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Abstract: In this paper, we propose a branch-and-bound algorithm to solve exactly the minimum
vertex cover (MVC) problem. Since a tight lower bound for MVC has a significant influence on the
efficiency of a branch-and-bound algorithm, we define two novel lower bounds to help prune the
search space. One is based on the degree of vertices, and the other is based on MaxSAT reasoning.
The experiment confirms that our algorithm is faster than previous exact algorithms and can find
better results than heuristic algorithms.
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1. Introduction

In an undirected graph, G = (V, E), where V is the set of vertices and E is the set of edges.
A vertex cover (VC) is a subset S ⊆ V in which each edge in G has at least one endpoint in S.
The minimum vertex cover (MVC) problem is to find the minimum size of the vertex cover in a graph.
The MVC problem is a typical NP-complete problem, which plays an important role in many practical
applications, such as network security, parallel machine scheduling [1], financial networks [2], and
economics [3]. The MVC problem is closely related to the well-known maximum clique (MC) problem.
A minimum vertex cover of the graph G can be implemented by finding a maximum clique of the
complementary graph of G (denoted by G). Unfortunately, when G is large and sparse, searching for a
maximum clique in G is very hard in practice, while it is usually relatively easy to find a minimum
vertex cover in G. Thus, finding an algorithm that solves MVC directly is needed.

There exist a remarkable number of swarm intelligence algorithms for the MVC problem. For
example, the work in [4] provided an algorithm for MVC using an ant colony optimization algorithm.
The work in [5] gave an algorithm based on the simulated annealing algorithm. In addition to the
above algorithms, many new algorithms have been developed. The work in [6] proposed a solving
algorithm using DNA molecules. The work in [7] adopted a quantum algorithm to design the MVC
algorithm. The work in [8] presented a deterministic data structure approximation ratio (2+ ε) to solve
the MVC problem, where ε is a small constant. The work in [9] addressed a learning automaton-based
algorithm. The work in [10] integrated reinforcement learning to solve the MVC problem.

Compared with the algorithms mentioned above, exact algorithms can prove the optimality of
solutions. The studies on exact algorithms were mainly concentrated on fixed parametrized algorithms.
We highlight the fixed parametrized algorithms described in [11–16]. Although these studies have
made tremendous progress in theory, there is still a huge gap between theory and practice. To our
best knowledge, SBMS [17] is the only empirically exact algorithm which is especially good at solving
minimum weight vertex cover(MWVC). The Satisfiability problem (SAT) is to decide whether some
Boolean formula is satisfiable or not. SBMS solves MWVC with efficient SAT solvers.
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In this paper, we introduce a new exact algorithm, EMVC, for solving the MVC problem, which is
based on the branch-and-bound (BnB) search scheme. In EMVC, we provide two approaches, DegLB
and SatLB, to compute the lower bound. DegLB is based on the degrees of vertices, and SatLB is
based on the MaxSAT reasoning. We carry out experiments on the DIMACS benchmark set which is a
challenge for the Maximum Clique problem.The results show that EMVC is an extremely competitive
exact solver.

In Section 2, we introduce some basic concepts related to the MVC problem. We propose the
framework of the EMVC algorithm in Section 3. We also present three methods to calculate lower
bounds to prune the searches in Section 4. Section 5 shows the experimental results of EMVC,
along with experiments validating the effectiveness of the proposed novel ideas under the DIMACS
Implementation Challenge. Finally, we give some conclusions and future works.

2. Basic Definition and Notation

Given an undirected graph G = (V, E), where V = {v1, v2, ..., vn} is a set of vertices and E =

{e1, e2, ..., em} is a set of edges, a vertex cover (VC) is a subset S ⊆ V, such that each edge in G has at
least one endpoint in S. An edge is said to be covered if at least one endpoint of the edge is in the vertex
cover S. The minimum vertex cover (MVC) problem is to find the minimum size of vertex cover in a
graph. For a vertex v in G, the neighborhood of v, denoted by N(v), is the set containing all vertices
adjacent to v, i.e., N(v) = {u ∈ V|(u, v) ∈ E}. The closed neighborhood of v is N∗(v) = N(v) ∪ {v}.
The degree of a vertex v, denoted by d(v), is the number of edges incident to v. The density D of G is
computed as 2× |E|/(|V| × (|V| − 1)). G \ T is a sub-graph derived from G by removing all vertices
of T and all edges with at least a vertex in T. An independent set I of G is a subset of vertices such that
no two vertices in I are adjacent, i.e., for any (u, v) ∈ I × I, (u, v) /∈ E. The maximum independent
set (MIS) problem is to find the maximum size of independent set I in a graph. A clique C is a subset
of vertices of G in which every two vertices are adjacent, i.e., for any (u, v) ∈ C × C, (u, v) ∈ E.
The maximum clique (MC) problem consists of finding a clique with the maximum number of vertices.
The complement graph of G is G, G = (V, E), where E = {(u, v)|u, v ∈ V ∧ u 6= v ∧ (u, v) /∈ E}.
A clique of G is an independent set of G and vice versa.

Example 1. Figure 1 gives an undirected graph G = (V, E), where V = {v1, v2, v3, v4, v5} and E =

{(v1, v2), (v1, v3), (v2, v4), (v3, v5), (v4, v5)}. The minimum vertex cover is {v1, v3, v4}.

Figure 1. A graph of Example 1.

3. EMVC Algorithm for Solving the MVC Problem

In this section, we propose the EMVCalgorithm, which employs the branch-and-bound
framework. The EMVC algorithm explores the search tree in a depth-first manner, which searches
for the optimal solution by recursively branching on a vertex and thus creating two new nodes until
there is no vertex in G. In other words, at first, the algorithm searches the complete space of solutions.
When it branches on a vertex, the solution space is divided into a set of smaller subsets, and it obtains
the relative upper and lower bound for each node to further reduce the search space. The outline of
the algorithm is presented in Algorithm 1. The algorithm takes the graph G, the upper bound UB,
and a growing partial vertex cover C as inputs. The upper bound UB, which is the overestimation of
the size of the minimum vertex cover of the sub-graph, can be obtained by computing the size of the
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minimum vertex cover found so far. When the size of the current partial vertex cover plus the the
lower bound of the sub-graph is equal to or greater than UB, we prune the search and return UB as the
size of the minimum vertex cover (Lines 1–2). In the algorithm, we use three methods to compute the
lower bound of the sub-graph, including DegLB, SatLB, and ClqLB. The DegLB and the SatLB are the
two new methods to calculate the lower bound, which we will describe in the next section. The ClqLB
adopts the clique to figure out the lower bound [18]. The ClqLB decomposes the graph G into a set of
disjoint cliques C1, C2, ..., Cr. Then, the lower bound of G is:

ClqLB(G) =
r
∑

i=1
(|Ci| − 1) (1)

where r is the number of cliques. If there is no vertex in G, the current growing partial vertex cover
is the minimum vertex cover Smin (Lines 3–4). Otherwise, the EMVC extends the current minimum
vertex cover by selecting a vertex v with the maximum degree and generates two branches, i.e., two
relaxed graphs G \ N∗(v) and G \ v (Lines 5–7). Finally, EMVC repeats until it finds the best solution
(Line 8).

Algorithm 1: The EMVC algorithm (G, UB, C).
Input: a graph G = (V, E), an upper bound UB = |V|, and a growing partial vertex cover C = ∅.
Output: the size of the minimum vertex cover Smin of G.

1 if |C| + max(DegLB(G), ClqLB(G), SatLB(G)) ≥ UB then
2 return UB;

3 if G = ∅ then
4 return |C|;

5 Select a vertex v from V with the maximum degree;
6 |C1| ← EMVC(G \ N∗(v), UB, C ∪ N(v));
7 |C2| ← EMVC(G \ v, min(UB, |C1|), C ∪ v);
8 return min(|C1|, |C2|);

4. Two Novel Lower Bounds for the MVC Problem

The lower bound is an important aspect of the branch-and-bound algorithm because explicit
enumeration is normally impossible due to the exponentially-increasing number of potential solutions.
The use of the lower bound enables the branch-and-bound algorithm to search only parts of the
solution space implicitly. Thus, designing a tight lower bound is crucial to enhance the efficiency
of the branch-and-bound algorithm. In this section, we provide two novel methods to compute the
lower bound.

4.1. DegLB: The Degree-Based Lower Bound for MVC

The first lower bound DegLB uses the degrees of vertices to compute. We select the vertex
with the largest degree, name it as v′1, and update the degree of other vertices. Then, we select the
largest vertex among the remaining vertices and name it v′2, and so on. We find a vertex v′i such that
d(v′1) + d(v′2) + ... + d(v′i) ≥ |E| and d(v′1) + d(v′2) + ... + d(v′i−1) < |E|. Then, the lower bound of G
of the MVC problem is defined as follows.

DegLB(G) = bi + |E′ |
d(v′i+1)

c, v′i+1 ∈ H (2)

where G \ {v′1, v′2, ..., v′i} = (V′, E′).
Since the number of edges that i vertices covered is equal to or smaller than |E|, there may exist

some edges that are not covered. Thus, we need at least |E′ |
d(v′i+1)

vertices to cover |E′|.
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Example 2. Figure 1 illustrates an undirected graph G = (V, E), where V = {v1, v2, v3, v4, v5} and E =

{(v1, v2), (v1, v3), (v2, v4), (v3, v5), (v4, v5)}. In G, we sort the vertices with dynamic degrees. We find that
d(v1) = 2, so we choose v1 as v′1 and update other vertices. At present, d(v2) = 1, d(v3) = 1, d(v4) =

2, d(v5) = 2. Then, we choose v4 as v′2 and update the degrees as d(v2) = 0, d(v3) = 0, d(v5) = 1. We choose
v5 as v′3, and we find that d(v′1) + d(v′2) + d(v′3) ≥ |E| and d(v′1) + d(v′2) < |E|. Thus, i = 3. We select three
vertices v′1, v′2, and v′3, where |E| = 5. Then, the sub-graph G \ {v′1, v′2, v′3} = (V′, E′), where V′ = {v2, v3}
and E′ = ∅. The lower bound of G obtained by DegLB is three, where i = 3, |E′| = 0.

4.2. SatLB: The Max-SAT-Based Lower Bound for MVC

Before describing the lower bound SatLB, we concentrate on specifying some notions. A variable
x may take a value of zero (false) or one (true). A literal l is a variable x or its negation x. A clause
is defined as a disjunction of literals, e.g., c = l1 ∨ l2 ∨ ... ∨ lk. A unit clause is a clause containing
only one literal. A conjunctive normal form (CNF) formula F is a conjunction of clauses, denoted
as F = c1 ∧ c2 ∧ ... ∧ cm. A truth assignment is a map that assigns each variable a value. A clause is
satisfied iff at least one literal takes the value true. The partial MaxSAT formula is a conjunction of hard
and soft clauses, where the hard clause is a clause that must be satisfied, while a soft clause is a clause
that may or may not be satisfied. The partial MaxSAT problem is to determine a truth assignment
satisfying all hard clauses and maximizing the number of satisfied soft clauses. A subset of soft clauses
is called an inconsistent subset iff the subset together with all hard clauses results in a contradiction
(an empty clause).

Unit propagation (UP), which is based on unit clauses, is a successful technique widely used in
SAT and MaxSAT. Since each clause needs to be satisfied, the single literal composed of the unit clause
must be true. Thus, if a set of clauses contains the unit clause l, the other clauses are simplified by the
application of the following UP rule:

• Every clause (other than the unit clause itself) containing l is removed;
• In every clause that contains l, this literal l is deleted.

In the following, we will introduce a lower bound of the MVC problem with MaxSAT reasoning.
At first, we reduce a graph into a MaxSAT instance. Given a graph G = (V, E), G can be partitioned
into a set of cliques {C1, C2, ..., Cm}, where C1 ∪ C2 ∪ ...∪ Cm = V and Ci ∩ Cj = ∅ (i 6= j). The graph
can be encoded into a MaxSAT instance as follows. (1) Each vertex vi can be encoded into a variable xi.
(2) Each pair of non-connected vertices (vi, vj) /∈ E can be represented by a hard clause xi ∨ xj. (3) A
soft clause xi ∨ xj ∨ ...∨ xk is added for each clique Ci = {xi, xj, ..., xk}.

Then, we compute the inconsistent subsets of the transformed MaxSAT instance using the UP
approach. Specifically, given a CNF formula F = c1 ∧ c2 ∧ ...∧ cm, we use a stack ST to store all unit
clauses including the ones generated by UP rule, where ci (1 ≤ i ≥ m) is the clause (hard clause or soft
clause) in the transformed MaxSAT and m is the number of hard clauses plus the soft clauses in the
transformed MaxSAT. In the beginning, ST stores all unit clauses in F, then we recursively pop out a
unit clause from ST and apply the UP rule, which may produce new unit clauses, until no more unit
clauses in the stack or an empty clause are produced. The soft clauses generating the empty clause
using the UP rule build an inconsistent subset. After finding an inconsistent subset, the soft clauses in
the subset are removed from the formula F, and we continue to find other inconsistent subsets in the
remaining F until no inconsistent subsets can be found.

UP can be enhanced by failed literal detection [19]. A literal l is called a failed literal in the formula
F if the UP rule working on F ∧ l produces an empty clause. When both l and l are failed literals, the
union of the soft clauses used to generate the two empty clauses constitutes an inconsistent subset. For
the MaxSAT instance encoding an MVC instance, one does not detect whether or not a negative literal
has failed, because a variable only has a positive occurrence in a soft clause.

After obtaining the number of inconsistent subsets, we can compute the lower bound of G of the
MVC problem as follows.
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Theorem 1. Let G = (V, E) be a graph. If G can be partitioned into k disjoint cliques and there are s
inconsistent subsets in the transformed MaxSAT instance, then the lower bound of G for the MVC problem is
SatLB = |V| − k + s.

Proof. Since |SMVC| = |V| + |SMIS|, we can compute the lower bound of the MVC problem after
obtaining the upper bound of the MISproblem, where SMVC and SMIS are the solutions of the MVC
and MIS problems, respectively. If G can be partitioned into k disjoint cliques, selecting one vertex
from each clique constitutes an independent set. k is the upper bound of the MIS problem. Assuming
that an instance contains k soft clauses, the upper bound is less than or equal to k − s if s disjoint
inconsistent clause sets can be detected. After using MaxSAT reasoning, we can find s inconsistent
subsets, which can further decrease the upper bound of MIS to k− s. Thus, the lower bound of the
MVC problem is |V| − k + s.

Example 3. Let us also employ Figure 1 to illustrate how to obtain a lower bound using the SatLB method based
on MaxSAT reasoning. We first encode the graph in Figure 1 into a partial MaxSAT formula. Since the graph can
be partitioned into three disjoint cliques {v1, v2}, {v3, v5}, and {v4}, the transformed partial MaxSAT formula
is composed of hard clauses c1 = x1 ∨ x2, c2 = x1 ∨ x3, c3 = x2 ∨ x4, c4 = x3 ∨ x5, c5 = x4 ∨ x5 and soft
clauses c′1 = x1 ∨ x2, c′2 = x3 ∨ x5, and c′3 = x4. Then, the CNF formula F = c1 ∧ c2 ∧ ...∧ c5 ∧ c′1 ∧ c′2 ∧ c′3,
and the stack ST is initialized to c′3. Then, based on Theorem 1, let c′3 become unit propagation. Thus, x4 is
true. Then, we remove x4 from hard clauses. Notice that hard clauses must be satisfied. Then, x2 and x5 are
false. At this point, the soft clauses change. c′1 = x1, and c′2 = x3. When x1 is true, to satisfied hard clauses, x2

and x3, are false. There is one conflict at this point because all soft clauses cannot be satisfied at the same time.
Therefore, the upper bound of the independent set is narrowed to a size of 3− 1. Thus, the lower bound of MVC
is 5− 3 + 1 = 3.

5. Experimental Results

In this section, we carry out extensive experiments to test the performance of our algorithm
EMVC on DIMACS instances obtained from NetworkRepository [20]. We compare EMVC with the
exact algorithm SBMS and heuristic algorithm FastVC. FastVC is the most competitive heuristic solver
for MVC so far [21]. SBMS is the unique exact algorithm for solving the MVC problem, which encodes
MVC into SAT [17]. In the experiment, the cutoff time of all solvers was set to 1000 seconds. For the
heuristic solver FastVC, we report the best solution (best) and average time (avgt) in 10 runs. For exact
solvers, we recorded the time running on each instance and the size of the minimum vertex cover of
each instance, denoted as Sm. For the sake of space, we only show the results on graphs with more
than 200 vertices and densities greater than 0.7. This is because dense graphs are more challenging
for the MVC problem. We implemented our algorithm in Java and compiled it using JDK1.7. All the
experiments were run on CentOS Linux, with a 3.1 GHZ CPU and 64 GB of memory.

Experimental results on the classical random benchmark are shown in Table 1. Table 1 illustrates
the comparison of the three algorithms, where “↑” means the heuristic algorithms did not find the
optimal value. In the table, the runtimes are in seconds, and “-” means timeout or out of memory.
From the table, we see that EMVC could find the optimum for most graphs, while SBMS failed on 27
instances; FastVC could not obtain the optimum on four instances. In addition, although the runtime
of EMVC was more than FastVC, FastVC could not ensure the optimum result, and EMVC could
solve these instances in a reasonable time. In general, these results indicate that EMVC is an extremely
competitive exact solver.
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Table 1. Comparison with different algorithms.

Instance Sm EMVCTime SBMSTime FastVCBest FastVCAvgt

brock400-1 393 1.58 - 393 0.02
brock400-2 392 1.54 - 392 0.03
brock400-3 393 1.55 - 393 0.02
brock400-4 393 1.55 360.50 393 0.01

C250-9 245 0.15 14.11 245 0.01
C500-9 495 1.41 - 495 0.10
C1000-9 994 8.89 - 994 1.81
C2000-9 1994 78.33 - 1994 4.69

DSJC500-5 487 177.73 - 487 4.15
DSJC1000-5 - - - 986 48.91

gen400-p0-9-55 392 0.37 72.99 392 <0.01
gen400-p0-9-65 393 0.38 - 393 <0.01
gen400-p0-9-75 394 0.37 46.59 394 <0.01
hamming10-2 1022 3.50 - 1022 0.27
hamming10-4 1004 13.55 - 1004 0.05
hamming8-2 254 0.48 - 254 0.01

johnson32-2-4 465 0.64 - 465 0.03
keller5 745 2.38 - 745 0.02
keller6 3298 186.54 - 3298 1.45

MANN-a27 375 0.23 10.57 375 0.01
MANN-a45 1032 3.04 - 1032 0.12
MANN-a81 3318 114.15 - 3318 1.57
p-hat1000-3 989 177.51 - 991 ↑ 0.03
p-hat1500-3 - - - 1489 35.87
p-hat300-1 292 0.56 93.12 292 <0.01
p-hat300-3 291 0.62 154.61 291 0.01
p-hat500-3 490 4.34 - 493↑ 0.14
p-hat700-3 - - - 638 0.01

san1000 933 10.25 - 933 0.02
san200-0-7-1 191 0.29 - 194 ↑ 0.02
san400-0-5-1 368 0.75 - 368 0.01
san400-0-7-1 389 0.44 - 390↑ 0.02
san400-0-7-2 385 0.44 231.90 385 <0.01
san400-0-7-3 381 0.41 132.99 381 <0.01
san400-0-9-1 395 0.45 - 395 0.01
sanr400-0-7 392 2.43 - 392 0.06

6. Summary and Future Work

In this paper, we proposed a new exact algorithm EMVC for MVC. In the algorithm, we defined
two tight lower bounds to reduce the search space. Extensive experiments showed that our algorithm
achieved good performance. In the future, we will study variants of the reduction rules to improve the
performance of the MVC solver.
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