
mathematics

Article

Linear Maps in Minimal Free Resolutions of
Stanley-Reisner Rings

Lukas Katthän

Goethe-Universität, FB 12–Institut für Mathematik, Postfach 11 19 32, D-60054 Frankfurt am Main, Germany;
katthaen@math.uni-frankfurt.de

Received: 17 June 2019; Accepted: 4 July 2019; Published: 6 July 2019
����������
�������

Abstract: In this short note we give an elementary description of the linear part of the minimal
free resolution of a Stanley-Reisner ring of a simplicial complex ∆. Indeed, the differentials in the
linear part are simply a compilation of restriction maps in the simplicial cohomology of induced
subcomplexes of ∆. Along the way, we also show that if a monomial ideal has at least one generator of
degree 2, then the linear strand of its minimal free resolution can be written using only±1 coefficients.
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1. Introduction

Let k be a field and S = k[x1, . . . , xn] be the polynomial ring over it. Consider a finitely generated
graded S-module M, and its minimal free resolution F•. The linear part [1] lin(F•) of F• has the same
modules as F•, and its differential dlin is obtained from the differential d of F• by deleting all non-linear
entries in the matrices representing d in some basis of F•.

The main result of this short note is an explicit description of lin(F•) in the case where M = k[∆]
is the Stanley-Reisner ring of a simplicial complex ∆. It is well-known that F• is multigraded and
generated as S-module in squarefree multidegrees. By Hochster’s formula, it holds that

TorS
i (k[∆],k)U ∼= H̃#U−i−1(∆U ;k),

where U ⊆ {1, . . . , n} is a squarefree multidgree and ∆U := {F ∈ ∆ : F ⊆ U} is the restriction of ∆.
Therefore, lin(Fi) is isomorphic to the direct sum of modules of the form H̃#U−i−1(∆U)⊗k S(−U).
The differential dlin turns out to be simply a compilation of all the restriction maps H̃i(∆U) →
H̃i(∆U\u), ω 7→ ω|U\u, induced by the inclusions ∆U\u ⊂ ∆U .

Theorem 1. Let k[∆] be the Stanley-Reisner ring of a simplicial complex ∆ and let F• denote its minimal free
resolution. The linear part lin(F•) of F• is isomorphic to the complex with modules

lin(Fi) =
⊕

U⊆[n]
H̃#U−i−1(∆U)⊗k S(−U),

and the components of the differential are given by

H̃ j(∆U)⊗k S(−U) −→ H̃ j(∆U\u)⊗k S(−U \ u)

ω⊗ s 7−→ (−1)α(u,U)ω|U\u ⊗ xus
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This extends the result of Reiner and Welker ([2], Theorem 3.2), which describes the maps in the
linear strand of F•. An alternative description of lin(F•) in terms of the Alexander dual of ∆ was given
by Yanagawa ([3], Theorem 4.1).

Example 1. Let ∆ be the simplicial complex with vertex set {a, b, c, d, e} and facets {a, c, d}, {b, d, e}, {c, d, e}
and {b, c}. Its Stanley-Reisner ideal is I∆ = 〈ab, ac, bcd, bce〉. A minimal free resolution F• is given by the
following complex:

0← S

( ab ac bcd bce

1 ab ac bcd bce
)

←−−−−−−−−−−−−−−−−− S4


abc abcd abce bcde

ab −c cd ce 0
ac d 0 0 0
bcd 0 −a 0 e
bce 0 0 −a −d


←−−−−−−−−−−−−−−−−−−−−−−− S4


abcde

abc 0
abcd e
abce −d
bcde a


←−−−−−−−−−−− S← 0

The linear entries are marked in boldface. We indicate the relevant induced subcomplexes of ∆ in Figure 1.
There, the arrows indicate non-zero linear entries in the matrices of F•. They correspond to non-zero restriction
maps in the zero- or one-dimensional cohomology.

a
b
c

d

e

Figure 1. The induced subcomplexes of ∆ from Example 1. The arrows indicate non-zero
linear coefficients.

As a special case of Theorem 1, we obtain a very simple and explicit description of the 1-linear
strand of F• (this is the strand containing the quadratic generators of I∆). In particular, we show that
the maps in the 1-linear strand can always be written using only ±1 coefficients, see Corollary 1. This
extends and simplifies the results of Horwitz [4] and Chen [5], who constructed the minimal free
resolution of I∆ under the assumption that I∆ is generated by quadrics and has a linear resolution.

This article is structured as follows. In Section 2 we set up notational conventions and recall
various preliminaries. In the subsequent Section 3 we prove our main result. In the last section, we ask
several open questions and pose a conjecture.

2. Notation and Preliminaries

For n ∈ N we write [n] := {1, . . . , n}. To simplify the notation, we set U \ u := U \ {u} and
U ∪ u := U ∪ {u} for U ⊆ [n] and u ∈ [n].

Throughout the paper let k denote a fixed field and S = k[x1, . . . , xn]. Further, we write

m := 〈x1, . . . , xn〉
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for the unique maximal graded ideal in S. We only consider the fine Zn-grading on S, i.e., the degree of
xi is the i-th unit vector in Zn. Squarefree multidegrees are identified with subsets of [n]. In particular,
for U ⊆ [n], we write S(−U) for the free cyclic S-module whose generator is in degree U.

2.1. The Linear Part

Let M be a finitely generated graded S-module. We consider its minimal free resolution

F• : 0←− M←− F0
d1←− · · · dn←− Fn ←− 0.

There is a natural filtration on F•, which is given by

F j(Fi) := mj−iFi.

The associated graded complex lin(F•) is called the linear part of F•. It was introduced in [1], but see
also ([6], Chapter 5). Note that lin(Fi) ∼= Fi as S-modules, but the differentials on the complexes are
different. Indeed, lin(F•) can be constructed alternatively by choosing a basis for F•, representing its
differential in this basis by matrices, and deleting all non-linear entries, that is, entries in m2.

2.2. Simplicial Chains and Cochains

Let ∆ be a simplicial complex with vertex set [n]. For the convenience of the reader, we recall the
definitions of the chain and cochain complexes of ∆. For keeping track of the signs, we use the notation

α(A, B) := #{(a, b) ∈ A× B : a > b}

for subsets A, B ⊆ [n]. We further set α(a, B) = α({a}, B). The (augmented oriented) chain complex of
∆ is the complex of k-vector spaces C̃•(∆), where C̃d(∆) is the k-vector space spanned by the d-faces
of ∆, and the differential is given by

∂(F) = ∑
i∈F

(−1)α(i,F)F \ i.

Here, we consider the empty set as the unique face of dimension −1. Note that the definition of α(i, F)
depends on the ordering of [n]. The (augmented oriented) cochain complex of ∆ is the dual complex
C̃•(∆) := homk(C̃•(∆),k). We write F∗ ∈ C̃d(∆) for the basis element dual to a d-face F ∈ ∆. In this
basis, the differential on C̃•(∆) can be written as

∂(F∗) = ∑
i∈[n]\F

(−1)α(i,F)(F ∪ i)∗.

Here, we adopt the convention that (F∪ i)∗ = 0 if F∪ i /∈ ∆. The (reduced) simplicial cohomology
of ∆ is H̃∗(∆) := H̃∗(∆;k) := H∗(C̃•(∆)).

For a subcomplex Γ ⊆ ∆, there is a restriction map C̃•(∆)→ C̃•(Γ). If ω ∈ C̃•(∆) is a cochain and
U ⊆ [n], then we write ω|U for the restriction of ω to ∆U .

3. Proof of the Main Result

Let ∆ be a simplicial complex with vertex set [n]. Recall that the Stanley-Reisner ideal of ∆ is
defined as I∆ := 〈xU : U ⊆ [n], U /∈ ∆〉, where xU := ∏i∈U xi. Further, the Stanley-Reisner ring is
k[∆] := S/I∆. Every squarefree monomial ideal arises as the Stanley-Reisner ideal of some simplicial
complex ([7], Theorem 1.7).

We are going to need an explicit version of Hochster’s formula. It is of course well known, but
we give the details for the convenience of the reader. Let V = spank{e1, . . . , en} be an n-dimensional
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k-vector space and let Λ•V denote the exterior algebra over it. For F = {i1, . . . , ir} ⊆ [n] with
i1 < · · · < ir, we set eF := ei1 ∧ · · · ∧ eir . Then k[∆]⊗k Λ•V is the Koszul complex of k[∆].

Proposition 1 ([8]). For each squarefree multidegree U ⊆ [n], there is an isomorphism of complexes (k[∆]⊗k
Λ•V)U −→ C̃#U−1−•(∆U), given by xF ⊗ eU\F 7→ (−1)α(F,U)F∗.

Proof. It suffices to show that the following diagram commutes:

xF ⊗ eU\F ∑
i∈U\F

(−1)α(i,U\F)xFxi ⊗ eU\(F∪i)

(−1)α(F,U)F∗ (−1)α(F,U) ∑
i∈U\F

(−1)α(i,F)(F ∪ i)∗

We only need to show that α(F, U) + α(i, F) ≡ α(i, U \ F) + α(F ∪ i, U) modulo 2. This follows
from the following computation:

α(F ∪ i, U)− α(F, U) = α(i, U) = α(i, F) + α(i, U \ F)

Now we turn to the proof of Theorem 1, which we restate for convenience.

Theorem 2. Let k[∆] be the Stanley-Reisner ring of a simplicial complex ∆ and let F• denote its minimal free
resolution. The linear part lin(F•) of F• is isomorphic to the complex with modules

lin(Fi) =
⊕

U⊆[n]
H̃#U−i−1(∆U)⊗k S(−U),

and the components of the differential are given by

H̃ j(∆U)⊗k S(−U) −→ H̃ j(∆U\u)⊗k S(−U \ u)

ω⊗ s 7−→ (−1)α(u,U)ω|U\u ⊗ xus

Proof of Theorem 1. We follow the arguments of the proof of ([3], Theorem 4.1). Following [6]
and ([1], pp. 107–109), we consider the double complex (L•,•, ∂, ∂′), whose modules are given by
La,b := k[∆]⊗k ΛaV ⊗k Sb and the differentials are:

∂(s1 ⊗ eF ⊗ s2) := ∑
i∈F

(−1)α(i,F)s1xi ⊗ eF\i ⊗ s2

∂′(s1 ⊗ eF ⊗ s2) := ∑
i∈F

(−1)α(i,F)s1 ⊗ eF\i ⊗ xis2

It is not difficult to see that the homology of (L•,•, ∂) is isomorphic to TorS
•(k[∆],k)⊗k S. By ([6],

Theorem 5.1), the linear part of the minimal free resolution is induced by ∂′.
Consider that the sub-double complex L′a,b :=

⊕
σ∈[n](k[∆] ⊗k ΛaV ⊗k Sb)σ of L•,•. As

TorS
•(k[∆],k) is non-zero in squarefree degrees only ([7], Corollary 1.40), both L′•,• and L•,• have

the same homology with respect to ∂.
By Proposition 1, (L′•,•, ∂) is isomorphic to

⊕
U⊆[n] C̃#U−1−•(∆U)⊗k S(−U), where ∂′ translates

to the map:
C̃j(∆U)⊗k S(−U) −→

⊕
u∈U

C̃j(∆U\u)⊗k S(−U \ u)

F∗ ⊗ s 7−→ ∑
u∈U

(−1)α(u,F)F∗|U\u ⊗ xus
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Now the claim follows by taking homology with respect to ∂ and applying ([6], Theorem 5.1).

A particularly simple case of Theorem 1 is the following. See Conjecture 1 for a conjectural
improvement of this result.

Corollary 1. Let I ⊆ S be a monomial ideal and let F• be its minimal free resolution. Then one can choose a
basis of F• such that the maps in its 2-linear strand have only coefficients in {−1, 0, 1}.

Proof. We may assume that I is squarefree by replacing it with its polarization ([7], p. 44). So it is the
Stanley-Reisner ideal of some simplicial complex ∆. By Theorem 1, maps in the 2-linear strand of its
minimal free resolution are induced by the restriction maps H̃0(∆U)→ H̃0(∆U\u) for each u ∈ U.

For each subset U ⊆ [n] we choose a distinguished connected component CU,0 of ∆U . For each
other connected component CU,i of it, let eU,i : U → k the function which is 1 on the vertices of CU,i
and 0 on the others. It is clear that the set {eU,i : i > 0} forms a basis of H̃0(∆U).

We claim that in this basis, the differential has coefficients ±1. For i > 0 there are the
following cases:

1. CU,i = CU\u,j for some j > 0,
2. CU,i = CU\u,0,
3. CU,i splits into several connected components CU\u,j1 , . . . , CU\u,jr of ∆U\u with j1, . . . , jr > 0,
4. same as (3), with j1 = 0,
5. CU,i is the isolated vertex u.

In each case, it is easy to see that eU,i is mapped to a linear combination of the eU\u,j with
coefficients in {−1, 0, 1}.

4. Questions and Open Problems

4.1. Affine Monoid Algebras

Recall that a (positive) affine monoid Q ⊆ Nn is a finitely generated submonoid of Nn. The
monoid algebras k[Q] of affine monoids form a well-studied class of algebras. We refer the reader
to [7] or ([9], Chapter 6) for more information on these rings. Each positive affine monoid has a
unique minimal generating set, which is called its Hilbert basis. It yields a set of generators for
k[Q] and thus a surjection S → k[Q] from a polynomial ring S. Moreover, k[Q] carries a natural
Nn-multigrading. There is a combinatorial interpretation of the multigraded Betti numbers of k[Q],
namely TorS

i (k[Q],k)a ∼= H̃i(∆a), for a certain simplicial complex ∆a, see ([7], Theorem 9.2).

Question 1. Is there a topological interpretation of the linear part of the minimal free resolution of
k[Q] over S?

In this situation, a description along the lines of Theorem 1 would require a map H̃i(∆a) →
H̃i−1(∆a−b), where b is an element of the Hilbert basis such that a−b ∈ Q. Here, ∆a−b is a subcomplex
of ∆a, but in general it is neither a restriction nor a link.

4.2. Approximations of Resolutions

Let I∆ ⊆ S be the Stanley-Reisner ideal of some simplicial complex ∆ and let F• denote the
minimal free resolution of I∆. Hochster’s formula can be interpreted as giving a description of the
complex F•/mF• (with trivial differential). Our Theorem 1 extends this by (essentially) describing
F•/m2F•. These results can be considered as successive approximations of F•, so the following
question seems natural:

Question 2. Is there a combinatorial or topological description of F•/m3F•?
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This seems to be substantially more difficult than describing F•/m2F•. One reason for this is the
following. Even though a minimal free resolution is unique up to isomorphism, if one wants to write
it down explicitly one needs to choose an S-basis for F•. This choice can be done in two steps. First
choose a k-basis for F•/mF• = Tor∗(S/I∆,k), and then choose a lifting of these elements to F• (any
such lifting works due to Nakayama’s lemma). Hochster’s formula is a convenient tool for the first
choice. Theorem 1 implies that the differential of F•/m2F• does not depend on the second choice, but
this is no longer true for F•/m3F•.

4.3. Coefficients in Resolutions

Let I ⊆ S be a monomial ideal containing no variables, and let F• denote it with minimal free
resolution. We saw in Corollary 1 that the differential in the 2-linear strand of F• can be written using
only coefficients ±1. On the other hand, in ([2], Section 5) Reiner and Welker gave an example where
the differential on the 4-linear strand cannot be written using only coefficients ±1. We believe that
their example is optimal in that sense, and hence offer the following conjecture.

Conjecture 1. Let I ⊆ S be a monomial ideal. Then it is possible to choose a basis for its minimal free
resolution F•, such that the differential on the 3-linear strand can be written using only coefficients ±1.

Note that the first map in F•, d : F1 → F0, can always be written using coefficients from {−1, 0, 1}.
This is easily seen by considering the Taylor resolution. Further, it is not difficult to explicitly give a
basis for F2 such that the differential d : F2 → F1 has coefficients ±1.
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