stable set polytopes, and their Gröbner bases via the notion of edge
polytopes of finite nonsimple graphs and the results on their toric ideals. In particular, we give
a criterion for the normality of the toric ring of the stable set polytope and a graph-theoretical
characterization of the set of generators of the toric ideal of the stable set polytope for a graph of
stability number two. As an application, we provide an infinite family of stable set polytopes whose
toric ideal is generated by quadratic binomials and has no quadratic Gröbner bases.
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1. Introduction

Let P ⊂ Rn be an integral convex polytope, i.e., a convex polytope whose vertices have integer
coordinates, and let P ∩Zn = {a1, . . . , am}. Let K[X, X−1, t] = K[x1, x−1

1 , . . . , xn, x−1
n , t] be the Laurent

polynomial ring in n + 1 variables over a field K. Given an integer vector a = (a1, . . . , an) ∈ Zn, we
set Xat = xa1

1 · · · x
an
n t ∈ K[X, X−1, t]. Then, the toric ring of P is the subalgebra K[P ] of K[X, X−1, t]

generated by {Xa1 t, . . . , Xam t} over K. Here, we need the variable t in order to regard K[P ] as a
homogeneous algebra by setting each deg Xai t = 1. The toric ideal IP of P is the kernel of a surjective
homomorphism π : K[y1, . . . , ym] → K[P ] defined by π(yi) = Xai t for 1 ≤ i ≤ m. In general, IP is
generated by homogeneous binomials and any reduced Gröbner basis of IP consists of homogeneous
binomials; see [1]. A simplex σ is called a subsimplex of P if the set of vertices of σ is contained in
P ∩Zn. A set ∆ of subsimplices of P is called a covering of P if

⋃
σ∈∆ σ = P . A covering ∆ of P is called

a triangulation of P if ∆ is a simplicial complex. A covering (triangulation) ∆ of P is called unimodular
if the normalized volume of each maximal simplex in ∆ is equal to 1. The following properties of
an integral convex polytope P have been investigated in many papers on commutative algebra and
combinatorics:

(i) P is unimodular (any triangulation of P is unimodular), the initial ideal of IP is generated by
squarefree monomials with respect to any monomial order ([2] Section 4.3);

(ii) P is compressed (any “pulling” triangulation is unimodular), the initial ideal of IP is generated
by squarefree monomials with respect to any reverse lexicographic order [3,4];

(iii) P has a regular unimodular triangulation, there exists a monomial order such that the initial
ideal of IP is generated by squarefree monomials ([2] Theorem 4.17);

(iv) P has a unimodular triangulation ([2] Section 4.2.4);
(v) P has a unimodular covering ([2] Section 4.2.4);
(vi) P is normal, K[P ] is a normal semigroup ring ([2] Section 4.2.3).
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Details for these conditions are explained in ([1] Chapter 8) and ([2] Chapter 4). The hierarchy (i)
⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) is trivial by their definition. The implication (v)⇒ (vi) is explained in ([2]
Theorem 4.11). Note that the converse of each of the above implications is false. On the other hand, the
following properties of IP are studied by many authors:

(a) IP has a Gröbner bases consisting of quadratic binomials;
(b) K[P ] is Koszul ([2] Definition 2.20);
(c) IP is generated by quadratic binomials.

The hierarchy (a)⇒ (b)⇒ (c) is known, and the converse of each of the two implications is false;
see ([5] Examples 2.1 and 2.2) and [6].

The purpose of this paper is to study such properties of toric rings and ideals of stable set
polytopes of simple graphs. Let G be a finite simple graph on the vertex set [n] = {1, 2, . . . , n},
and let E(G) denote the set of edges of G. Given a subset W ⊂ [n], we associate the (0, 1) vector
ρ(W) = ∑j∈W ej ∈ Rn, where ei is the ith unit vector of Rn. In particular, ρ(∅) = 0 ∈ Rn. A subset
W ⊂ [n] is said to be stable (or independent) if {i, j} /∈ E(G) for all i, j ∈ W with i 6= j. In particular, ∅
and each {i} with i ∈ [n] are stable. Let S(G) be the set of all stable sets of G. The stable set polytope
(independent set polytope) QG ⊂ Rn of a simple graph G is the convex hull of {ρ(W) : W ∈ S(G)}.

Example 1. If G is a complete graph, then QG is a unit simplex, and hence IQG = {0} and K[QG] =

K[x1t, . . . , xnt, t] ' K[y1, . . . , yn+1].

Stable set polytopes are very important in many areas, such as optimization theory as well as
combinatorics and commutative algebra. Below, we present a list of results on the toric ring K[QG]

and the toric ideals IQG of the stable set polytope QG of a simple graph G.

1. The stable set polytope QG is compressed if and only if G is perfect ([3,4,7]).
2. Let G be a perfect graph. Then, the toric ring K[QG] is Gorenstein if and only if all maximal

cliques of G have the same cardinality ([8]).
3. The toric ring K[QG] is strongly Koszul ([2] p. 53) if and only if G is trivially perfect ([9]

Theorem 5.1).
4. Let G(P) be a comparability graph of a poset P. Then, QG(P) is called a chain polytope of P. It is

known that the toric ideals of a chain polytope have a squarefree quadratic initial ideal (see
[10] Corollary 3.1). For example, if a graph G is bipartite, then there exists a poset P such that
G = G(P).

5. Suppose that a graph G on the vertex set [n] is an almost bipartite graph, i.e., there exists a vertex
v such that the induced subgraph of G on the vertex set [n] \ {v} is bipartite. Then, IQG has a
squarefree quadratic initial ideal ([11] Theorem 8.1). For example, any cycle is almost bipartite.

6. Let G be the complement of an even cycle of length 2k. Then, the maximum degree of a minimal
set of binomial generators of IQG is equal to k ([11] Theorem 7.4).

In the present paper, we study the normality of the toric rings of stable set polytopes, generators
of toric ideals of stable set polytopes, and their Gröbner bases via the notion of edge polytopes of finite
(nonsimple) graphs and the results on their toric ideals. Here, the edge polytope PG ⊂ Rn of a graph G
allowing loops and having no multiple edges is the convex hull of

{ei + ej : {i, j} is an edge of G} ∪ {2ei : there is a loop at i in G}.

This paper is organized as follows. In Section 2, fundamental properties of K[QG] and IQG

are studied. In particular, the relationship between the stable set polytopes and the edge polytopes
are given (Lemma 1). In addition, it is shown that QG is unimodular if and only if the complement of
G is bipartite (Proposition 5). We also point out that, by the results in [11], it is easy to see that IQG
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has a squarefree quadratic initial ideal if G is either a chordal graph or a ring graph (Proposition 2).
In Section 3, we discuss the normality of the stable set polytopes. We prove that, for a simple graph
G of stability number two, QG is normal if and only if the complement of G satisfies the “odd cycle
condition” (Theorem 1). Using this criterion, we construct an infinite family of normal stable set
polytopes without regular unimodular triangulations (Theorem 2). For general simple graphs, some
necessary conditions for QG to be normal are also given. In Section 4, we study the set of generators
and Gröbner bases of toric ideals of stable set polytopes. It is shown that for a simple graph G of
stability number two, the set of binomial generators of IQG are described in terms of even closed walks
of a graph (Theorem 3). If G is bipartite and if IQG is generated by quadratic binomials, then IQG has a
quadratic Gröbner basis (Corollary 1). Finally, using the results on normality, generators, and Gröbner
bases, we present an infinite family of non-normal stable set polytopes whose toric ideal is generated
by quadratic binomials and has no quadratic Gröbner bases (Theorem 4).

2. Fundamental Properties of the Stable Set Polytopes

In this section, we give some fundamental properties of K[QG] and IQG . In particular, a relation
between the stable set polytopes and the edge polytopes is discussed. The stability number α(G) of a
graph G is the cardinality of the largest stable set. If a simple graph G satisfies α(G) = 1, then G is a
complete graph in Example 1. Given lattice polytopes P1 ⊂ Rm and P2 ⊂ Rn, the product of P1 and
P2 is defined by P1 ×P2 = {(α1, α2) ∈ Rm+n : α1 ∈ P1, α2 ∈ P2}. Then the toric ring K[P1 ×P2] is
called the Segre product of K[P1] and K[P2].

Example 2. Suppose that a simple graph G is not connected. Let G1, . . . , Gs be the connected components
of G. Then, it is easy to see that QG = QG1 × · · · × QGs , and hence K[QG] is the Segre product of
K[QG1 ], . . . , K[QGs ].

Thus, it is enough to study stable set polytopes of connected simple graphs G such that α(G) ≥ 2.
We use the notion of toric fiber products to study toric rings of stable set polytopes. This notion is first
introduced in [12] as a generalization of the Segre product. Since the definition of toric fiber products
is complicated, we give an example.

Example 3. Let G1 and G2 be cycles of length 4, where E(G1) = {{1, 2}, {2, 3}, {3, 4}, {1, 4}} and
E(G2) = {{3, 4}, {4, 5}, {5, 6}, {3, 6}}. Then K[QG1 ] = K[t, x1t, x2t, x3t, x4t, x1x3t, x2x4t] and K[QG2 ] =

K[t, x3t, x4t, x5t, x6t, x3x5t, x4x6t]. We define the multigrading by deg(xa1
1 . . . xa6

6 tα) = (a3, a4, α). Let A =

{(0, 0, 1), (1, 0, 1), (0, 1, 1)}. Then, the toric fiber product K[QG1 ]×A K[QG2 ] is generated by the monomials
xa1

1 . . . xa4
4 tα · xb3

3 . . . xb6
6 tβ such that xa1

1 . . . xa4
4 tα ∈ K[QG1 ] and xb3

3 . . . xb6
6 tβ ∈ K[QG2 ] have the same

multidegree a ∈ A. It is easy to see that K[QG1 ] ×A K[QG2 ]
∼= K[QG1∪G2 ], and A corresponds to the

lattice point in QG1∩G2 , which is a simplex.

The application of toric fiber products to toric rings of stable set polytopes was studied in [11].
For i = 1, 2, let Gi be a simple graph on the vertex set Vi and the edge set Ei. If V1 ∩ V2 is a clique
of both G1 and G2, then we construct a new graph G1]G2 on the vertex set V1 ∪V2 and the edge set
E1 ∪ E2, which is called the clique sum of G1 and G2 along V1 ∩V2.

Proposition 1. Let G1]G2 be the clique sum of simple graphs G1 and G2. Then, IQG1]G2
is a toric fiber product

of IQG1
and IQG2

. We can construct a set of binomial generators (or a Gröbner basis) of IQG1]G2
from that of

IQGi
’s and some quadratic binomials. Moreover, K[QG1]G2 ] is normal if and only if both K[QG1 ] and K[QG2 ]

are normal.

Proof. Note that IQG1∩G2
= {0}. Hence, this is a special case of ([11] Proposition 5.1) by ([11]

Proposition 9.6).
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A simple graph G is called chordal if any induced cycle of G is of length 3. A graph G is called a ring
graph if each block of G that is not a bridge or a vertex can be constructed from a cycle by successively
adding cycles of length ≥ 3 using the clique sum construction. Ring graphs are introduced in [13,14].

Proposition 2. Suppose that a simple graph G is either a chordal graph or a ring graph. Then, IQG has a
squarefree quadratic initial ideal.

Proof. It is known by ([15] Proposition 5.5.1) that a graph G is chordal if and only if G is a clique sum
of complete graphs. By the statement in Example 1 and Proposition 1, IQG has a squarefree quadratic
initial ideal if G is chordal.

Suppose that G is a ring graph. Then, G is a clique sum of trees and cycles since any graph is a
clique sum (along a vertex) of trees and its blocks. Since trees and cycles are almost bipartite, by ([11]
Theorem 8.1), the toric ideal IQH has a squarefree quadratic initial ideal if H is either a tree or a cycle.
Thus, by Proposition 1, IQG has a squarefree quadratic initial ideal if G is a ring graph.

A graph G is called perfect if the chromatic number of every induced subgraph of G is equal to the
size of the largest clique of that subgraph; see [15]. We recall the following result on perfect graphs
and their stable set polytopes; see [3,4,7].

Proposition 3. Let G be a simple graph. Then, QG is compressed if and only if G is perfect. In particular, if G
is perfect, then QG is normal.

For a graph G on the vertex set [n], let G denote the complement of a graph G. An induced cycle
of G of length > 3 is called a hole of G and an induced cycle of G of length > 3 is called an antihole of G.
Below we combine two important characterizations of perfect graphs, where the first part is the strong
perfect graph theorem and the second part considers just the perfect graphs with stability number 2.

Proposition 4. Let G be a simple graph. Then G is a perfect graph if and only if G has no odd holes and no
odd antiholes. In particular, G is a perfect graph with α(G) = 2 if and only if G is bipartite and not empty.

For a graph G, let G? be the nonsimple graph on the vertex set [n + 1] whose edge (and loop) set
is E(G) ∪ {{i, n + 1} : i ∈ [n + 1]}. The following lemma plays an important role when we study the
stable set polytope QG of G.

Lemma 1. Let G be a simple graph with α(G) = 2. Then we have K[QG] ' K[PG? ]. Moreover, if G is
bipartite, then there exists a bipartite graph H such that K[QG] ' K[PH ].

Proof. Let ϕ : K[QG]→ K[x1, . . . , xn+1] be the injective ring homomorphism defined by

ϕ(xa1
1 · · · x

an
n t) = xa1

1 · · · x
an
n x2−(a1+···+an)

n+1 .

Then ϕ(t) = x2
n+1, ϕ(xit) = xixn+1 for i = 1, 2, . . . , n, and ϕ(xkx`t) = xkx` for each stable set {k, `}

of G. Note that {k, `} is a stable set of G if and only if {k, `} is an edge of G. Hence, the image of ϕ

is K[PG? ].
Suppose that G is bipartite. Then G has no odd cycles. Hence, any odd cycle of G? have the vertex

n + 1. (Note that {n + 1, n + 1} is an odd cycle of length 1.) Thus, in particular, any two odd cycles of
G? has a common vertex. We now show that there exists a bipartite graph H such that K[PG? ] ' K[PH ]

(by a similar argument in ([16] Proof of Proposition 5.5)). Let [n] = V1 ∪V2 be a partition of the vertex
set of the bipartite graph G. Let H be a bipartite graph on the vertex set [n + 2] and the edge set

E(H) = E(G) ∪ {{i, n + 1} : i ∈ V1} ∪ {{j, n + 2} : j ∈ V2} ∪ {{n + 1, n + 2}}.
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Let ψ : K[PH ]→ K[x1, . . . , xn+1] be the ring homomorphism defined by

ψ(xa1
1 · · · x

an+2
n+2 ) = xa1

1 · · · x
an
n xan+1+an+2

n+1 .

Since G? is obtained from H by identifying the vertices n + 1 and n + 2, it follows that the image
of ψ is K[PG? ]. Hence, it is enough to show that ψ is injective. Suppose that u = xa1

1 · · · x
an+2
n+2 ,

v = xb1
1 · · · x

bn+2
n+2 ∈ K[PH ] satisfies ψ(u) = ψ(v). Then an+1 + an+2 = bn+1 + bn+2 and ai = bi for

i = 1, 2, . . . , n. Since [n] = V1 ∪V2 is a partition for G, we have

an+2 + ∑
k∈V1

ak = an+1 + ∑
`∈V2

a`, bn+2 + ∑
k∈V1

bk = bn+1 + ∑
`∈V2

b`.

Thus, an+1 = bn+1 and an+2 = bn+2, as desired.

The first application of Lemma 1 is as follows:

Proposition 5. Let G be a simple graph. Then the following conditions are equivalent:

(i) QG is unimodular;
(ii) G is bipartite.

Moreover, if α(G) = 2, then the conditions

(iii) QG is compressed;
(iv) G is perfect

are also equivalent to conditions (i) and (ii).

Proof. We may assume that G is not complete (i.e., G is not empty and α(G) 6= 1). Let A be the matrix
whose columns are vertices of QG, and let

Ã =

(
A

1 · · · 1

)
and B =

(
0 e1 · · · en

1 1 · · · 1

)
.

Then B is a submatrix of Ã. Since |det(B)| = 1, the rank of Ã is n + 1. It is known by ([1] p. 70) that
QG is unimodular if and only if the absolute value of any nonzero (n + 1)-minor of the matrix Ã is 1.

Suppose that G is not bipartite. Then G has an odd cycle C = (i1, . . . , i2`+1). Then the absolute
value of the (n + 1)-minor of Ã that corresponds to

{eik + eik+1
: 1 ≤ k ≤ 2`} ∪ {ei1 + ei2`+1

, 0} ∪ {ej : j /∈ {i1, . . . , i2`+1}}

equals 2. Hence, QG is not unimodular. Thus, we have (i)⇒ (ii).
Suppose that G is bipartite. By Lemma 1, there exists a bipartite graph H such that K[QG] ' K[PH ].

It is well known that the edge polytope of a bipartite graph is unimodular; see ([2] Theorem 5.24).
Thus, PH is unimodular, and hence we have (ii)⇒ (i).

Suppose that α(G) = 2. By Proposition 3, conditions (iii) and (iv) are equivalent. In addition, by
Proposition 4, conditions (ii) and (iv) are equivalent.

We close this section with the following fundamental fact on stable set and edge polytopes.

Proposition 6. Let G′ be an induced subgraph of a graph G. Then

(i) the edge polytope PG′ is a face of PG;
(ii) if G is a simple graph, then QG′ is a face of QG.
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It can be seen from Proposition 6 that several properties of K[QG] (resp. K[PG]) are inherited to
K[QG′ ] (resp. K[PG′ ]), for example, normality of the toric ring, the existence of a squarefree initial ideal,
existence of a quadratic Gröbner basis, and the existence of the set of quadratic binomial generators of
the toric ideal; see [17].

3. Normality of Stable Set Polytopes

In this section, we study the normality of stable set polytopes. Normality of edge polytopes is
studied in [18,19], and we make use of the normality conditions of edge polytopes while working with
stable set polytopes, due to the relation discovered in Lemma 1. If C1 and C2 are cycles in a graph G,
then {i, j} ∈ E(G) is called a bridge of C1 and C2 if i is a vertex of C1 \ C2 and j is a vertex of C2 \ C1.
We say that a graph G satisfies the odd cycle condition if any induced odd cycles C1 and C2 in G have
either a common vertex or a bridge. For the sake of simplicity, assume that a graph H has at most
one loop. Then, it is known by [18,19] that PH is normal if and only if each connected component
of H satisfies the odd cycle condition. By ([18] Corollary 2.3) and Lemma 1, we have the following.
(Note that G below is not necessarily connected.)

Theorem 1. Let G be a simple graph with α(G) = 2. Then the following conditions are equivalent.

(i) QG is normal;
(ii) QG has a unimodular covering;
(iii) G satisfies the odd cycle condition, i.e., if two odd holes C1 and C2 in G have no common vertices, then

there exists a bridge of C1 and C2 in G.

In particular, if QG is normal, then PG is normal.

Proof. By Lemma 1, we have K[QG] ' K[PG? ]. Hence, by ([18] Corollary 2.3), conditions (i) and
(ii) are equivalent, and they hold if and only if G? satisfies the odd cycle condition. (Note that G?

is connected.) Since the vertex n + 1 is incident to any vertex of G?, it is easy to see that G? satisfies the
odd cycle condition if and only if G satisfies the odd cycle condition.

It is shown in [20] that there exists a graph G such that PG is normal and that IPG has no squarefree
initial ideals. Examples on infinite families of such edge polytopes are given in [21]. We can construct
the stable set polytopes with the same properties. Let G1(p1, . . . , p5) be the graph defined in ([21]
Theorem 3.10).

Theorem 2. Let G be a graph such that G = G1(p1, . . . , p5) with pi ≥ 2 for i = 1, . . . , 5. ThenQG is normal,
and IQG has no squarefree initial ideals.

Proof. Since G has no triangles, we have α(G) = 2. Since G1(p1, . . . , p5) satisfies the odd cycle
condition, QG is normal by Theorem 1. On the other hand, IG has no squarefree initial ideals. Since G
is an induced subgraph of G?, IQG has no squarefree initial ideals by Lemma 1 and Proposition 6.

It seems to be a challenging problem to characterize the normal stable set polytopes with
large stability numbers. We give several necessary conditions. The following is a consequence
of Proposition 6 and Theorem 1.

Proposition 7. Let G be a simple graph. Suppose that QG is normal. Then any two odd holes of G without a
common vertex have a bridge in G.

Proof. Suppose that two odd holes C1, C2 of G without common vertices have no bridges in G. Let H
be an induced subgraph of G whose vertex set is that of C1 ∪ C2. Then α(H) = 2, and hence QH is not
normal by Theorem 1. Thus, QG is not normal by Proposition 6.
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Similar conditions are required for antiholes of G.

Proposition 8. Let G be a simple graph. Suppose that QG is normal. Then G satisfies all of the
following conditions:

(i) Any two odd antiholes of G having no common vertices have a bridge in G.
(ii) Any two odd antiholes of G of length ≥ 7 having exactly one common vertex have a bridge in G.
(iii) Any odd hole and odd antihole of G having no common vertices have a bridge in G.

Proof. Let G be a graph on the vertex set [n]. Let A = {(ρ(W), 1) : W ∈ S(G)}. It is known by ([1]
Proposition 13.5) that QG is normal if and only if we have Z≥0A = Q≥0A∩Zn+1.

(i) Let C1 = (i1, . . . , i2k+1) and C2 = (j1, . . . , j2`+1) be odd antiholes in G having no common
vertices and no bridges in G. By Proposition 6, we may assume that G = C1 ∪ C2. Then,

∑
W∈S(C1) and |W|=k

(ρ(W), 1) = (2k + 1)en+1 + k
2k+1

∑
p=1

eip ,

∑
W∈S(C2) and |W|=`

(ρ(W), 1) = (2`+ 1)en+1 + `
2`+1

∑
q=1

ejq .

Since k, ` ≥ 2, we have k`− k− ` ≥ 0. Hence,

α := 5en+1 +
2k+1

∑
p=1

eip +
2`+1

∑
q=1

ejq

=
1
k

(
(2k + 1)en+1 + k

2k+1

∑
p=1

eip

)
+

1
`

(
(2`+ 1)en+1 + `

2`+1

∑
q=1

ejq

)
+

k`− k− `

k`
en+1

belongs to Q≥0A∩Zn+1. Suppose that α belongs to Z≥0A. Since the (n + 1)-th coordinate of α is 5,
there exist W1, . . . , W5 such that

α = (ρ(W1), 1) + · · ·+ (ρ(W5), 1),

where each Wi belongs to either S(C1) or S(C2). It then follows that ∑Wi∈S(C1)
|Wi| = 2k + 1 and

∑Wi∈S(C2)
|Wi| = 2`+ 1. Since max{|W| : W ∈ S(C1)} = k, max{|W| : W ∈ S(C2)} = `, we have

|{W1, . . . , W5} ∩ S(C1)| ≥ 3,

|{W1, . . . , W5} ∩ S(C2)| ≥ 3.

This is a contradiction. Thus, α is not in Z≥0A.
(ii) Let C1 = (i1, . . . , i2k+1) and C2 = (j1, . . . , j2`+1) be odd antiholes in G of length ≥ 7 having

exactly one common vertex i1 = j1 and no bridges in G. By Proposition 6, we may assume that
G = C1 ∪ C2. Let

S1 = {W ∈ S(C1) : |W| = k and either i1 ∈W or {i2, i2k+1} ⊂W},
S2 = {W ∈ S(C2) : |W| = ` and either j1 ∈W or {j2, j2`+1} ⊂W}.
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Then,

∑
W∈S1

(ρ(W), 1) = (2k− 1)en+1 + kei1 + (k− 1)
2k+1

∑
p=2

eip ,

∑
W∈S2

(ρ(W), 1) = (2`− 1)en+1 + `ei1 + (`− 1)
2`+1

∑
q=2

ejq .

Since k, ` ≥ 3, we have 0 < 1/(k− 1) + 1/(`− 1) ≤ 1. Hence,

α := 5en+1 + 3ei1 +
2k+1

∑
p=2

eip +
2`+1

∑
q=2

ejq

=
1

k− 1

(
(2k− 1)en+1 + kei1 + (k− 1)

2k+1

∑
p=2

eip

)

+
1

`− 1

(
(2`− 1)en+1 + `ei1 + (`− 1)

2`+1

∑
q=2

ejq

)
+

(
1− 1

k− 1
− 1

`− 1

)
(ei1 + en+1)

belongs to Q≥0A∩Zn+1. Since the (n + 1)-th coordinate of α is 5, there exist W1, . . . , W5 ∈ S(G) such
that α = (ρ(W1), 1)+ · · ·+(ρ(W5), 1). Then, each Wi belongs to either S(C1) or S(C2). Since max{|W| :
W ∈ S(C1)} = k, max{|W| : W ∈ S(C2)} = `, we have

|{W1, . . . , W5} ∩ S(C1)| ≥ 2,

|{W1, . . . , W5} ∩ S(C2)| ≥ 2.

Thus, (|{W1, . . . , W5} ∩ S(C1)|, |{W1, . . . , W5} ∩ S(C2)|) is either (2, 3) or (3, 2). Changing indices
if necessary, we may assume that W1, W2 ∈ S(C1) and W3, W4, W5 ∈ S(C2). It then follows that
ρ(W1) + ρ(W2) = ∑2k+1

p=2 eip , and hence ρ(W3) + ρ(W4) + ρ(W5) = 3ei1 + ∑2`+1
q=2 ejq . This implies that

i1 ∈W3 ∩W4 ∩W5. Thus, i2, i2`+1 /∈W3, W4, W5, a contradiction. Therefore, we have α /∈ Z≥0A.
(iii) Let C1 = (i1, . . . , i2k+1) be an odd hole and C2 = (j1, . . . , j2`+1) an odd antihole in G having

no common vertices. By Proposition 6, we may assume that G = C1 ∪ C2. Then,

∑
W∈S(C1) and |W|=2

(ρ(W), 1) = (2k + 1)en+1 + 2
2k+1

∑
p=1

eip ,

∑
W∈S(C2) and |W|=`

(ρ(W), 1) = (2`+ 1)en+1 + `
2`+1

∑
q=1

ejq .

Hence,

(k + 3)en+1 +
2k+1

∑
p=1

eip +
2`+1

∑
q=1

ejq

=
1
2

(
(2k + 1)en+1 + 2

2k+1

∑
p=1

eip

)
+

1
`

(
(2`+ 1)en+1 + `

2`+1

∑
q=1

ejq

)
+

`− 2
2`

en+1

belongs to Q≥0A ∩ Zn+1. However, this vector is not in Z≥0A since max{|W| : W ∈ S(C1)} = 2,
max{|W| : W ∈ S(C2)} = `, and d(2k + 1)/2e+ d(2`+ 1)/`e = k + 4 > k + 3.

Unfortunately, the above conditions are not sufficient to be normal in general. For example, if the
length of the two odd antiholes of G without common vertices are long, then a lot of bridges in G seem
to be needed.
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4. Generators and Gröbner Bases of IQG

For a toric ideal I, let d(I) be the maximum degree of binomials in a minimal set of binomial
generators of I. If I = {0}, then we set d(I) = 0. In this section, we study d(IQG ) by using results on
the toric ideals of edge polytopes.

Let G be a graph on the vertex set [n] allowing loops and having no multiple edges. Let E(G) =

{e1, . . . , em} be a set of all edges and loops of G. The toric ideal IPG is the kernel of a homomorphism
π : K[y1, . . . , ym] → K[x1, . . . , xn] defined by π(yi) = xkx` where ei = {k, `}. A finite sequence of
the form

Γ = ({v1, v2}, {v2, v3}, . . . , {vq, vq+1}) (1)

with each {vk, vk+1} ∈ E(G) is called a walk of length q of G connecting v1 ∈ [n] and vq+1 ∈ [n]. A
walk Γ of the form (1) is called even (resp. odd) if q is even (resp. odd). A walk Γ of the form (1) is called
closed if vq+1 = v1. Given an even closed walk Γ = (ei1 , ei2 , . . . , ei2q) of G, we write fΓ for the binomial

fΓ =
q

∏
k=1

yi2k−1
−

q

∏
k=1

yi2k ∈ IPG .

We regard a loop as an odd cycle of length 1. We recall the following result from [1,5,22].

Proposition 9. Let G be a graph having at most one loop. Then IPG is generated by all the binomials fΓ, where
Γ is an even closed walk of G. In particular, IPG = (0) if and only if each connected component of G has at most
one cycle and the cycle is odd.

The following theorem implies that the set of binomial generators of IQG can also be characterized
by the graph-theoretical terminology if α(G) = 2.

Theorem 3. Let G be a simple graph with α(G) = 2. Then, IQG = IPG
+ J where J is an ideal generated by

quadratic binomials fΓ where Γ is an even closed walk of G? that satisfies one of the following:

(i) Γ = ({i, j}, {j, k}, {k, n + 1}, {n + 1, i}) is a cycle where {i, j}, {j, k} ∈ E(G);
(ii) Γ = ({i, j}, {j, n + 1}, {n + 1, n + 1}, {n + 1, i}) where {i, j} ∈ E(G).

In particular, d(IQG ) = max{d(IPG
), 2}.

Proof. Since α(G) = 2, we have IQG = IPG? by Lemma 1. Since G is a subgraph of G?, it follows that
IPG? ⊃ IPG

+ J. Thus, it is enough to show that IPG? ⊂ IPG
+ J.

Let Γ be an even closed walk of G?. It is enough to show that fΓ ∈ IPG? belongs to IPG
+ J.

Suppose that fΓ does not belong to IPG
+ J. Then, the vertex n + 1 belongs to Γ. We may assume

that the degree of fΓ is minimum among binomials in IPG? that do not belong to IPG
+ J. Then, fΓ is

irreducible. Let
Γ = ({n + 1, p}, {p, q}, {q, r}, Γ′),

where Γ′ = (ei1 , . . . , ei2k+1
) is an odd subwalk of Γ from the vertex r to the vertex n + 1. Since fΓ is

irreducible, it follows that p, q, r are distinct vertices and that q 6= n + 1. Then,

fΓ =

(
k

∏
α=1

yi2α

)
fΓ1 + yj fΓ2 ,

where ej = {p, q}, Γ1 = ({n + 1, p}, {p, q}, {q, r}, {r, n + 1}), and Γ2 = ({n + 1, r}, Γ′). Since deg fΓ2 <

deg fΓ, the binomial fΓ2 belongs to IPG
+ J by the assumption on deg fΓ. Moreover, Γ1 satisfies one of

the conditions (i) or (ii), and hence fΓ1 ∈ J. Thus, we have fΓ ∈ 〈 fΓ1 , fΓ2〉 ⊂ IPG
+ J, a contradiction.
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Remark 1. A graph-theoretical characterization of a simple graph G such that d(IPG ) ≤ 2 is given in [5].
Then, by making use of Theorem 3, one can provide a similar characterization of a simple graph G where
α(G) = 2 and d(IQG ) ≤ 2.

It is known by ([11] Theorem 7.4) that if the complement of a graph G is an even cycle of length 2k,
then we have d(IQG ) = k. By Theorem 3, we can generalize this result for a graph whose complement
is an arbitrary bipartite graph.

Corollary 1. Let G be a simple graph such that G is bipartite. Then we have

d(IQG ) =


0 if G is empty (i.e., G is complete),
k if G has a cycle,
2 otherwise,

where 2k is the maximum length of induced cycles of G. Moreover, the following conditions are equivalent:

(i) d(IQG ) ≤ 2, i.e., IQG is generated by quadratic binomials;
(ii) K[QG] is Koszul;
(iii) IQG has a quadratic Gröbner basis;
(iv) the length of any induced cycle of G is 4.

Proof. Let G be a simple graph such that G is bipartite. Then α(G) = 2. Since G is bipartite, it is known
(see [23] Lemma 2.4) that IPG

is generated by fΓ where Γ is an induced even cycle of G. Note that
deg fΓ = k if the length of Γ is 2k. Hence, by Theorem 3, we obtain the desired formula for d(IQG ).

It follows from the formula of d(IQG ) that (i) and (iv) are equivalent. Moreover, (iii) ⇒ (ii)
⇒ (i) holds in general. By Lemma 1, there exists a bipartite graph H such that K[QG] ' K[PH ].
By ([24] Theorem), IPH has a quadratic Gröbner basis if and only if d(IPH ) ≤ 2. Thus, we have (i)
⇒ (iii).

If G is not bipartite, then condition (i) and (iii) in Corollary 1 are not equivalent. In order to
construct an infinite family of counterexamples, the following proposition is important. (Proof is
essentially given in ([5] Proof of Proposition 1.6)).

Proposition 10. Let P be a (0, 1)-polytope. If IP has a quadratic Gröbner basis, then the initial ideal is
generated by squarefree monomials, and hence P is normal.

Theorem 4. Let G be a simple graph such that G = C1 ∪ C2, where C1 and C2 are odd holes without
common vertices. Then α(G) = 2, and

(a) IQG is generated by quadratic binomials;
(b) IQG has no quadratic Gröbner bases;
(c) QG is not normal.

Proof. Since G has no triangles, we have α(G) = 2. Since each connected component of G is
an odd cycle, IPG

= {0} by Proposition 9. It follows from Theorem 3 that IQG is generated by
quadratic binomials. By Theorem 1, QG is not normal since C1 and C2 have no bridges. Thus, by
Proposition 10, IQG has no quadratic Gröbner bases.

The graphs in Theorem 4 are not strongly Koszul by ([9] Theorem 1.3). However, we do not know
whether they are Koszul or not in general.

Remark 2. It is known by ([5] Theorem 1.2) that if G is a simple connected graph and IPG is generated by
quadratic binomials, then G satisfies the odd cycle condition, and hence PG is normal.
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It seems to be a challenging problem to characterize the graphs G such that α(G) > 2 and
d(IQG ) ≤ 2. The following is a consequence of Proposition 6, Theorem 3 and ([5] Theorem 1.2).

Proposition 11. Let G be a simple graph. If IQG is generated by quadratic binomials, then G satisfies the
following conditions:

(i) Any even cycle of G of length ≥ 6 has a chord;
(ii) Any two odd holes of G having exactly one common vertex have a bridge;
(iii) Any two odd holes of G having no common vertex have at least two bridges.

Proof. Suppose that G does not satisfy one of the conditions above. If G does not satisfy condition (i),
then let H be an induced subgraph of G whose vertex set is that of the even cycle. If G does not satisfy
either condition (ii) or (iii), then let H be an induced subgraph of G whose vertex set is that of two odd
holes. Then α(H) = 2, and hence IQH is not generated by quadratic binomials by Theorem 3 and ([5]
Theorem 1.2). Thus, it follows from Proposition 6 that IQG is not generated by quadratic binomials.
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