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Abstract: The paper deals with the problem of continuous dependence on initial data of solutions
to the equation describing the evolution of a complex system in the presence of an external force
acting on the system and of a thermostat, simply identified with the condition that the second
order moment of the activity variable (see Section 1) is a constant. We are able to prove that these
solutions are stable with respect to the initial conditions in the Hadamard’s sense. In this connection,
two remarks spontaneously arise and must be carefully considered: first, one could complain the
lack of information about the “distance” between solutions at any time t ∈ [0,+∞); next, one cannot
expect any more complete information without taking into account the possible distribution of the
transition probabiliy densities and the interaction rates (see Section 1 again). This work must be
viewed as a first step of a research which will require many more steps to give a sufficiently complete
picture of the relations between solutions (see Section 5).
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1. Introduction

The aim of the present paper is to contribute a first result about the stability (and, consequently,
the uniqueness) of the solutions to the equation describing the evolution of a thermostatted complex system.
As is well known, a complex system is a set of a very large number of objects that, in connection with the
physical origin of the notion, can be called “particles”, but—in view of its present applications—should
perhaps be identified by the more general name of “individuals”. These objects, of course, enjoy a number
of empirical properties, that define their “state”: in a purely mechanical framework, these properties are
position and velocity. In principle, the state of the whole system should be considered as completely
known when the states of all of its particles are known. But, since these states are modified by the mutual
interactions of the particles, and these interactions in turn depend on the states of the particles, also in view
of the extremely large number of interactions to be taken into account, it is readily seen that a complete
knowledge of the state of the system is impossible [1] at any time. This gave rise to statistical mechanics
and to Boltzmann’s Kinetic Theory of Gases, that aimed to describe the states of any such system and their
evolution in terms of average states of the particles and of probability of their interactions.

But the “complexity” of a system is more than the large number of its particles. In the mechanical
framework, each interaction between two particles p and q is assumed to be independent of the
presence of the remaining particles of the system, so that the result of simultaneous interactions of
p with q1, q2, . . . , qn is simply the sum of the results of single interaction. When this assumption is
given up, and each particle is allowed to interact—under suitable conditions—not only with other
particles but also with their interactions, then the system is “complex” in the full meaning of the
term. So, not only the states of a complex systems and their evolution can be described only by
using a statistical (or probabilistic) language and statistical (or probabilistic) methods, but also the
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interactions between its particles. Accordingly, all what we may assume to be able to know about
complex systems at each instant are (a) a probability (or relative frequency) distribution f on the set
Du of all possible states of all of its particles; (b) for any pair (u∗, u∗) of possible states, an average
frequency η(u∗, u∗) of interactions between particles that are in the state u∗ and particles that are in
the state u∗; (c) for any pair (u∗, u∗) of possible states, a probability (or relative frequency) distribution
on the possible effects of interactions (see Section 2 below).

This is a generalized form of Boltzmann’s framework [1,2]. As a matter of fact, the introduction
of the notion of “complex systems”, in addition to the methodological choice to work on probability
distributions in the same way as in the Kinetic Theory of Gases, corresponds to the need, hence to the
attempt, to go beyond the limits of purely mechanical applications of the farmework, in order to give
some contributions to a formal statement, and if possible to the solution, of many problems arising
in the life of large sets of individuals of many different kinds (cell populations [3], with particular
respect to the interaction between cancer cells and cells of immune systems [4], animal populations,
social and economic communities like human nations [5,6], problems about vehicular traffic [7] and
about the behaviour of swarms [8], crowds [9,10] and pedestrians [11], opinion formation [12], etc.).
Of course, this attempt started about thirty years ago, was quite succesful and gave origin to a wide
literature, investigating both the mathematical problems posed by the framework and its possible new
applications [5,6,13]. The mathematical scheme provided by the equations proposed in this framework
(see Section 2 below) could perhaps be considered as the most versatile among the ones from time to
time constructed to formulate and solve problems arising in medicine, natural sciences, economics and
even in behavioural sciences.

In this perspective, in order to widen the “world” of applications of the model, the notion of
thermostat was recently introduced [14–17] to describe e.g. a crowd in a place hall compelled to go out
by an emergency (the external force) but calmed down and organized to move in a suitable order by
a security service (the thermostat) [18,19]. Of course, this extended model presents the same mathematical
problems of all the models of the same kind (existence and uniqueness of solutions and their continuous
dependence on initial and boundary conditions). Existence and uniqueness results were given in [18,20]
(for the case in which the variable u representing the state of any particle is continuous) and [21,22]
(for the discrete case). This paper offers a result about contiunous dependence for the continuous model.

The matter of the paper is distributed as follows: in Section 2 a short description of the problem is
given, with the explicit statement of the equation governing the evolution of a general thermostatted
complex system; the statement of our result about the continuous dependence of solutions to the
evolution equation on the initial data is given in Section 3, and its proof in Section 4; finally, Section 5 is
devoted to point out the reasons why the result stated and proved in the previous sections must be just
considered as the first step of a further research, as well as to draw the perspectives of such reasearch.

2. The Framework

Let C be a complex system [13,23–25] composed by a large number of objects, called active
particles [13], which can interact with each other. The system is assumed to be homogeneous with
respect to mechanical variables (position and velocity). The state of each of its particles will be then
described, at any time t ≥ 0, by only one scalar variable u ∈ Du ⊆ R, called activity variable,
which will be denoted by u. According to the statistical (or stochastic) scheme adopted to describe
complex systems (see Introduction), the states of single particles cannot be known at any time, and
only a probability (or relative frequency) distribution on the set Du of all possible states (values of u)
can be considered. This distribution function is

f (t, u) ∈ [0,+∞[×Du → R+.

Interactions between particles are described by the following two functions:
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• a function η(u∗, u∗) : Du × Du → R+, the interaction rate between particles in the state u∗ and
particles in the state u∗;

• a function A(u∗, u∗, u) : Du × Du × Du → R+, the transition probability density that a particle in
the state u∗ falls into the state u after interacting with a particle in the state u∗, such that for all
u∗, u∗ ∈ Du: ∫

Du
A(u∗, u∗, u) du = 1.

Let now p ∈ N. The p-th order moment of the system, a time t > 0, is:

Ep[ f ](t) :=
∫

Du
up f (t, u) du.

We assume that the system C is subject to an external force field acting on it, described by
a function F(u) : Du → R+. Moreover, a thermostat is applied on C, in order to keep the second
order moment

E2[ f ](t) =
∫

Du
u2 f (t, u) du

constant [18].
Accordingly, the evolution equation for the thermostatted framework of the system takes the form

∂t f (t, u) + ∂u (F(u) (1− uE1[ f ](t)) f (t, u)) = J[ f , f ](t, u), (1)

where the operator J[ f , f ](t, u) can be split as follows:

J[ f , f ](t, u) = G[ f , f ](t, u)− L[ f , f ](t, u)

=
∫

Du×Du
η(u∗, u∗)A(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗du∗

− f (t, u)
∫

Du
η(u, u∗) f (t, u∗) du∗.

The term G[ f , f , ](t, u) is called the gain operator, and the term L[ f , f ](t, u) is the loss operator.
Given an initial datum f 0(u), from Equation (1) we obtain the Cauchy problem related to

the thermostatted:
∂t f (t, u) + ∂u (F(u) (1− uE1[ f ](t)) f (t, u)) = J[ f , f ](t, u) [0,+∞[×Du

f (0, u) = f 0(u) Du

. (2)

Let now

K(Du) :=
{

f (t, u) ∈ [0,+∞[×Du → R+ : E0[ f ](t) = E2[ f ](t) = 1
}

and assume that

Assumption 1 (H1): for all u∗, u∗ ∈ Du:∫
Du
A(u∗, u∗, u) u2 du = u2

∗;

Assumption 2 (H2): the interaction function is constant, i.e., there exists an η > 0 such that η(u∗, u∗) = η,
for all u∗, u∗ ∈ Du;

Assumption 3 (H3): the distribution function vanishes on the boundary of Du, i.e. f (t, u) = 0 for
u ∈ ∂Du;
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Assumption 4 (H4): there exists F > 0 such that F(t) = F, for all t > 0;

Assumption 5 (H5): the initial data verifies the conditions E0[ f 0] = E2[ f 0] = 1.

If assumptions H1–H5 are satisfied, then there exists a unique solution
f (t, u) ∈ C

(
(0,+∞); L1(Du)

)
∩K(Du) to the Cauchy problem (2) [18].

Lemma 1. [18] Under assumptions H1–H5, the relations

1.
G[ f , f ]− G[g, g] = G[ f − g, f ] + G[g, f − g] ,

2. ∫
Du

G[ f , f ](t, u) du = η ,

3. ∫
Du

u G[ f , f ](t, u) du = 0 ,

4. ∫
Du

u2 G[ f , f ](t, u) du = η

are true.

Now, the evolution equation of E1[ f ](t) reads, [18]:

E′1[ f ](t) = F(1− (E1[ f ](t))2)− ηE1[ f ](t).

Lemma 2. [18] Under the assumptions H1–H5:

E1[ f ](t) =
E+

1 (E
−
1 −E0

1)−E−1 (E
+
1 −E0

1)e
−
√

η2+4F2

F t

(E−1 −E0
1)− (E+

1 −E0
1)e
−
√

η2+4F2

F t

,

where E0
1 := E1[ f 0] and E±1 := −η±

√
η2+4F2

2F .

Furthermore, the following result holds.

Lemma 3. If assumptions H1–H5 are satisfied, then

E1[ f ](t)→ E+
1 , as t→ +∞,

and ∣∣E1[ f ](t)−E+
1

∣∣ ≤ Ce−
√

η2+4F2

F t,

where C = C(η, F) is a constant depending on the system.

Remark 1. Assumptions H2 and H4 can be relaxed as follows: there exist η > 0 and F > 0 such that

η(u∗, u∗) ≤ η,

for all u∗, u∗ ∈ Du, and

F(t) ≤ F,

for all t > 0.



Mathematics 2019, 7, 602 5 of 11

3. Dependence on the Initial Data

The main aim of this paper is to prove a result about the dependence on the initial data of the
continuous thermostatted framework (1) that defines the related Cauchy problem (2).

Let f1(t, u) and f2(t, u) be two solutions to the Cauchy problem (2) corresponding to the
initial data f 0

1 (u) and f 0
2 (u) respectively. If assumptions H1–H5 hold true, then f1(t, u), f2(t, u) ∈

C
(
(0,+∞); L1(Du)

)
∩K(Du). Suppose that f 0

1 (u) and f 0
2 (u) belong to L1(Du).

Theorem 1 obtains an estimate of the norm

‖ f1(t, u)− f2(t, u)‖C((0,+∞);L1(Du))∩K(Du)

= max
t∈[0,T]

(∫
Du
| f1(t, u)− f2(t, u)| du

)
,

when ∥∥∥ f 0
1 (u)− f 0

2 (u)
∥∥∥

L1(Du)
=
∫

Du

∣∣∣ f 0
1 (u)− f 0

2 (u)
∣∣∣ du ≤ δ,

where δ > 0. Precisely,

Theorem 1. Assume that conditions H1–H5 are verified. If∥∥∥ f 0
1 (u)− f 0

2 (u)
∥∥∥

L1(Du)
≤ δ,

for δ > 0, then, for all T > 0

‖ f1(t, u)− f2(t, u)‖C([0,T];L1(Du))∩K(Du)

≤ δ eC̄ T ,

where C̄ :=
(
3 η + 2 F

(
C(η, F) +E+

1
))

, and C(η, F) is the constant of Lemma 1.

This result ensures that the dependence of solution to the continuous thermostatted framework
(2) on the initial data is continuous, so that any solution to the Cauchy problem (2) is stable in the
Hadamard sense.

4. Proof of the Result

The aim of this section is to give the proof of Theorem 1.

Proof of Theorem 1. Let f1(t, u) and f2(t, u) be two solutions to the Cauchy problem (2) belonging to
the space C

(
[0, T]; L1(Du)

)
∩ K(Du), corresponding to the initial data f 0

1 (u) and f 0
2 (u) in the space

L1(Du), respectively.
Then, Equation (1) can be written:

∂t f (t, u) = J[ f , f ](t, u)− F∂u ((1− uE1[ f ](t)) f (t, u)) . (3)

Integrating Equation (3) between 0 and t, for t > 0, one has:

∫ t

0
∂t f (τ, u) dτ =

∫ t

0
J[ f , f ](τ, u) dτ

−
∫ t

0
F∂u ((1− uE1[ f ](τ)) f (τ, u)) dτ,
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and

f (t, u) = f 0(u) +
∫ t

0
J[ f , f ](τ, u) dτ

− F
∫ t

0
∂u ((1− uE1[ f ](τ)) f (τ, u)) dτ.

(4)

Bearing in mind the initial data f 0
1 (u) and f 0

2 (u) and using relation (4), we obtain

f1(t, u) = f 0
1 (u) +

∫ t

0
J[ f1, f1](τ, u) dτ

− F
∫ t

0
∂u ((1− uE1[ f1](τ)) f1(τ, u)) dτ,

(5)

and

f2(t, u) = f 0
2 (u) +

∫ t

0
J[ f2, f2](τ, u) dτ

− F
∫ t

0
∂u ((1− uE1[ f2](τ)) f2(τ, u)) dτ,

(6)

so that, subtracting the (5) and (6), we find

f1(t, u)− f2(t, u) =
(

f 0
1 (u)− f 0

2 (u)
)

+
∫ t

0
(J[ f1, f1](τ, u)− J[ f2, f2](τ, u)) dτ

+ F
∫ t

0
∂u ((1− uE1[ f2](τ)) f2(τ, u)) dτ

− F
∫ t

0
∂u ((1− uE1[ f1](τ)) f1(τ, u)) , dτ,

(7)

In virtue of Lemma 1:

J[ f1, f1](τ, u)− J[ f2, f2](τ, u) = G[ f1, f1](τ, u)− η f1(τ, u)

− G[ f2, f2](τ, u) + η f2(τ, u)

= G[ f1 − f2, f1](τ, u)

+ G[ f2, f1 − f2](τ, u)

+ η ( f2(τ, u)− f1(τ, u)).

(8)

Furthermore:

∂u

(
(1− uE1[ f2](τ)) f2(τ)− (1− uE1[ f1](τ)) f1(τ)

)
= ∂u

(
( f2(τ, u)− f1(τ, u))− uE1[ f2](τ) f2(τ, u) + uE1[ f1](τ) f1(τ, u)

)
= ∂u

(
f2(τ, u)− f1(τ, u)

)
− ∂u

(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
.

(9)
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In virtue of relations (8) and (9), Equation (7) may be rewritten in the form

f1(t, u)− f2(t, u) =
(

f 0
1 (u)− f 0

2 (u)
)

+
∫ t

0
(G[ f1 − f2, f1](τ, u) + G[ f2, f1 − f2](τ, u)) dτ

+ η
∫ t

0
( f2(τ, u)− f1(τ, u)) dτ + F

∫ t

0
∂u ( f2(τ, u)− f1(τ, u)) dτ

− F
∫ t

0
∂u

(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ,

(10)

and the application of the triangle inequality to Equation (10) and an integration on Du lead to∫
Du
| f1(t, u)− f2(t, u)| du ≤

∫
Du

∣∣∣ f 0
1 (u)− f 0

2 (u)
∣∣∣ du

+
∫

Du

∣∣∣∣∫ t

0
G[ f1 − f2, f1](τ, u) + G[ f2, f1 − f2](τ, u) dτ

∣∣∣∣ du

+ η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

+ F
∫

Du

∣∣∣∣∫ t

0
∂u ( f2(τ, u)− f1(τ, u)) dτ

∣∣∣∣ du

+ F
∫

Du

∣∣∣∣∫ t

0
∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ

∣∣∣∣ du.

(11)

To conclude the proof, we only need now to estimate the five terms at the right hand side of
Equation (11).

First of all, by the assumptions of the theorem,∫
Du

∣∣∣ f 0
1 (u)− f 0

2 (u)
∣∣∣ du ≤ δ , (12)

so that, by straightforward calculations, we obtain for the second term at the right hand side of
inequality (11) the following estimate:

∫
Du

∣∣∣∣∫ t

0
G[ f1 − f2, f1](τ, u) + G[ f2, f1 − f2](τ, u) dτ

∣∣∣∣ du

≤
∫

Du

∫ t

0

∫
Du×Du

|ηA(u∗, u∗, u) ( f1(τ, u∗)− f2(τ, u∗)) f1(τ, u∗)| du∗ du∗ du dτ

+
∫

Du

∫ t

0

∫
Du×Du

|ηA(u∗, u∗, u) ( f1(τ, u∗)− f2(τ, u∗)) f2(τ, u∗)| du∗ du∗ du dτ

≤ 2 η
∫

Du

(∫ t

0
| f1(τ, u)− f2(τ, u)| dτ

)
du

≤ 2 η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ.

(13)

Next, since

F
∫

Du

∣∣∣∣∫ t

0
∂u ( f2(τ, u)− f1(τ, u)) dτ

∣∣∣∣ du

≤ F
∫ t

0

(∫
Du
|∂u( f2(τ, u)− f1(τ, u))| du

)
dτ,

and f (t, u) = 0 for u ∈ ∂Du, the fourth term at the right hand side of inequality (11) vanishes.
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Furthermore, the fifth term at the right hand side of relation (11) is easily estimated as follows:

F
∫

Du

∣∣∣∣∫ t

0
∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ

∣∣∣∣ du

≤ F
∫

Du

∫ t

0
|E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u)| dτ du

+ F
∫

Du

∫ t

0
|u ∂u (E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))| dτ du.

(14)

Now, integrating by parts the second term of the right hand side of relation (14) and bearing in
mind that f (t, u) = 0 for u ∈ ∂Du, one has

F
∫

Du

∣∣∣∣∫ t

0
∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ

∣∣∣∣ du

≤ 2F
∫

Du

∫ t

0
|E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u)| dτ du.

(15)

By adding and subtracting E+
1 f2(τ, u) and E+

1 f1(τ, u) at the right hand side of relation (15) and
using Lemma (2), it follows that

F
∫

Du

∣∣∣∣∫ t

0
∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ

∣∣∣∣ du

≤ 2F

[ ∫
Du

∫ t

0

∣∣∣ f2(τ, u) (E1[ f2](τ)−E+
1 )

− f1(τ, u) (E1[ f1](τ)−E+
1 )
∣∣∣ dτ du

+E+
1

∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

]

≤ 2 F

[
C(η, F)

∫
Du

∫ t

0
e−
√

η2+4F2

F t | f2(τ, u)− f1(τ, u)| dτ du

+E+
1

∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

]

≤ 2F
(
C(η, F) +E+

1
) ∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ.

(16)

By relations (12), (13), (16) and the condition f (t, u) = 0 for u ∈ ∂Du, inequality (11) becomes∫
Du
| f1(t, u)− f2(t, u)| du ≤ δ

+ 2 η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

+ η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

+ 2F
(
C(η, F) +E+

1
) ∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ,

(17)

and, by reordering the terms of this last relation and using the constant

C̄ :=
(
3 η + 2 F

(
C(η, F) +E+

1
))

,



Mathematics 2019, 7, 602 9 of 11

we get ∫
Du
| f1(t, u)− f2(t, u)| du

≤ δ + C̄
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ.

(18)

Finally, the Gronwall inequality [26] and inequality (15) yield∫
Du
| f1(t, u)− f2(t, u)| du ≤ δ eC̄ t, (19)

for all t > 0, so that, for T > 0,

max
t∈[0,T]

(∫
Du
| f1(t, u)− f2(t, u)| du

)
≤ δ eC̄ t,

and our claim is proved.

5. Concluding Remarks and Research Perspectives

As already pointed out at the end of Section 3, the result proved in the foregoing section can be
expressed by the statement that the solutions to the Cauchy problem (2) are stable in the Hadamard
sense. As it stands, this result could seem to be not quite satisfactory, and the question spontaneously
arises on whether these solutions can be proved to be stable or unstable in the whole interval (0,+∞),
and whether the answer to such a question could be find by some suitable technical refinements of
the method of proof used in the previous section. Several observations witness for a negative answer
to this last question, but a simple heuristic reasoning—based on the acknowledged versatility of
the scheme expressed by problem (2)—will be sufficient. As said in the Introduction, and shown in
the references quoted there, the scheme applies to many different kinds of systems, in particular to
social and economic systems. Our experience shows that slightly different distributions of wealth
can evolve in time in very similar or very different ways depending on the behaviour of the particles
of each system, i.e. on the terms in J[ f , f ](t, u) describing their interaction rates and the probable
effects of such interactions. The relations between these terms should play an important role in
producing stability or instability: for instance, frequent interactions could produce instability when
joined with strongly asymmetric transition probability distributions, but even uniform stability in the
whole interval (0,+∞) when the transition probabilities are symmetric for any pair of initial states
of interacting individuals. Thus, one of the first goals of subsequent researches about the problem
considered in the present paper should be to check whether different assumptions on the forms of
η(u∗, u∗) and A(u∗, u∗, u) give stronger but different results about stability or instability.

In this connection, a very important step of subsequent research will be the numerical formulation
and some numerical simulations of its solutions. In particular, problem (2) should be formulated in
particular contexts, like the one of socio–economic problems, and the interaction rate η(u∗, u∗) and the
probability distribution A(u∗, u∗, u) on the effects of interactions should be assigned according to the
results of previous statistical researches and the laws of micro-economy.

Furthermore, the choice of the distance

d( f1, f2) =
∫

Du
| f1(t, u)− f2(t, u)| du

in the space of solutions of the Cauchy problem (2) can be improved, as it is not so significant from
a statistical viewpoint. For instance, if f1 is a uniform probability density, it tells us that the deviations
of f2 from uniformity are, in some sense, “small”, but says nothing about the symmetry (or asymmetry)
of these deviations. From a statistical viewpoint, we are interested to know whether such deviations
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are “large” but concentrated in a small subset of Du, or “small” and spread over Du. So, the analysis
must be concentrated on a comparison of the derivatives ∂u f1 and ∂u f2.

Finally, it is of the greatest relevance to study continuous dependence on initial data in the discrete
case, mainly in order to check it also by means of numerical simulations. This must be a preliminary
step to the statistical studies proposed above.
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