
mathematics

Article

Logarithmic Aggregation Operators of Picture Fuzzy
Numbers for Multi-Attribute Decision
Making Problems

Saifullah Khan 1, Saleem Abdullah 1, Lazim Abdullah 2,* and Shahzaib Ashraf 1

1 Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
2 School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
* Correspondence: lazim_m@umt.edu.my

Received: 17 May 2019; Accepted: 1 July 2019; Published: 8 July 2019
����������
�������

Abstract: The objective of this study was to create a logarithmic decision-making approach to deal
with uncertainty in the form of a picture fuzzy set. Firstly, we define the logarithmic picture fuzzy
number and define the basic operations. As a generalization of the sets, the picture fuzzy set provides
a more profitable method to express the uncertainties in the data to deal with decision making
problems. Picture fuzzy aggregation operators have a vital role in fuzzy decision-making problems.
In this study, we propose a series of logarithmic aggregation operators: logarithmic picture fuzzy
weighted averaging/geometric and logarithmic picture fuzzy ordered weighted averaging/geometric
aggregation operators and characterized their desirable properties. Finally, a novel algorithm
technique was developed to solve multi-attribute decision making (MADM) problems with picture
fuzzy information. To show the superiority and the validity of the proposed aggregation operations,
we compared it with the existing method, and concluded from the comparison and sensitivity analysis
that our proposed technique is more effective and reliable.

Keywords: logarithmic operational laws; logarithmic picture fuzzy aggregation operators; decision
making problems

1. Introduction

Multiple attribute decision making (MADM) is a process for selecting the optimal alternative from
a set of given alternatives according to some attributes. Due to the complexity of the socio-economic
environment and decision makers’ insufficient knowledge and judgment, it is difficult for decision
makers to provide accurate information about alternatives. For this, Atanassov [1] proposed the
intuitionistic fuzzy set (IFS). IFS is an extension of fuzzy set (FS) [2], which is characterized by a positive
membership degree and a negative membership degree, satisfying the condition that the sum of
these two degrees is equal to or less than one; therefore, IFS is a useful tool in processing fuzzy and
uncertainty information.

IFS has been practically applied in many fields, such as clustering analysis [3], decision making
(DM) problems [4], medical diagnosis [5], and pattern recognition [6]. Many researchers have
contributed to IFS. Chen et al. [7] presented a transformation method of intuitionistic fuzzy numbers
(IFNs) and interval valued intuitionistic fuzzy (IVIF) numbers to aggregation operations to solve
DM problems. Garg [8] introduce a robust improved geometric aggregation operation. Huang [9]
introduced the intuitionistic fuzzy Hamacher aggregation operations and discussed their applications
in decision making problems.

To aggregate the intuitionistic fuzzy information and make decisions, many intuitionistic
fuzzy aggregation operators have been proposed for aggregating different alternatives [10,11].
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However, in some special conditions, the sum of the positive membership degree and the negative
membership degree provided by the decision maker may be greater than one. For instance, if a decision
maker determines the positive membership as 0.3 and the negative membership degree may be
0.9, 0.3 + 0.9 = 1.2 > 1. This situation cannot be handled by IFS. To overcome this problem, Yager [12,13]
developed the concept of the Pythagorean fuzzy set (PyFS), which is also characterized by the positive
membership degree and the negative membership degree, but the square sum of these two degrees
is equal to or less than one. Corresponding to the above considered example, 0.32 + 0.92 = 0.9 < 1.
PyFS can solve many problems that IFS cannot. In other words, PyFS is a generalization of IFS;
therefore, PyFS is more capable than IFS of modeling the imprecise and imperfect information in
practical MADM problems. Since PyFS’s introduction, numerous aggregation operators have been
proposed for aggregating Pythagorean fuzzy information [14,15].

In real life, some problems cannot be symbolized in IFS and PyFS. For example, for a voting
system, human opinions include many answers of such types: yes, no, abstain, and refusal.
Therefore, Cuong [16] introduced the core idea of the picture fuzzy set (PFS). PFS is an extension of IFS
and PyFS. In the concept of the PFS, Cuong added the neutral term along with the positive membership
and negative membership degrees and the sum of their membership degrees is equal to or less than
one. Many researchers have attempted to contribute to the application of PFS. In 2014, Phong et al. [17]
developed some composition of picture fuzzy relations. Singh [18] developed correlation coefficients
for PFS and discussed their applications in decision making problems. In 2015, Cuong et al. [19]
introduced the core idea about some fuzzy logic operations for picture fuzzy numbers. Thong et al. [20]
developed a policy for multi-variable fuzzy forecasting using picture fuzzy (PF) clustering and a PF
rules interpolation system. Son [21] presented the generalized picture distance measure and discussed
its application. Wei [22] introduced PF cross-entropy and discussed its application in MADM problems.
Ashraf et al. [23] proposed geometric aggregation operators and the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) approach to deal with the uncertainty in decision making
problems in the form of picture fuzzy sets. Garg [24] proposed some aggregation operators for picture
fuzzy information and discussed their application in decision making problems. In 2017, Wei [25]
introduced the PF aggregation operator based on t-norm and t-conorm and provided some discussion
on its applications in decision making. In 2019, Zeng et al. [26] proposed the exponential Jensen picture
fuzzy divergence measure and discussed its applications in multi-criteria decision making (MCDM).

Many aggregation operators have been developed based on the algebraic t-norm and t-conorm to
deal with the aggregate uncertainty in the form of picture fuzzy sets. Logarithmic operational rules are
important mathematical operations that conveniently use to aggregate uncertain and inaccurate data.
Motivated by these ideas, we developed a picture fuzzy MCDM method based on the logarithmic
aggregation operators and the logarithmic operations of PFSs to handle picture fuzzy MADM
within PFSs.

The contributions of our method are as follows:

(1) We developed some novel logarithmic operations for picture fuzzy sets, which can overcome the
weaknesses of algebraic operations and capture the relationship between various PFSs.

(2) We extended logarithmic operators to logarithmic picture fuzzy operators: logarithmic picture
fuzzy weighted averaging (log-PFWA), logarithmic picture fuzzy ordered weighted averaging
(log-PFOWA), logarithmic picture fuzzy weighted geometric (log-PFWG), and logarithmic
picture fuzzy ordered weighted geometric (log-PFOWG) aggregation operators for picture fuzzy
information, which can overcome the algebraic operators’ drawbacks.

(3) We developed an algorithm to deal with multi-attribute decision making problems using picture
fuzzy information.

(4) To show the effectiveness and reliability of the proposed picture fuzzy logarithmic aggregation
operators, we applied the proposed operator to a circulation center evaluation problem.

(5) The results indicate that the proposed technique is more effective and provides a more accurate
output compared to existing methods.
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The remainder of this paper is organized as follows: Some basic knowledge related to IFS, PyFS,
PFS, score, and accuracy function are defined in Section 2. In Section 3, we discuss the logarithmic
operation laws and the properties of picture fuzzy numbers (PFNs), as well as logarithmic picture
fuzzy averaging/geometric aggregation operators. In Section 4, we address the MADM problem,
using logarithmic picture fuzzy aggregation operators. A descriptive example is outlined in Section 5;
Section 5.1 provides a comparative analysis of the existing aggregation operators with the novel
logarithmic aggregation operators defined in this study, and the conclusion of this study is draw in
Section 6.

2. Background

The concepts and basic operations of existing extensions of fuzzy sets are recalled in this section,
and they were the foundation of this study.

Definition 1. [1] Let a fixed set A , φ. Then, the set

J =
〈
βJ

( .
a
)
, £J

( .
a
)∣∣∣∣ .

a ∈ A
〉
,

is an IFS, where βJ
( .
a
)
, £J

( .
a
)
∈ [0, 1] are the positive and negative membership degrees of the element

.
a ∈ A in J,

respectively. βJ
( .
a
)
, £J

( .
a
)

satisfy the condition for all
.
a ∈ A,

0 ≤ βJ
( .
a
)
+ £J

( .
a
)
≤ 1.

Definition 2. [16] Let a fixed set A , φ. Then, the set

J =
〈
βJ

( .
a
)
,γJ

( .
a
)
, £J

( .
a
)∣∣∣∣ .

a ∈ A
〉
,

is said to be PFS, where βJ
( .
a
)
,γJ

( .
a
)
, £J

( .
a
)
∈ [0, 1] are the positive, neutral and negative membership degrees of

the element
.
a ∈ A in J, respectively. βJ

( .
a
)
,γJ

( .
a
)
, £J

( .
a
)

satisfy the condition for all
.
a ∈ A,

0 ≤ βJ
( .
a
)
+ γJ

( .
a
)
+ £J

( .
a
)
≤ 1.

For all
.
a ∈ A, the refusal degree is ΘJ = 1−

(
βJ

( .
a
)
+ γJ

( .
a
)
+ £J

( .
a
))

.

Definition 3. [23] Let J =
(
βJ

( .
a
)
,γJ

( .
a
)
, £J

( .
a
))

, J1 =
(
βJ1

( .
a
)
,γJ1

( .
a
)
, £J1

( .
a
))

and J2 =
(
βJ2

( .
a
)
,γJ2

( .
a
)
, £J2

( .
a
))

be any three PFNs, then:

1. Jc =
{
£J

( .
a
)
,γJ

( .
a
)
, βJ

( .
a
)}

2. J1 ∧ J2 =
{
min

(
βJ1

( .
a
)
, βJ2

( .
a
))

, max
(
γJ1

( .
a
)
,γJ2

( .
a
))

, max
(
£J1

( .
a
)
, £J2

( .
a
))}

3. J1 ∨ J2 =
{
max

(
βJ1

( .
a
)
, βJ2

( .
a
))

, min
(
γJ1

( .
a
)
,γJ2

( .
a
))

, min
(
£J1

( .
a
)
, £J2

( .
a
))}

4. J1 ⊕ J2 =
{
βJ1

( .
a
)
+ βJ2

( .
a
)
− βJ1

( .
a
)
.βJ2

( .
a
)
,γJ1

( .
a
)
.γJ2

( .
a
)
, £J1

( .
a
)
.£J2

( .
a
)}

5. J1 ⊗ J2 =

 βJ1

( .
a
)
.βJ2

( .
a
)
,γJ1

( .
a
)
+ γI2

( .
a
)
− γJ1

( .
a
)
.γJ2

( .
a
)
,

£J1

( .
a
)
+ £J2

( .
a
)
− £J1

( .
a
)
.£J2

( .
a
) 

6. υ.J =
{
1−

(
1− βJ

)υ
,
(
γJ

)
υ,

(
£J

)
υ
}

7. Jυ =
{(
βJ

)
υ, 1−

(
1− γJ

)υ
, 1−

(
1− £J

)υ}
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Definition 4. [23] Let J =
〈
βJ

( .
a
)
,γJ

( .
a
)
, £J

( .
a
)∣∣∣∣ .

a ∈ A
〉

be a PFN. The score function of J is defined as:

S(J) = βJ
( .
a
)
− γJ

( .
a
)
− £J

( .
a
)
, S(J) ∈ [−1, 1].

The accuracy function of J is defined as:

H(J) = βJ
( .
a
)
+ γJ

( .
a
)
+ £J

( .
a
)
, H(J) ∈ [0, 1].

Definition 5. [23] Let J1 =
(
βJ1

( .
a
)
,γJ1

( .
a
)
, £J1

( .
a
))

and J2 =
(
βJ2

( .
a
)
,γJ2

( .
a
)
, £J2

( .
a
))

be two PFNs.
Then, the comparison rules are defined as:

(1) If S(J1) > S(J2), then J1 > J2

(2) If S(J1) = S(J2) and H(J1) > H(J2), then J1 > J2

(3) If S(J1) = S(J2) and H(J1) = H(J2), then J1 = J2

3. Picture Fuzzy Logarithmic Aggregation Operators

In this section, we develop some novel logarithmic operational laws for picture fuzzy numbers and
discuss their properties. The main purpose of this section is to propose novel logarithmic aggregation
operators based on picture fuzzy information.

Note that Logτ0 is meaningless in the real number system and Logτ1 is not well defined.
Therefore, we assume that J , 0, where J is a picture fuzzy number (PFN). Also, the base of
log τ , 1, τ is in the open interval (0, 1) and always a positive real number.

Definition 6. Let A be non-empty fixed set and J =
〈
βJ

( .
a
)
,γJ

( .
a
)
, £J

( .
a
)∣∣∣∣ .

a ∈ A
〉

be a PFS. Then, the logarithmic
picture fuzzy number is defined as:

Logτ J =
{〈

1− LogτβJ
( .
a
)
, Logτ(1− γJ

( .
a
)
), Logτ(1− £J

( .
a
)
)
〉}

, 0 < τ ≤ β ≤ 1, τ , 1.

where βJ
( .
a
)
,γJ

( .
a
)
, £J

( .
a
)

are the positive, neutral, and negative membership degrees of the element
.
a ∈ A in J,

respectively, with condition that 0 ≤ βJ
( .
a
)
,γJ

( .
a
)
, £J

( .
a
)
≤ 1. Then, the positive membership is defined as:(

1− LogτβJ
( .
a
))

: A→ [0, 1], such that
(
1− LogτβJ

( .
a
))
∈ [0, 1], ∀

.
a ∈ A,

the neutral membership is defined as:

Logτ(1− γJ
( .
a
)
) : A→ [0, 1], such that Logτ(1− γJ

( .
a
)
) ∈ [0, 1], ∀

.
a ∈ A,

the negative membership is defined as:

Logτ(1− £J
( .
a
)
) : A→ [0, 1], such that Logτ(1− £J

( .
a
)
) ∈ [0, 1], ∀

.
a ∈ A,

and the refusal degree is defined as:

1−
((

1− LogτβJ
( .
a
))
+ Logτ(1− γJ

( .
a
)
+ Logτ(1− £J

( .
a
))
∈ [0, 1]; ∀

.
a ∈ A.

Definition 7. Let J =
(
βJ

( .
a
)
,γJ

( .
a
)
, £J

( .
a
))

, J1 =
(
βJ1

( .
a
)
,γJ1

( .
a
)
, £J1

( .
a
))

, and J2 =
(
βJ2

( .
a
)
,γJ2

( .
a
)
, £J2

( .
a
))

be
any three PFNs. Then, the logarithmic operations are defined as:

(1) logτ J1 ⊕ logτ J2 =
(
1− logτ β1. logτ β2, logτ(1− γ1). logτ(1− γ2), logτ(1− £1). logτ(1− £2)

)
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(2) logτ J1 ⊗ logτ J2 =

 (
1− logτ β1

)
.
(
1− logτ β2

)
, 1− (1− logτ(1− γ1)).(1− logτ(1− γ2)),

1− (1− logτ(1− £1)).(1− logτ(1− £2))


(3) υ. logτ J =

(
1−

(
logτ β

)υ
, (logτ(1− γ))

υ, (logτ(1− £))υ
)

(4) logτ Jυ =
(
1− logτ β)

υ, 1− (1− logτ(1− γ))
υ, 1− (1− logτ(1− £))υ

)
Theorem 1. Let J =

〈
βJ

( .
a
)
,γJ

( .
a
)
, £J

( .
a
)∣∣∣∣ .

a ∈ A
〉

be PFNs. If 0 < τ ≤ β ≤ 1, τ , 1, then

(1) τLogτ J = J.
(2) LogττJ = J.

Proof. (1) According to the Definitions 6 and 7, we have:

τLogτ J =
(
τ1−(1−Logτβ), 1− τLogτ(1−γ), 1− τLogτ(1−£)

)
=

(
τLogτβ, 1− (1− γ), 1− (1− £)

)
= (β,γ, £) = J

(2) Similarly, we have:

LogττJ = Logτ
(
τ(1−β), 1− τγ, 1− τ£

)
=

(
1− Logττ1−β, Logτ

(
1− (1− τγ)), Logτ(1− (1− τ£)

))
= (β,γ, £) = J

�

Theorem 2. Let J1 =
(
βJ1

( .
a
)
,γJ1

( .
a
)
, £J1

( .
a
))

and J2 =
(
βJ2

( .
a
)
,γJ2

( .
a
)
, £J2

( .
a
))

be any two PFNs with
min(β1, β2) ≥ τ > 0, τ , 1. Then,

(1) Logτ J1 ⊕ Logτ J2 = Logτ J2 ⊕ Logτ J1 and
(2) Logτ J1 ⊗ Logτ J2 = Logτ J2 ⊗ Logτ J1.

Proof. (1) According to the Definitions 6 and 7, we have

logτ J1 ⊕ logτ J2 =

(
1− logτ β1, logτ(1− γ1),

logτ(1− £1)

)
⊕

(
1− logτ β2, logτ(1− γ2),

logτ(1− £2)

)
=

(
1− logτ β1. logτ β2, logτ(1− γ1). logτ(1− γ2),

logτ(1− £1). logτ(1− £2)

)

logτ J2 ⊕ logτ J1 =

(
1− logτ β2, logτ(1− γ2),

logτ(1− £2)

)
⊕

(
1− logτ β1, logτ(1− γ1),

logτ(1− £1)

)
=

(
1− logτ β2. logτ β1, logτ(1− γ2). logτ(1− γ1),

logτ(1− £2). logτ(1− £1)

)
=

(
1− logτ β1. logτ β2, logτ(1− γ1). logτ(1− γ2),

logτ(1− £1). logτ(1− £2)

)
,

Therefore, we have:
logτ J1 ⊕ logτ J2 = logτ J2 ⊕ logτ J1.
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(2) Similarly, we have:

logτ J1 ⊗ logτ J2 =

(
1− logτ β1, logτ(1− γ1),

logτ(1− £1)

)
⊗

(
1− logτ β2, logτ(1− γ2),

logτ(1− £2)

)
=

 (
1− logτ β1

)
.
(
1− logτ β2

)
, 1− (1− logτ(1− γ1)).(1− logτ(1− γ2)),

1− (1− logτ(1− £1)).(1− logτ(1− £2))

 and

logτ J2 ⊗ logτ J1 =

(
1− logτ β2, logτ(1− γ2),

logτ(1− £2)

)
⊗

(
1− logτ β1, logτ(1− γ1),

logτ(1− £1)

)
=

 (
1− logτ β2

)
.
(
1− logτ β1

)
, 1− (1− logτ(1− γ2)).(1− logτ(1− γ1)),

1− (1− logτ(1− £2)).(1− logτ(1− £1))


=

 (
1− logτ β1

)
.
(
1− logτ β2

)
, 1− (1− logτ(1− γ1)).(1− logτ(1− γ2)),

1− (1− logτ(1− £1)).(1− logτ(1− £2))


.

Therefore, we have:
logτ J1 ⊗ logτ J2 = logτ J2 ⊗ logτ J1.

�

3.1. Logarithmic Picture Fuzzy Averaging Aggregation Operators

In this subsection, we define some logarithmic aggregation operators: picture fuzzy logarithmic
weighted averaging and picture fuzzy logarithmic order weighted averaging aggregation operators.
We also discuss their properties in detail.

Definition 8. Let Jh =
〈
βh,γh, £h

〉
(h = 1, 2, · · · n) be any collection of PFNs with 0 < τh ≤ βh ≤ 1 and τh , 1.

Then, the mapping Log− PFWA : Φn
→ Φ is defined as:

Log− PFWA(J1, · · · , Jn) =
n
⊕

h=1
υh.Logτh Jh, .

The function Log-PFWA is known as the logarithmic PF weighted averaging operator,
where υ = (υ1, υ2, · · · , υn)

T, the weighed vectors, are Log-PFNs, such that υh ∈ [0, 1] and
∑n

h=1 υh = 1,.

Theorem 3. Let Jh =
〈
βh,γh, £h

〉
(h = 1, 2, · · · n) be any collection of PFNs with 0 < τh ≤ βh ≤ 1 and τh , 1.

Then, using Definitions 6 and 7, we have:

Log− PFWA(J1, · · · Jn) =

1−
n∏

h=1

(
logτh

βh
)υh ,

n∏
h=1

(
logτh

(1− γh)
)υh ,

n∏
h=1

(
logτh

(1− £h)
)υh

.

where υ = (υ1, υ2, · · · , υn)
T are the weighted vectors, such that υh ∈ [0, 1],

∑n
h=1 υh = 1, and (∀h = 1, 2, · · · n).

Proof. Now, we proof using mathematical induction.
So, for n = 2, we have

Log− PFWA(J1, J2) = υ1. logτ1
J1 ⊕ υ2. logτ2

J2,

where
υ1. logτ1

J1 =
(
1−

(
logτ1

β1
)υ1 ,

(
logτ1

(1− γ1)
)υ1 ,

(
logτ1

(1− £1)
)υ1

)
and

υ2. logτ2
J2 =

(
1−

(
logτ2

β2
)υ2 ,

(
logτ2

(1− γ2)
)υ2 ,

(
logτ2

(1− £2)
)υ2

)
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Log− PFWA(J1, J2) =


1−

(
logτ1

β1
)υ1 ,(

logτ1
(1− γ1)

)υ1 ,(
logτ1

(1− £1)
)υ1

⊕


1−
(
logτ2

β2
)υ2 ,(

logτ2
(1− γ2)

)υ2 ,(
logτ2

(1− £2)
)υ2

.

Using Definition 7, we have

Log− PFWA(J1, J2) =

1−
2∏

h=1

(
logτh

βh
)υh ,

2∏
h=1

(
logτh

(1− γh)
)υh ,

2∏
h=1

(
logτh

(1− £h)
)υh

.

Suppose that Theorem 3 is true for n = k:

Log− PFWA(J1, · · · Jk) =

1−
k∏

h=1

(
logτh

βh
)υh ,

k∏
h=1

(
logτh

(1− γh)
)υh ,

k∏
h=1

(
logτh

(1− £h)
)υh

.

Now, we must prove that Theorem 3 is true for n = k + 1:

Log− PFWA(J1, J2, . . . , Jk, Jk+1) = υ1. logτ1
J1 ⊕ υ2. logτ2

J2 ⊕ · · · ⊕ υk. logτk
Jk ⊕ υk+1. logτk+1

Jk+1

=



1−
k∏

h=1

(
logτh

βh
)υh ,

k∏
h=1

(
logτh

(1− γh)
)υh ,

k∏
h=1

(
logτh

(1− £h)
)υh


⊕


1−

(
logτk+1

βk+1

)υk+1 ,(
logτk+1

(1− γk+1)
)υk+1 ,(

logτk+1
(1− £k+1)

)υk+1


Using Definition 7, we have:

=

1−
k+1∏
h=1

(
logτh

βh
)υh ,

k+1∏
h=1

(
logτh

(1− γh)
)υh ,

k+1∏
h=1

(
logτh

(1− £h)
)υh

.

Hence, the result holds for n = k + 1. Thus, the result is true for all n, i.e.:

Log− PFWA(J1, · · · Jn) =

1−
n∏

h=1

(
logτh

βh
)υh ,

n∏
h=1

(
logτh

(1− γh)
)υh ,

n∏
h=1

(
logτh

(1− £h)
)υh

.

�

Theorem 4. (1) Idempotency: Let Jh =
〈
βh,γh, £h

〉
(h = 1, 2, · · · n) be any collection of PFNs and Jh = J,

with (h = 1, 2, · · · n). Then we have:

Log− PFWA(J1, · · · , Jn) = Logτ J,

where τ1 = τ2 = · · · = τn = τ.
(2) Boundedness: Let Jh =

〈
βh,γh, £h

〉
(h = 1, 2, · · · n) be any collection of PFNs, and we have

J− = min(J1, · · · , Jn) and J+ = max(J1, J2, · · · , Jn),. Then:

J− ≤ Log− PFWA(J1, J2, · · · , Jn) ≤ J+,

where τ1 = τ2 = · · · = τn = τ.
(3) Monotonicity: Let Jh = (βh,γh, £h) and J∗h =

(
β∗h,γ∗h, £∗h

)
, where (h = 1, 2, · · · n) be a collection of

PFNs. If βh ≤ β
∗

h,γh ≥ γ
∗

h and £h ≥ £∗h, and 0 < τh ≤ min
(
βh, β∗h

)
≤ 1, holds for any h, then:

Log− PFWA(J1, · · · , Jn) ≤ Log− PFWA
(
J∗1, · · · , J∗n

)
.
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Proof of Theorem 4 (1). Since Jh =
〈
βh,γh, £h

〉
(h = 1, 2, · · · n) is any collection of PFNs, with Jh = J

(h = 1, 2, · · · n); then, using Theorem 3, we have:

Log− PFWA(J1, · · · Jn) =

(
1−

n∏
h=1

(
logτh

βh
)υh ,

n∏
h=1

(
logτh

(1− γh)
)υh ,

n∏
h=1

(
logτh

(1− £h)
)υh

)
.

=

(
1−

n∏
h=1

(
logτ β

)υh ,
n∏

h=1

(
logτ(1− γ)

)υh ,
n∏

h=1

(
logτ(1− £)

)υh
)

=

1−
(
logτ β

) n∑
h=1

υh
,
(
logτ(1− γ)

) n∑
h=1

υh
,
(
logτ(1− £)

) n∑
h=1

υh


=

(
1−

(
logτ β

)
, logτ(1− γ), logτ(1− £)

)
= logτ J

�

Proof of Theorem 4 (2). Jh =
〈
βh,γh, £h

〉
(h = 1, 2, · · · n) is any collection of PFNs and

J−h = min(J1, · · · , Jn) = (β−,γ−, £−), i.e., β− = min(βh), γ− = max(γh), £− = max(£h) and similarly
J+h = max(J1, J2, · · · , Jn) = (β+,γ+, £+) β+ = max(βh), γ+ = min(γh), £+ = min(£h). Hence, we have:

min
h

{
βh

}
≤ βh ≤ max

h

{
βh

}
min

h

{
γh

}
≤ γh ≤ max

h

{
γh

}
min

h
{£h} ≤ £h ≤ max

h
{£h}.

1−
n∏

h=1

(
logτ βh

)υh
≥ 1−

n∏
h=1

(
logτ

(
min

h

{
βh

}))υh

= 1−
(
logτ

(
min

h

{
βh

})) n∑
h=1

υh

= 1− logτ

(
min

h

{
βh

})
.

1−
n∏

h=1

(
logτ βh

)υh
≤ 1−

n∏
h=1

(
logτ

(
max

h

{
βh

}))υh

= 1−
(
logτ

(
max

h

{
βh

})) n∑
h=1

υh

= 1− logτ

(
max

h

{
βh

})
.

n∏
h=1

(
logτ(1− γh)

)υh
≥

n∏
h=1

(
logτ

(
1−min

h

{
γh

}))υh

=
(
logτ

(
1−min

h

{
γh

})) n∑
h=1

υh

= logτ

(
1−min

h

{
γh

})
n∏

h=1

(
logτ(1− γh)

)υh
≤

n∏
h=1

(
logτ

(
1−max

h

{
γh

}))υh

=
(
logτ

(
1−max

h

{
γh

})) n∑
h=1

υh

= logτ

(
1−max

h

{
γh

})
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n∏
h=1

(
logτ(1− £h)

)υh
≥

n∏
h=1

(
logτ

(
1−min

h
{£h}

))υh

=
(
logτ

(
1−min

h
{£h}

)) n∑
h=1

υh

= logτ

(
1−min

h
{£h}

)
n∏

h=1

(
logτ(1− £h)

)υh
≤

n∏
h=1

(
logτ

(
1−max

h
(£h)

))υh

=
(
logτ

(
1−max

h
{£h}

)) n∑
h=1

υh

= logτ

(
1−max

h
{£h}

)
Therefore, we have

J− ≤ PFWA(J1, J2, · · · , Jn) ≤ J+.

�

Proof of Theorem 4 (3). Let

J = Log− PFWA(J1, · · · Jn) =

1−
n∏

h=1

(
logτh

βh
)υh ,

n∏
h=1

(
logτh

(1− γh)
)υh ,

n∏
h=1

(
logτh

(1− £h)
)υh

.

and

J∗ = Log− PFWA
(
J∗1, · · · J∗n

)
=

1−
n∏

h=1

(
logτh

β∗h
)υh ,

n∏
h=1

(
logτh

(
1− γ∗h

))υh ,
n∏

h=1

(
logτh

(
1− £∗h

))υh

.

However, if βh ≤ β
∗

h, γh ≥ γ
∗

h, and £h ≥ £∗h, for any h, then:

1−
n∏

h=1

(
logτh

βh
)υh
≤ 1−

n∏
h=1

(
logτh

β∗h
)υh

n∏
h=1

(
logτh

(1− γh)
)υh
≥

n∏
h=1

(
logτh

(
1− γ∗h

))υh

n∏
h=1

(
logτh

(1− £h)
)υh
≥

n∏
h=1

(
logτh

(
1− £∗h

))υh

Therefore, using the definition of the score function and the accuracy function, we conclude that:

Log− PFWA(J1, · · · , Jn) = Log− PFWA
(
J∗1, · · · , J∗n

)
.

�

Definition 9. Let Jh =
〈
βh,γh, £h

〉
(h = 1, 2, · · · n) be any collection of PFNs with 0 < τh ≤ βh ≤ 1, and τh , 1.

Then, the mapping Log− PFOWA : Φn
→ Φ is defined as:

Log− PFOWA(J1, · · · , Jn) =
n
⊕

h=1
υh.Logτ Jh(℘), .

Then, Log-PFOWA is called the logarithmic picture fuzzy ordered weighted averaging operator of
dimension n such that the weighted vectors are υ = (υ1, υ2, · · · , υn)

T and υh ∈ [0, 1],
∑n

h=1 υh = 1,
where (℘(1),℘(2), · · · ,℘(n)) are the permutations, such that J℘(h−1) ≥ J℘(h), with (h = 1, 2, · · · n).
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Theorem 5. Let Jh =
〈
βh,γh, £h

〉
(h = 1, 2, · · · n) be any collection of PFNs with 0 < τh ≤ βh ≤ 1, and τh , 1.

Then, using Definitions 6 and 7, we have:

Log− PFOWA(J1, · · · Jn) =


1−

n∏
h=1

(
logτh

β℘(h)
)υh ,

n∏
h=1

(
logτh

(
1− γ℘(h)

))υh ,
n∏

h=1

(
logτh

(
1− £℘(h)

))υh

,

where (℘(1),℘(2), · · · ,℘(n)) are the permutations, such that J℘(h−1) ≥ J℘(h), for all h = 1, 2, · · · , n.

Proof. The proof is similar to Theorem 3, so the procedure is not provided here. �

Theorem 6. (1) Idempotency: Let Jh =
〈
βh,γh, £h

〉
(h = 1, 2, · · · n) be any collection of PFNs and Jh = J,

with (h = 1, 2, · · · n). Then, we have:

Log− PFOWA(J1, · · · , Jn) = Logτ J,

where τ1 = τ2 = · · · = τn = τ.
(2) Boundedness: If the collection of PFNs is Jh = (βh,γh, £h) for all h = 1, 2, · · · n,

also let J− = min(J1, · · · , Jn) and J+ = max(J1, J2, · · · , Jn). Then we show that:

J− ≤ Log− PFOWA(J1, J2, · · · , Jn) ≤ J+,

where τ1 = τ2 = · · · = τn = τ.
(3) Monotonicity: Let Jh = (βh,γh, £h) and J∗h =

(
β∗h,γ∗h, £∗h

)
, where (h = 1, 2, · · · n), is a family of PFNs.

If βh ≤ β
∗

h,γh ≥ γ
∗

h and £h ≥ £∗h, and 0 < τh ≤ min
(
βh, β∗h

)
≤ 1, holds for any h, then we have:

Log− PFOWA(J1, · · · , Jn) ≤ Log− PFOWA
(
J∗1, · · · , J∗n

)
,

where τ1 = τ2 = · · · = τn = τ.

Proof. The proof is similar to Theorem 4, so the procedure is not provided here. �

3.2. Logarithmic Picture Fuzzy Geometric Aggregation Operator

Definition 10. Let the family of the PFNs be Jh =
〈
βh,γh, £h

〉
, where 〈h = 1, 2, · · · n〉, 0 < τh ≤ βh ≤ 1,

and τh , 1,. Let the function be defined as Log− PFWG : Φn
→ Φ. If

Log− PFDWG(J1, · · · , Jn) =
n
⊗

h=1

(
Logτh Jh

)υh ,

then the function Log-PFWG is the logarithmic PF-weighted geometric operator, where the weighted
vectors are υ = (υ1, υ2, · · · , υn)

T, of Logτh Jh, υh ∈ [0, 1],
∑n

h=1 υh = 1, where (h = 1, 2, · · · n), and take
τ1 = τ2 = · · · = τn = τ.

Theorem 7. Let it Jh =
〈
βh,γh, £h

〉
with (h = 1, 2, · · · n) be a family of PFNs, and 0 < τh ≤ βh ≤ 1, and τh , 1,

that is, 〈h = 1, 2, · · · n〉. Then, using the operator Log-PFWG, the aggregated value is also a picture fuzzy
number; hence, we know from Definition 5 that:

Log− PFWG(J1, · · · , Jn) =
n
⊗

h=1

(
Logτh Jh

)υh

Log− PFWG(J1, · · · Jn) =

(
n∏

h=1

(
1− logτh

βh
)υh , 1−

n∏
h=1

(
1− logτh

(1− γh)
)υh , 1−

n∏
h=1

(
1− logτh

(1− £h)
)υh

)
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where the weighted vectors are υ = (υ1, υ2, · · · , υn)
T, Logτh Jh, υh ∈ [0, 1], and

∑n
h=1 υh = 1,

where (h = 1, 2, · · · n), and take τ1 = τ2 = · · · = τn = τ.

Proof. The proof is similar to Theorem 3, so the procedure is not provided here. �

Theorem 8. (1) Idempotency: If Jh =
〈
βh,γh, £h

〉
, where (h = 1, 2, · · · n) is a collection of PFNs that are equal,

i.e., Jh = J, with(h = 1, 2, · · · n), then:

Log− PFWG(J1, · · · , Jn) = Logτ J,

where τ1 = τ2 = · · · = τn = τ.
(2) Boundedness: If Jh =

〈
βh,γh, £h

〉
where (h = 1, 2, · · · n) is a family of PFNs, and also let

J− = min(J1, · · · , Jn) and J+ = max(J1, J2, · · · , Jn), then we show that:

J− ≤ Log− PFWG(J1, J2, · · · , Jn) ≤ J+,

where τ1 = τ2 = · · · = τn = τ.
(3) Monotonicity: Let Jh =

〈
βh,γh, £h

〉
and J∗h =

(
β∗h,γ∗h, £∗h

)
, with (h = 1, 2, · · · n) being a collection of

PFNs. If βh ≤ β
∗

h,γh ≥ γ
∗

h and £h ≥ £∗h, and 0 < τh ≤ min
(
βh, β∗h

)
≤ 1, holds for any h, then:

Log− PFWG(J1, · · · , Jn) ≤ Log− PFWG
(
J∗1, · · · , J∗n

)
.

where τ1 = τ2 = · · · = τn = τ.

Proof. The proof is similar to Theorem 3, so the procedure is eliminated here. �

Definition 11. Let Jh =
〈
βh,γh, £h

〉
where (h = 1, 2, · · · n) is a family of PFNs, 0 < τh ≤ βh ≤ 1, and τh , 1,

let Log− PFOWG : Φn
→ Φ. If:

Log− PFOWG(J1, · · · , Jn) =
n
⊗

h=1

(
Logτ Jh(℘)

)υh ,

then the above define function Log-PFOWG is known as the log-PF-ordered weighted geometric operator
of dimension n such that the weighted vectors are υ = (υ1, υ2, · · · , υn)

T of Logτh Jh, υh ∈ [0, 1],∑n
h=1 υh = 1, where (h = 1, 2, · · · n) and (℘(1),℘(2), · · · ,℘(n)) is the permutation, such that J℘(h−1) ≥ J℘(h),

(h = 1, 2, · · · n).

Theorem 9. Let Jh =
〈
βh,γh, £h

〉
where (h = 1, 2, · · · n) is family of PFNs. 0 < τh ≤ βh ≤ 1, and τh , 1.

Then, by using the Log-PFOWG operator, the aggregated value is also a log-PFN; hence:

Log− PFOWG(J1, · · · , Jn) =
n
⊗

h=1

(
Logτ Jh(℘)

)υh ,

Log− PFOWG(J1, · · · Jn) =


n∏

h=1

(
1− logτh

β℘(h)
)υh , 1−

n∏
h=1

(
1− logτh

(
1− γ℘(h)

))υh ,

1−
n∏

h=1

(
1− logτh

(
1− £℘(h)

))υh


where (℘(1),℘(2), · · · ,℘(n)), is the permutation for which J℘(h−1) ≥ J℘(h), for all h = 1, 2, · · · , n.

Also, the weighting vectors are υ = (υ1, υ2, · · · , υn)
T of Logτh Jh, υh ∈ [0, 1], and their sum, i.e.,

∑n
h=1 υh = 1,.

We also take τ1 = τ2 = · · · = τn = τ.

Proof. The proof is similar to Theorem 3, so the procedure is eliminated here. �
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Theorem 10. (1) Idempotency: If Jh = (βh,γh, £h), where (h = 1, 2, · · · n), is a collection of PFNs that are
equal, i.e., Jh = J, (h = 1, 2, · · · n), then we show that:

Log− PFOWG(J1, · · · , Jn) = Logτ J,

where τ1 = τ2 = · · · = τn = τ.
(2) Boundedness: If Jh = (βh,γh, £h), where (h = 1, 2, · · · n), is a collection of PFNs. then let

J− = min(J1, · · · , Jn) and J+ = max(J1, J2, · · · , Jn), then:

J− ≤ Log− PFOWG(J1, J2, · · · , Jn) ≤ J+,

where τ1 = τ2 = · · · = τn = τ.
(3) Monotonicity: Let Jh = (βh,γh, £h) and J∗h =

(
β∗h,γ∗h, £∗h

)
where (h = 1, 2, · · · n), is family of PFN.

If βh ≤ β
∗

h,γh ≥ γ
∗

h and £h ≥ £∗h, and 0 < τh ≤ min
(
βh, β∗h

)
≤ 1, holds for any h, then:

Log− PFOWG(J1, · · · , Jn) ≤ Log− PFOWG
(
J∗1, · · · , J∗n

)
,

where τ1 = τ2 = · · · = τn = τ.

Proof. The proof is similar to Theorem 3, so the procedure is eliminated here. �

Definition 12. Let the logarithmic PFNs be Logτ J =
(
1− LogτβJ, Logτ(1− γJ), Logτ(1− £J)

)
, then S is the

score function of Logτ J, which is defined as follows:

S(Logτ J) =
(
1− LogτβJ

)
− Logτ(1− γJ) − Logτ(1− £J),

S(Logτ J) ∈ [−1, 1].

Let H be the accuracy function of Logτ J, which is defined as follows:

H(Logτ J) =
(
1− LogτβJ

)
+ Logτ(1− γJ) + Logτ(1− £J),

H(Logτ J) ∈ [0, 1].

1. If S(Logτ J1) > S(Logτ J2), then Logτ J1 > Logτ J2.
2. If S(Logτ J1) = S(Logτ J2), then if H(Logτ J1) > H(Logτ J2), then Logτ J1 > Logτ J2.
3. If H(Logτ J1) = H(Logτ J2), then Logτ J1 = Logτ J2.

4. Proposed Method for Solving the MADM Problem

In this section, we establish the introduced method for solving MADM problems using the
logarithmic PF aggregation operators. For a finite collection of m alternatives, i.e., U = {u1, u2, . . . , um},
and any finite of n attributes, i.e.; G =

{
g1, g2, . . . , gn

}
, let:

J jk =
[〈
β jk ,γ jk , £ jk

〉]
m×n

=


(β11,γ11, £11) (β21,γ21, £21) . . . (βm1,γm1, £m1)

(β12,γ12, £12) (β22,γ22, £22) . . . (βm2,γm2, £m2)

. . . . . . . . . . . .
(β1n,γ1n, £1n) (β2n,γ2n, £2n) . . . (βmn,γmn, £mn)


be the decision matrices (DMs), where

〈
β jk ,γ jk , £ jk

〉
are the collections of log-PFNs. We also take the

weighed vectors of the attribute as υ = (υ1, υ2, · · · , υn)
T, with υh ∈ [0, 1], and

∑n
h=1 υh = 1. The detail

of the propsoed method is given in Figure 1.



Mathematics 2019, 7, 608 13 of 19Mathematics 2019, 7, x FOR PEER REVIEW 13 of 19 

 

 
Figure 1. Graphically presentation of the proposed method.  

Step 2. 

In this step, we use the proposed method to aggregate the different preference types of the DMs. 

Case 1. The method under the PFN environment is summarized as follows: 

( ) ( ) ( )( ) ( )( )1
1 1 1

, 1 log , log 1 , log 1 .
n n n

nLog PFWA J J ?
υ υ υ

τ τ τβ γ
= = =

 − = − − − 
 

∏ ∏ ∏  
  

    
  

   

Case 2. 

( ) ( ) ( )( ) ( )( )1
1 1 1

, 1 log ,1 1 log 1 ,1 1 log 1
n n n

nLog PFWG J J ?
υ υ υ

τ τ τβ γ
= = =

 − = − − − − − − − 
 
∏ ∏ ∏  

  
    

  
   

Case 3. 

( )
( )( ) ( )( )( )

( )( )( )
1 1

1

1

1 log , log 1 ,
,

log 1

n n

n n
Log PFOWA J J

£

υυ

τ τ

υ

τ

β γ℘ ℘
= =

℘
=

 − − 
 − =
 

− 
 

∏ ∏

∏


 

 






 
 




   

Figure 1. Graphically presentation of the proposed method.

We planned the following algorithm to resolve MADM problems with PF information by using
the log-PFWA and log-PFWG operators.

Step 1. Normalized the given decision matrices (DMs).

There are two types of criterion one is the benefit criteria and the other one is the cost type criteria.
The following equation is used to modify the cost type criteria into benefit criteria. If the given criteria
are of the benefit type, then there is no need for normalization:

Jc =
〈
£ jk ,γ jk , β jk

〉
.

Step 2.

In this step, we use the proposed method to aggregate the different preference types of the DMs.

Case 1. The method under the PFN environment is summarized as follows:

Log− PFWA(J1, · · · Jn) =

1−
n∏

h=1

(
logτh

βh
)υh ,

n∏
h=1

(
logτh

(1− γh)
)υh ,

n∏
h=1

(
logτh

(1− £h)
)υh

.
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Case 2.

Log− PFWG(J1, · · · Jn) =

 n∏
h=1

(
1− logτh

βh
)υh , 1−

n∏
h=1

(
1− logτh

(1− γh)
)υh , 1−

n∏
h=1

(
1− logτh

(1− £h)
)υh


Case 3.

Log− PFOWA(J1, · · · Jn) =


1−

n∏
h=1

(
logτh

β℘(h)
)υh ,

n∏
h=1

(
logτh

(
1− γ℘(h)

))υh ,
n∏

h=1

(
logτh

(
1− £℘(h)

))υh


Case 4.

Log− PFOWG(J1, · · · Jn) =


n∏

h=1

(
1− logτh

β℘(h)
)υh , 1−

n∏
h=1

(
1− logτh

(
1− γ℘(h)

))υh ,

1−
n∏

h=1

(
1− logτh

(
1− £℘(h)

))υh


Step 3.

In this step, we use Definition 5 to calculate the score and accuracy functions of the decision matrices.

Step 4.

In this step, we rank the alternatives based on score and accuracy functions to choose the
best option.

5. Descriptive Example

In this section, the proposed method is applied to a circulation center evaluation problem.
Consider a committee of DMs to evaluate and select the most suitable circulation center among
four circulation centers: G1, G2, G3, and G4. The decision maker evaluates the four circulation center
alternatives based on four aspects: cost of transportation (u1), load of capacity (u2), satisfying demand
with minimum delay (u3), and security (u4). We selected the best option according to the suitability
ratings of the four alternatives, G1, G2, G3 and G4, under four aspects u1, u2, u3, and u4 whose weight
vector is (0.224, 0.236, 0.304, 0.236), which are assumed by DM. In this example, the DM is designed to
be G = (Jmn)4×4, as shown in Table 1.

Table 1. Petroleum circulation center information.

u1 u2 u3 u4

G1 (0.25, 0.30, 0.40) (0.27, 0.25, 0.35) (0.40, 0.20, 0.20) (0.45, 0.15, 0.10)
G2 (0.17, 0.23, 0.45) (0.26, 0.32, 0.38) (0.42, 0.11, 0.10) (0.35, 0.30, 0.23)
G3 (0.12, 0.15, 0.25) (0.10, 0.20, 0.45) (0.55, 0.35, 0.15) (0.43, 0.30, 0.20)
G4 (0.24, 0.28, 0.37) (0.25, 0.23, 0.33) (0.42, 0.11, 0.19) (0.41, 0.15, 0.09)

Step 1. First, we normalized the DM in Table 2.

Table 2. Normalized petroleum circulation center information.

u1 u2 u3 u4

G1 (0.40, 0.30, 0.25) (0.35, 0.25, 0.27) (0.40, 0.20, 0.20) (0.45, 0.15, 0.10)
G2 (0.45, 0.23, 0.17) (0.38, 0.32, 0.26) (0.42, 0.11, 0.10) (0.35, 0.30, 0.23)
G3 (0.25, 0.15, 0.12) (0.45, 0.20, 0.10) (0.55, 0.35, 0.15) (0.43, 0.30, 0.20)
G4 (0.37, 0.28, 0.24) (0.33, 0.23, 0.25) (0.42, 0.11, 0.19) (0.41, 0.15, 0.09)
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Step 2. Operate the aggregation operator to evaluate the DMs of the logarithm picture
fuzzy information.

Case 1. Using the Log-PFWA operator, we have Table 3.

Table 3. Petroleum circulation center information.

G1 (0.6022, 0.1060, 0.0931)
G2 (0.6032, 0.1047, 0.0825)
G3 (0.6361, 0.1231, 0.0650)
G4 (0.5857, 0.0835, 0.0864)

Case 2. In this case, we are using the Log-PFWG, we have Table 4.

Table 4. Petroleum circulation center information.

G1 (0.5990, 0.1111, 0.1013)
G2 (0.5994, 0.1184, 0.0906)
G3 (0.6027, 0.1336, 0.0680)
G4 (0.5822, 0.0915, 0.0942)

Case 3. In this case, we use the Log-PFOWA. We have Table 5.

Table 5. Petroleum circulation center information.

G1 (0.6016, 0.1104, 0.0959)
G2 (0.6005, 0.1146, 0.0892)
G3 (0.6248, 0.1210, 0.0666)
G4 (0.5813, 0.0904, 0.0891)

Case 4. In this case, we use the Log-PFOWG. We have Table 6.

Table 6. Petroleum circulation center information.

G1 (0.5985, 0.1160, 0.1041)
G2 (0.5968, 0.1269, 0.1060)
G3 (0.5929, 0.1309, 0.0699)
G4 (0.5780, 0.0986, 0.0970)

Step 3. In this step, we compute the score values using definition 5, S(Gm)(m = 1, . . . , 4) of the
Log-PFNs, as shown in Table 7.

Table 7. Alternative ranking.

S (G1) S (G2) S (G3) S (G4) Ranking

Log-PFWA 0.6886 0.6950 0.7172 0.6905 G3 > G2 > G4 > G1
Log-PFWG 0.6798 0.6817 0.6872 0.6804 G3 > G2 > G4 > G1

Log-PFOWA 0.6847 0.6850 0.7097 0.6827 G3 > G2 > G1 > G4
Log-PFOWG 0.6757 0.6682 0.6805 0.6725 G3 > G1 > G4 > G2

Step 4. Thus, the best petroleum circulation center is G3.

The comparison of the alternative based on score values is shown in Figure 2.
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5.1. Comparison Analysis with the Existing Methods

This section provides our comparison analysis of the existing aggregation operators and our
novel logarithmic aggregation operators. The existing aggregation operators were proposed by
Ashraf et al. [23] in 2018 to handle picture fuzzy quantities. Ashraf introduced the picture fuzzy
aggregation operators, such as picture fuzzy geometric, order geometric, and hybrid geometric
aggregation operators. We provide novel aggregation operators including logarithmic picture averaging
and geometric aggregation operators, such as logarithmic picture fuzzy average, ordered average,
geometric, and ordered geometric aggregation operators. The logarithmic aggregation operators
proposed in this paper are more general, more accurate, and more flexible.

To evaluate air quality, we take the descriptive example proposed by Ashraf et al. [23].
Three stations are used to evaluate the air quality, denoted as (O1, O2, O3). Decision maker weights
are (0.314, 0.355, 0.331)T. We have three criteria’s C1, C2 and C3. The collected information from these
three stations, which is given in the Tables 8–10.

Table 8. Air quality data from station O1.

C1 C2 C3

G1 (0.265, 0.150, 0.385) (0.330, 0.190, 0.280) (0.245, 0.175, 0.380)
G2 (0.345, 0.145, 0.310) (0.430, 0.190, 0.180) (0.245, 0.275, 0.310)
G3 (〈0.365, 0.150, 0.335 ) (0.480, 0.310, 0.105) (0.340, 0.310, 0.190)
G4 (0.430, 0.210, 0.170) (0.460, 0.145, 0.165) (0.310, 0.430, 0.070)

Table 9. Air quality data from station O2.

C1 C2 C3

G1 (0.125, 0.470, 0.200) (0.220, 0.400, 0.160) (0.345, 0.410, 0.125)
G2 (0.355, 0.335, 0.120) (0.300, 0.170, 0.330) (0.205, 0.430, 0.105)
G3 (0.315, 0.380, 0.100) (0.340, 0.265, 0.195) (0.280, 0.520, 0.190)
G4 (0.365, 0.375, 0.135) (0.355, 0.220, 0.305) (0.325, 0.405, 0.090)
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Table 10. Air quality data from station O3.

C1 C2 C3

G1 (0.260, 0.075, 0.395) (0.220, 0.414, 0.160) (0.255, 0.370, 0.275)
G2 (0.270, 0.160, 0.360) (0.320, 0.015, 0.465) (0.135, 0.575, 0.090)
G3 (0.245, 0.365, 0.290) (0.250, 0.570, 0.110) (0.175, 0.330, 0.165)
G4 (0.390, 0.340, 0.160) (0.305, 0.435, 0.120) (0.465, 0.425, 0.076)

Step 2.

In this step, we use the proposed Log − PFWA aggregation operator to evaluate the collective
picture fuzzy matrix, which is in shown in Tables 11 and 12.

Table 11. Collective picture fuzzy information.

C1 C2 C3

G1 (0.3205, 0.0897, 0.1619) (0.4037, 0.1705, 0.0923) (0.4519, 0.1597, 0.1157)
G2 (0.5097, 0.0990, 0.1173) (0.5407, 0.0366, 0.1617) (0.2836, 0.2354, 0.0667)
G3 (0.4869, 0.1454, 0.1034) (0.5489, 0.1979, 0.0621) (0.4176, 0.2105, 0.0869)
G4 (0.5652, 0.1577, 0.0724) (0.5700, 0.1229, 0.0896) (0.5645, 0.2361, 0.0355)

Table 12. (a) Ordered collective picture fuzzy information. (b) Aggregated information.

(a)

C1 C2 C3

G1 (0.4519, 0.1597, 0.1157) (0.4037, 0.1705, 0.0923) (0.3205, 0.0897, 0.1619)
G2 (0.5407, 0.0366, 0.1617) (0.5097, 0.0990, 0.1173) (0.2836, 0.2354, 0.0667)
G3 (0.5489, 0.1979, 0.0621) (0.4869, 0.1454, 0.1034) (0.4176, 0.2105, 0.0869)
G4 (0.5700, 0.1229, 0.0896) (0.5652, 0.1577, 0.0724) (0.5645, 0.2361, 0.0355)

(b)

G1 (0.5927, 0.0632, 0.0553)
G2 (0.6501, 0.0448, 0.0496)
G3 (0.6853, 0.0868, 0.0377)
G4 (0.7531, 0.0795, 0.0274)

Next, we operate the Log− PFOWA aggregation operator, to rank the alternatives.

Step 3. In this step, we compute the score values using definition 5. S(Gm)(m = 1, . . . , 4) of the
Log-PFNs is as shown in Table 13.

Table 13. Evaluation results of each air station.

Log− PFOWA

Score sco(G4) = 0.828 > sco(G3) = 0.779 > sco(G2) = 0.770 > sco(G1) = 0.7197
Ranking G4 > G3 > G2 > G1

Step 4. Thus, the best evaluation result for this case is G4.

We compared the existing method [23] and our novel logarithmic aggregation operators. From the
analysis, we found our proposed aggregation operator (log-PFOWA) and the existing method
aggregation operator [23] provide the same result, as shown in Table 14.

Table 14. Comparison analysis with the existing method [23].

Method Ranking Order

Ashraf [23], G4 > G3 > G2 > G1
Log-PFOWA (introduced method) G4 > G3 > G2 > G1
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Table 14 shows that our proposed method logarithmic picture fuzzy aggregation operator provides
new method to find the best alternative in this decision-making problem.

6. Conclusions

In this paper, we outlined the logarithmic operational laws of PFNs, which are a useful supplement
to the existing picture fuzzy aggregation techniques. Based on the logarithmic operational laws,
we constructed a series of aggregation operators of PFNs, i.e., Log-PFWA, Log-PFWG, Log-PFOWA,
and Log-PFOWG. Several characteristics required of these logarithmic aggregation operators were
comprehensively explored. To demonstrate the efficiency and consistency of the proposed picture fuzzy
logarithmic aggregation operators, we developed an algorithm to address MADM problems for tacking
the uncertainty in the form of picture fuzzy information. A descriptive example using a circulation
center evaluation problem was provided to validate and demonstrate the applicability of our proposed
technique. Consequently, we also demonstrated the superiority and the validity of the proposed
aggregation operators using some of the existing tools. Hence, the analysis showed that our proposed
aggregation operator is more reliable and accurate than the existing method. Thus, our proposed
method logarithmic aggregation operator provides new method to find the best alternative in the
MADM decision-making problem.

In future work, we will discuss the generalized form of these operators for the logarithmic
operational law of PFSs and define the hybrid averaging and hybrid geometric operators.
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