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Abstract: In situations where an organization has limited human resources and a lack of multi-skilled
employees, organizations pay more and more attention to cost control and personnel arrangements.
Based on the consideration of the service personnel scheduling as well as the routing arrangement,
service personnel of different skills were divided into different types according to their multiple
skills. A mathematical programming model was developed to reduce the actual cost of organization.
Then, a hybrid meta heuristic that combines a tabu search algorithm with a simulated annealing was
designed to solve the problem. This meta heuristic employs several neighborhood search operators
and integrates the advantages of both the tabu search algorithm and the simulated annealing
algorithm. Finally, the stability and validity of the algorithm were validated by the tests of several
kinds of examples.
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1. Introduction

The world’s demographic changes have had a significant impact on the economy and business
operations. The aging of the population leads to a decrease in the working-age population [1].
On the other hand, due to increasing adult education levels, the quality of laborers has undergone a
fundamental change [2]. The “double change” of the quantity and quality of the working-age population
leads to the continuous rise of the cost of labor for enterprises, which has formed tremendous pressure
on the operation and management of enterprises. Technicians with multiple skills can adapt to a
variety of positions and jobs, which can make the organization’s personnel arrangement more flexible.
Its “a professional with multiple skills” characteristics can also effectively reduce the labor cost of
the organization. Therefore, in the management practice of contemporary enterprises, multi-skilled
employees are increasingly favored by managers. However, the work arrangements for multi-skilled
employees often involve multiple tasks in multiple locations, and each task has its own service time
window limit. Therefore, how to arrange the tasks of multiple multi-skilled employees reasonably has
become an urgent problem to be solved in human resource management and personnel scheduling
or dispatching.

The human resource path problem with time windows and multi-skill constraints is an extension
of the classic vehicle routing problem (VRP). Under the premise of meeting the needs of the task,
the goal is to reasonably schedule numbers of multi-skilled employees, minimize the operational costs,
and improve the operational efficiency of the organization.
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VRP is a classical combinatorial optimization problem. The development of VRP, based on the
paper written by Dantzig and Ramser [3], was published in 1959. It had extensive theoretical support
and practical basis in the research of logistics and supply chain management. Laporte had reviewed
the development of the vehicle routing problem in the past 50 years [4]. With the development of
VRP, the scope of application of VRP was also constantly developing and expanding. Braekers et al.
scientifically classified the research of VRP [5]. According to its classification, the problems studied
in this paper could be classified as an extension of the vehicle routing problem with time windows
(VRPTW). Many scholars did a lot of research on VRPTW. Savelsbergh proved for the first time that it
is an NP-hard problem and designed a local search algorithm to solve it [6]. Bräysy and Gendreau [7]
combed the study of VRPTW and introduced the main heuristic algorithms and classical operators for
solving this problem, which had provided learning resources for later researchers.

In the early days, VRPTW was named as a special scheduling problem [8], which took into account
the need for task time in the scheduling problem (that is the time window of a single point) and the
shortest path in the path problem, making the problem more practically significant and gradually
becoming a research hotspot in recent years. Among them, Qin et al. [9] and Zhang et al. [10] used
an improved heuristic algorithm to analyze and solve the problem and conducted a preliminary
exploration of the vehicle routing problem with human resource constraints, but only considered a
single type of human resource. The study of scheduling problems with multi-skill constraints first
appeared in the multi-skill project scheduling problem (MSPSP). In the subsequent development,
Correia and Saldanha-da-Gama carried out an empirical study on the cost factors [11]. Bellenguez and
Néron were the first to prove that such problems were NP-hard problems and calculated the lower
bound of the problem [12]. Intelligent algorithms, such as the differential evolution algorithm (DE) [13]
and the immune genetic algorithm (IGA) [14], were widely used to solve this problem. However, this
kind of research mainly considered project work or production systems at the same location [15–17]
and did not consider the routing optimization.

In summary, scholars have already done a lot of research on VRPTW and MSPSP, but few studies
considered both sides in an integration. According to the actual management practice requirements,
this paper considered the above two factors and models and analyzed the vehicle routing problem
with multi-skill constraints and time windows (VRPMCTW). According to the characteristics of the
model, a heuristic algorithm based on a tabu search was designed to solve the problem as a whole and
achieved good results.

2. Problem Description and Model Construction

2.1. Problem Description

In the regional logistics service activities, the logistics service center needs to manage a variety
of services such as water supply and drainage, strong electricity, weak electricity (access control,
surveillance video, network routing), and home maintenance of buildings in the jurisdiction. Each
business is highly professional, and thus technical personnel with professional skills are required to be
competent for business processing work, and the geographical distribution of multiple buildings is
generally scattered. During the same period, different buildings have different service requests, which
constitutes a complex service network.

This paper takes a service network with multi-skill constraints as the research object. The network
consists of a service center and multiple building nodes, as shown in Figure 1. The service center
is the point numbered 0 in the figure. It dispatches a group of professional technicians to serve the
buildings (task points) with different service requirements. Each professional technician serves a path,
starting from the service center and returning to it after completing the task. The service request
proposed by each task point has time window constraints and different skill requirements (different
skill requirements are represented by different shapes in Figure 1).
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Figure 1. Multi-skilled human resource path problem.

From the perspective of reducing the operating cost of the organization, the question to be decided
for the manager of the logistics service center is how to arrange the tasks of various professional and
technical personnel reasonably, and how to make the personnel walk the shortest route and serve the
task point as much as possible, which is on the basis of meeting the corresponding service skill needs
and time window constraint of each task point. That is, to achieve the goal of minimizing the operating
costs of the system.

2.2. Notations Description

G = (V,E): it is the service network;
N: task point set N = {1, 2, 3, . . . , n};
V: node set, V = {0}∪N is a node set, where 0 represents the service station center;
E: arc set, E = {(i, j): i, j ∈ V, I , j}, where (i, j) represents the edge of point i to j;
K: service professional technician category set, K = {1, 2, 3, . . . , k} means k = 2z-1 different types of

professional technicians, z is the number of skill types required for all customer at task points;
Rk: represents a set of all paths of the kth professional technician service, Rk = {1, 2, 3, . . . , rki} uses

rki to represent the ith path of the kth professional technician service;
dij: represents the travel distance from node i to node j;
si: the service time required by node i;
sdi: the professional skills required by node i;
[Oi, Ci]: time window of node i, start time Oi, time window closing time Ci;
fk: indicates the fixed salary of the kth type of personnel;
stki: indicates whether the kth service professional technician has the skills required by i, 1 means

master the skill, 0 means that the skill is not mastered;
M: any positive number that is large enough.
Xijkr: indicates that the arc of node i to node j is accessed by the rth employee of the kth type

of technician;
wikr: the time to reach point i and is served by the rth employee of the kth type of technician.
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2.3. Mathematical Model

The problem studied in this paper is an expansion based on the classic VRPTW, and similar to the
general VRPTW model, the objective function is the minimum operating cost of the system. In terms of
the cost structure, in addition to the path cost considered by the VRPTW, it also includes the salary cost
of the personnel. The skill limitations of skills of the professional technicians also need to be considered
in the constraints. Therefore, the problem has the following mathematical programming model:

min
∑
k∈K

∑
(i, j)∈E

∑
r∈Rk

di jXi jkr +
∑
k∈K

∑
r∈Rk

fk (1)

s.t. :
∑
k∈K

∑
j∈V

∑
r∈Rk

Xi jkr = 1 ,∀i ∈ N (2)

∑
i∈V

X0ikr =
∑
i∈V

Xi0kr = 1,∀k ∈ K, r ∈ Rk (3)

∑
j∈V

Xi jkr =
∑
j∈V

X jikr,∀i ∈ V, k ∈ K, r ∈ Rk (4)

Oi ≤ wikr ≤ Ci,∀i ∈ N, k ∈ K, r ∈ Rk (5)

wikr + si + ti j −w jkr ≤
(
1−Xi jkr

)
M,∀(i, j) ∈ E, k ∈ K, r ∈ Rk (6)∑

i∈V

Ximkr =
∑
j∈V

Xmjkr ≤ stkm,∀k ∈ K, r ∈ Rk, m ∈ N (7)

Xi jkr ∈ {0, 1},∀i ∈ V, j ∈ V, k ∈ K, r ∈ Rk. (8)

The objective function (1) minimizes the total cost of the service system operation; the constraint
(2) ensures that each task point can only be accessed by one path; the constraints (3) and (4) guarantee
that the entry of each path at each task point is equal to the degree of outflow, that is, to maintain flow
balance; the constraint condition (5) is the time window constraint; the constraint condition (6) prevents
the path from generating the sub-ring; the constraint condition (7) is the personnel skill constraint to
ensure that each selected task point must meet the demand for professional skills of that point; the
constraint (8) defines the decision variable Xijkr as a 0-1 variable.

3. Algorithm Design

VRPTW has been proved to be an NP-hard problem [6]. The problem studied in this paper is an
extension of VRPTW, so it is also a NP-hard problem. There is no ordinary analytical algorithm to find
its optimal solution in a reasonable time. It is noted that some heuristic algorithms and intelligent
algorithms have achieved good results in solving VRP. This paper intends to propose a heuristic
algorithm to solve this problem.

Both tabu search (TS) [18] and simulated annealing (SA) [19] algorithms are both efficient
meta-heuristic algorithms, which have been also well applied in solving various NP-hard problems
and obtained good results. TS uses the memory-guided algorithm of tabu step to jump out of the local
optimal, so to improve the global optimization ability of the algorithm. It usually has a very good
performance in solving large complex VRPs [7]. SA accepts a bad solution with a certain probability
and jumps out of the local optimal, and then selects a high-quality solution for global search through
a certain selection strategy. The algorithm produces different neighborhood structures through a
variety of operators, greatly enriching the structural diversity of solutions, so as to improve the overall
optimization ability of the algorithm. In this paper, TS is the basic algorithm framework, and the two
algorithms of TS and SA are effectively fused by the remove-random operation, and the advantages of
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the two algorithms are fully utilized to solve the problem, which effectively improves the efficiency of
the algorithm named as the hybrid simulated annealing tabu search (HSATS).

3.1. Path Coding

The coding method of the solution is one of the keys to solve the problem by the heuristic algorithm,
which directly affects the efficiency of the algorithm. This paper uses the natural number encoding
method commonly used in solving VRP [20,21]. The solution S is coded as a natural number as shown
in Equation (9), where S represents the current solution; Rij is the service path, representing the j-th
path serviced by the i-th professional technician; U represents the set of points that are not visited:

S =
{
R11, R21, . . . , Ri1, R12, R22, . . . , Ri2, . . .R1 j, R2 j, Ri j, U

}
, ( j = 2k

− 1). (9)

Take the situation shown in Figure 1 as an example, where there are three skill requirements,
k = 3, then the corresponding professional technicians can be divided into the following seven types as
shown in Table 1:

Table 1. Skill types and their needs.

Personnel Type Mastered Skills

1 A
2 B
3 C
4 A,B
5 B,C
6 A,C
7 A,B,C

Then, one of the feasible solutions in the problem of Figure 1 can be expressed as:
S = {R11, R41, R61, R71, U}, among them, R11 = {0, 14, 5, 17, 0; R41 = {0, 4, 8, 9, 6, 0}; R61 = {0, 2, 3, 15,

18, 0}; R71 = {0, 1, 19, 12, 11, 10, 13, 0}; U = {7, 16}.

3.2. Construction of the Initial Path

This paper first sets a certain number of empty paths {0,0}, and then uses the Solomon insertion
and improved post-processing (IPP) to construct the initial path by iterating all the points into the path.

The basic idea of the Solomon insertion algorithm is to judge the advantages and disadvantages of
the insertion position of each point by calculating the evaluation value of the insertion point, to insert
the point in the position of higher evaluation value, and to produce the initial solution, which has been
widely used in VRP. The Solomon insertion algorithm can be used to generate a series of reasonable
routes. The quality of the solution has been greatly improved compared with the simple stochastic,
but there is still a lot of room for improvement. Therefore, on the basis of post-processing proposed
by Hu [22], this paper improves and designs IPP: (1) add 2-opt* operator; (2) delete the 0-relocate
operator procedure.

The operation process of each operator is shown in Figures 2–4 as follows.
The process is as follows (f (S) represents the path length of the problem):

Step 1 Use 2-relocate, 2-opt*, and 2-exchange operators to exchange between paths to generate a new
solution S′, and if f (S′) < f (S), accept S′; otherwise, keep the original solution unchanged;

Step 2 Use the 1-relocate, or-opt, 2-opt, and 1-exchange operators to exchange in the same path to
generate a new solution S′, and if f (S′) < f (S), accept S′; otherwise, keep the last result;

Step 3 Use the 0-exchange operator to exchange the unserved points with the points in the path to
obtain a new solution S′, and if f (S′) < f (S), accept S′; otherwise, keep the last result;
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Step 4 If the quality of the solution is not improved after the above three steps, the operation will jump
out; otherwise, jump to Step 1.
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Combined with the above Solomon insertion and IPP, the construction steps of the initial
solution are:

Step 1 Generate n empty paths {0, 0}, and set the service personnel type to K = 2k
− 1 (k is the total skill

type, K is the service personnel type);
Step 2 Traverse all the points and u insert the points into the appropriate positions using the Solomon

insert algorithm;
Step 3 Optimize the path using the IPP for the current solution;
Step 4 Determine whether all points are inserted. If all points are served, end the iteration and output

the current solution; otherwise, return to Step 2.
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3.3. Path Optimization

In this stage, the remove-random perturbation and IPP-based tabu search are used to optimize
the path of the initial solution obtained in the previous stage.

3.3.1. Remove-Random (RR) Disturbance

Within the interval (0, 1), randomly generate a number r to determine the size of r and the
probability of deletion rand. If r < rand, delete the currently accessed point and add the deleted point
to the set U; otherwise, the current point is retained without any transformations. Repeat the above
operation to traverse each point in each path in the initial solution.

3.3.2. IPP-Based Tabu Search (IPP-TS)

Adding the idea of tabu search on the basis of IPP is to improve the efficiency of path optimization.
Drawing on the previous research methods [9], the corresponding tabu object and tabu step are
specified for different moving operations, so that the tabu object (node) will not be repeated in a
given number of iterations, as shown in Table 2. For example, if the nodes (i, i + 1, j) perform or-opt
operations in the n times iterations, they are listed as tabu objects to prevent these nodes from being an
or-opt operation again in the future n+tabu2 iterations.
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Table 2. Tabu objects.

Operational Operator Tabu Objects Tabu Step

2-opt, 2-opt* (i, j), (i + 1, j + 1) tabu1
or-opt (i, i + 1, j) tabu2

0-exchange, 1-exchange, 2-exchange (i, j) tabu3
2-relocate (r 1, i) tabu4

1 r is the path before i swaps.

The corresponding aspiration criterion rule is that when there is a feasible tabu solution for the
candidate solution and it is better than the best solution currently found, the solution is accepted as the
current solution and the release is released.

Combined with the simulated annealing process, the algorithm flow of this stage of path
optimization is:

Step 1 Obtain the feasible solution S generated in the process of Section 3.2 as the initial solution and
set the current iteration number of iter and no_impr (the un-updated algebra) to 0.

Step 2 After S is disturbed by RR, the points in the set U are traversed by the Solomon insertion
method, and these points are reinserted to form a new solution, and the new solution is stored
as a local_best;

Step 3 Use IPP-TS for local search to form a new solution S′, and update the tabu table;
Step 4 Compare the size of f (S) and f (S’), if f (S′) < f (S), update the current optimal solution “Best”

and the local optimal solution “local_best”, and set “no_impr” to zero, go to Step 3, otherwise,
jump to Step 5;

Step 5 If f (S′) < f (S) make a judgment. Here we use the cooling strategy commonly used in SA:
Tk+1 = α × Tk (α is the cooling coefficient), the probability of accepting the inferior solution:
Psa = exp

{
−

∣∣∣ f (S′) < f (S)
∣∣∣/T

}
(S and S′ represent the objective function value of the current

solution), and then randomly produces a random number test (0, 1). If test ≤ Psa is satisfied,
the inferior solution is used to replace the current solution and it is stored as the local optimal
solution local_best and let no_impr = no_impr+1, iter = iter+1;

Step 6 When no_impr is greater than the set value limit, the current best overrides local_best to enter the
next loop, and no_impr is set to zero;

Step 7 Determine whether the termination condition has been reached. If iter > max terminates the
current step and saves the current optimal solution best as the initial solution to the next step,
otherwise go to Step 2.

3.4. Conversion of Personnel Types

After the above two steps, the shortest path arrangement is obtained when all paths use the K-type
service personnel (the employees with the most skills) without considering the different requirements
of the skills at each task point. Design the following algorithm to convert the personnel type:

3.4.1. Transformation of Personnel Types (2-Random Exchange, 2RE)

The transformation process is controlled by two probabilities, Ph and Pl, where Ph determines
whether the service personnel will be replaced by a higher level of personnel (the more skills mastered,
the higher the level); Pl determines whether it can be replaced by a lower-level staff. The algorithm
process is as follows:

Step 1 Traverse each path in the solution to generate a path Rtmp that is different from the current
employee type, but whether the modification is accepted is also judged by Step 2 and Step 3;

Step 2 Generate a random number test = rand(0,1) within an interval (0,1) judged by the following
two conditions:
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• If the newly generated path type is higher than the current path, and Ph < test, the new
path type is accepted;

• Accept the new path type if the new path type and current type belong to the same level,
or lower than the current path type, and Pl < test, the new path type is accepted.

Step 3 If the operations in Step 2 do not meet the probabilistic requirements, the original level remains
the same, but can be combined with different skills (that is, when the original path is to master
A and B skills of the 2 level staff service, it can be changed to become a level 2 employee who
masters B and C skills); After Step 2 and the current step, if the path is changed, the path will
not be changed again within the m iterations; (where the size of m here is consistent with the
tabu step setting value in the tabu search operation);

Step 4 If there is a change in the Step 2 and Step 3 path, the filter is performed to traverse all the points
in the current path and add points that do not meet the skill requirements to the U set; otherwise,
jump Step 1 operation and continue traversing the path.

3.4.2. Skill Check (Check)

The solution obtained as a result of the above steps may be the use of redundant personnel or
the presence of illegal service points (the service personnel skills cannot meet the requirements of
the point). If a path contains only two skill requirements, but uses a person with three skills, that is,
redundancy, at this point, the path is reduced to a path that contains only two skilled personnel; and if
an illegal service point occurs, the point will be deleted and stored it in the U set, and then the Solomon
insertion method is reused to insert the appropriate location.

The algorithm flow of the Check operation is:

Step 1 Obtain the solution S produced in the process of Section 3.3 as the initial solution of this iteration,
and randomly increase the R empty paths to increase the diversity of the solution;

Step 2 Perform RR and skill check to generate a new solution S′;
Step 3 Take advantage of the optimization process in the process of Section 3.3, and change the objective

function to f 1(S);
Step 4 If Step 3 satisfies the termination condition, the current optimal solution outputs and this step

terminates, otherwise Step 2 is returned.

3.5. Algorithm Flow

The overall flow of the HSATS algorithm is as follows:

Step 1 Initialization, using the Solomon insertion method and IPP to obtain the initial solution S;
Step 2 Path optimization, using IPP-TS combined with SA for local search for path optimization,

resulting in a new solution S′ instead of the initial solution S;
Step 3 Personnel type conversion, the use of 2RE and Check process for path conversion;
Step 4 Determine whether the current iteration number of iterations Iter_num reach the maximum

number of iterations N. If Iter_num < N, then Iter_num = Iter_num + 1, return to Step 2, otherwise,
go to Step 5;

Step 5 Meet termination conditions, end the optimization, delete redundant empty path, and output
the result.

4. Calculation and Analysis

Due to the lack of industry-recognized standard databases, the test examples in this paper are
based on the standard Solomon example library of VRPTW [23]. The Solomon example library contains
six types of examples: C1, C2, RC1, RC2, R1, R2. Each example contains: the label of the point (0
represents the service point, the rest are customer points), the coordinates of the point, service time, the
demand for goods, the time window. All six examples use the same coordinate points and use different
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service times, the demand for different goods, and different time windows. In this paper, the classic
Solomon example is used to improve the demand for goods, and the demand for goods is changed to
the requirement of different skills. The rest is unchanged according to the original example, in which
each time the calculation is carried out, the skill requirement of the point is randomly assigned. The
salary gap for personnel corresponding to a wide range of professional skills is 100 (in the case of three
skill levels and 100, 200, 300, that is, the salary of employee’s lowest-level is 100, which increases in
turn). The experiment uses Java JDK1.7 to configure an Intel(R) Core(TM) i7-4790 CPU @3.6 GHz;
RAM: 8.00 GB DDR; OS: Windows 10 desktop.

4.1. Analysis of Parameters and Strategies

In the design of the heuristic algorithm, the value of algorithm parameters has an important
influence on the effect and efficiency of the algorithm. The main parameters involved in this
algorithm include: the parameters of the Solomon insertion method, the cooling coefficient and starting
temperature in SA, the tabu step in TS and no_impr in the process of the algorithm, the probability of
deleting points in the disturbance process rand. Additionally, the selection of two stochastic control
variables Ph, Pl in the process of path conversion were used.

The parameters of the Solomon insertion method directly follow the original text parameters [9].
In the preliminary test, the C101-C109 instance in the Solomon VRPTW example library was selected
and the C104 group was found to be the most sensitive. The subtle changes in the parameters of the
algorithm will have a significant impact on the quality of the solution. Therefore, it was selected as the
test example for parameter setting.

Considering Tables 3–7, we can set the parameters of the algorithm: (1) In Table 3 when no_impr
is 10, the average solution, standard deviation, and coefficient of variation are all minimum. It is
shown that the algorithm can obtain a better solution under good stable status when no_impr = 10.
(2) In Table 4 when disturbance operation is not used (rand = 0), the quality of the solution and the
stability of the algorithm are the worst. When the disturbance operation is used (rand , 0), the quality
of the solution and the stability of the algorithm deceases gradually with the increase of disturbance
probability rand. (3) In Table 5 when the contraindication step is 20, the average solution, standard
deviation, and coefficient of variation are the minimum. (4) The measurement of simulated annealing
parameters refers to the test method in paper [22]. That is to say, different combinations of T0-α are
considered at the same time. Additionally, in Table 6, it is found that the algorithm T0 = 0.999 and α =

10 has the best effect on the solution of all. (5) In the probability selection of the 2RE operation, this
paper draws on the method of simulating annealing parameter determination. A variety of different
combinations are considered, such as considering the combination of Ph and Pl at the same time. In
Table 7, the optimal solution, the average, and coefficient of variation will mostly increase with the
raising of Pl. When Ph = 0.3 and Ph = 0.5 are used, the algorithm works better. Although the mean
value of Ph = 0.3 is a little higher, considering optimum value (O.V.) and coefficient of variation (C.V.)
is lower, we chose Ph = 0.3. Additionally, the optimal parameters were finally determined as follows:
no_impr = 10; rand = 0.1; tabu_length = 20; T0 = 0.999; α = 10; Ph = 0.3; Pl = 0.1.

Table 3. Parameters of no_impr in path optimization.

Best Solution Average Solution Standard Deviation Coefficient of Variation

0 803.5432 805.4517 1.338107 0.016
10 803.5432 804.8631 0.914442 0.001136
20 803.5432 805.2226 1.164162 0.001446
30 803.5432 805.3211 1.172981 0.001457
40 804.2811 805.0887 0.956384 0.001188
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Table 4. Perturbation operation probability rand.

Best Solution Average Solution Standard Deviation Coefficient of Variation

0 808.925 843.3944 30.50354 0.036168
0.1 803.5432 804.8631 0.914442 0.001136
0.2 805.7826 807.6978 1.374694 0.001702
0.3 807.114 809.8734 1.893115 0.002338
0.4 809.5577 812.3651 1.767091 0.002175

Table 5. Tabu step.

Best Solution Average Solution Standard Deviation Coefficient of Variation

5 803.5432 805.8537 1.238797 0.001537
10 803.5432 805.307 1.053678 0.001308
15 803.5432 805.2574 1.075042 0.001335
20 803.5432 804.8631 0.914442 0.001136
25 803.5432 805.337 0.975921 0.001212

Table 6. Determination of simulated annealing parameters (T0-α).

T0
100 10 1 0.1

O.V. 1 Mean C.V. 2 O.V. 1 Mean C.V. 2 O.V. 1 Mean C.V. 2 O.V. 1 Mean C.V. 2

0.9 803.54 805.18 0.09% 803.54 805.21 0.10% 804.28 805.29 0.13% 803.54 805.09 0.12%
0.93 803.54 805.01 0.10% 803.54 805.17 0.17% 803.54 804.87 0.12% 803.54 805.11 0.13%
0.95 803.54 805.52 0.19% 803.54 805.39 0.13% 803.54 805.19 0.13% 804.28 805.41 0.16%
0.97 803.54 805.25 0.14% 803.54 805.14 0.11% 803.54 805.15 0.14% 804.28 805.07 0.07%
0.99 804.28 805.45 0.13% 804.28 805.03 0.09% 804.28 805.24 0.11% 803.54 805.15 0.16%
0.995 803.54 805.31 0.18% 803.54 805.05 0.14% 804.28 805.41 0.16% 803.54 804.95 0.13%
0.999 803.54 805.24 0.08% 803.54 804.90 0.09% 803.54 805.58 0.19% 803.54 804.87 0.10%

1 O.V. = optimum value; 2 C.V. = coefficient of variation.
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Table 7. Selection of two variation probabilities in 2-Random Exchange (2RE) operation.

0.1 0.3 0.5 0.7 0.9

O.V. 1 Mean C.V. 2 O.V. 1 Mean C.V. 2 O.V. 1 Mean C.V. 2 O.V. 1 Mean C.V. 2 O.V.1 Mean C.V. 2

0.1 2567.60 2591.25 1.61% 2547.08 2599.59 1.42% 2553.17 2598.63 1.70% 2550.42 2602.51 2.59% 2550.07 2599.45 2.22%
0.3 2640.96 2754.60 2.09% 2565.83 2658.83 2.08% 2564.00 2626.52 2.01% 2552.97 2608.82 1.64% 2567.38 2616.51 1.47%
0.5 2691.27 2835.83 2.77% 2577.94 2711.37 4.41% 2556.58 2664.73 2.29% 2570.94 2634.82 1.61% 2570.91 2650.63 2.19%
0.7 2711.30 2846.71 3.40% 2570.56 2705.84 2.56% 2566.86 2654.67 2.59% 2588.38 2674.05 2.43% 2558.52 2682.87 3.56%
0.9 2704.76 2876.77 3.44% 2592.08 2765.29 4.14% 2583.40 2729.64 3.33% 2568.42 2742.43 5.66% 2604.02 2770.43 4.91%

1 O.V. = optimum value; 2 C.V. = coefficient of variation.
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4.2. Example Calculation

This section takes the C105 group as an example calculation. Because HSATS is a heuristic
algorithm, it is impossible to guarantee that the results are the same every time. Therefore, it runs 30
times to select the best one for analysis, as shown in Tables 8 and 9.

Table 8. Results in the traditional path problem without considering skill requirements.

No. Personnel Type Personnel Salary Path

1 7 300 0-81-78-76-71-70-73-77-79-80-0
2 7 300 0-67-65-63-62-74-72-61-64-68-66-69-0
3 7 300 0-98-96-95-94-92-93-97-100-99-2-1-75-0
4 7 300 0-57-55-54-53-56-58-60-59-0
5 7 300 0-13-17-18-19-15-16-14-12-0
6 7 300 0-20-24-25-27-29-30-28-26-23-0
7 7 300 0-5-3-7-8-10-11-9-6-4-0
8 7 300 0-32-33-31-35-37-38-39-36-34-22-21-0
9 7 300 0-43-42-41-40-44-46-45-48-51-50-52-49-47-0
10 7 300 0-90-87-86-83-82-84-85-88-89-91-0

path length: 822.84 salary: 3000 Total cost: 3822.84

Table 9. Results of the multi-skilled human resource path studied in this paper.

No. Personnel Type Personnel Salary Path

1 1 100 0-20-24-27-29-30-28-22-21-0
2 4 200 0-65-96-94-92-97-100-99-2-1-75-0
3 2 100 0-55-54-53-72-64-68-0
4 4 200 0-43-42-41-62-44-46-45-48-51-50-47-0
5 3 100 0-3-5-25-40-60-61-66-69-0
6 1 100 0-57-63-74-56-58-59-0
7 3 100 0-67-98-95-93-9-26-0
8 7 300 0-13-17-18-19-15-16-14-12-4-0
9 4 200 0-7-8-10-11-6-23-0
10 7 300 0-90-87-86-83-82-84-85-88-89-91-0
11 7 300 0-32-33-31-35-37-38-39-36-34-52-49-0
12 7 300 0-81-78-76-71-70-73-77-79-80-0

path length: 1241.87 salary: 2300 Total cost: 3541.87

The situation is shown in Table 8 where the skill requirements are not considered. At this time,
employees are all employees with three skills. Table 9 shows the existence of all types of employees,
which is the result of this problem.

It can be seen from Tables 8 and 9 that the reasonable matching of all categories of personnel is
more important than the simple path optimization. A good group of personnel can often significantly
reduce the operating costs of the organization. Table 9 compared to Table 8, even with the addition of
two paths, shows that better results can be obtained in terms of professional skills, total wages, and total
operating costs than in Table 8. Therefore, in the management practice, the reasonable combination
of different types of multi-skilled employees can make the production organization and personnel
dispatching of the enterprise more flexible and efficient, and effectively reduce the production and
operation costs.
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4.3. Solving Performance

4.3.1. Impact of Algorithm Strategy

The design idea of the algorithm is TS + SA algorithm framework, and TS is a kind of local search
algorithm (LS). Similar to the literature [24], the HSATS is compared with the classical LS and LS + SA
algorithm frameworks.

Three Java codes were written by the same person using the same data structure and operation
operators to ensure, as far as possible, that there were no programming skills and differences in
programming levels. The path optimization test was carried out with six types of examples from
the well-known Solomon example library, each of which uses the above three algorithms to operate
30 times on the same computer. The calculation results are shown in Table 10.

Table 10 shows a simple comparison of the length of a path without skill constraints, which was
used to validate the local search ability of the algorithm. Since the skill constraints were not considered,
the problem in this paper is similar to those of traditional VRP, so each algorithm can be compared
with the optimal VRP solution of the existing VRP (given in the “Optimal Path” column). The result
of the significance test was obtained by comparing HSATS with LS-SA. It can be seen that: (1) For
different types of examples, the HSATS can obtain a high-quality path. In some cases, a better solution
can be obtained than the existing optimal solution. (2) Compared to the LS and LS + SA two algorithm
frameworks, the HSATS is superior to the previous two algorithms in both accuracy and stability of
the solution.

4.3.2. Effective Synthesis

Further, considering the situation with multi-skill constraints, select the first three of each type
of study in the Solomon example library, and keep the number of salary fixed to 100, 200, and 300.
The algorithm parameters were chosen from the previous test parameters, and each algorithm runs
independently for 30 times. The pros and cons and stability of the algorithm were analyzed by the
three statistics: optimal value, average value, and coefficient of variation. (Due to the same number of
iterations in this article, the calculation time gap is small, so the operation times are not listed separately
in LS and LS + SA.)

The test results are given in Table 11, from which you can see that: (1) Relative to LS and LS + SA,
comparing the second column of the table with the optimal solution of each algorithm, it can be seen
that using multi-skilled employees is more cost-saving than using single-skilled employees. (2) HSATS
solves different types of examples, has good performance, and can find better solutions. (3) In most
samples, the mean value and C.V. of HSATS are the smallest, indicating that HSATS has better stability.

The effect of the number of skills on the performance of the algorithm is given in Table 12. It can
be seen from the table that: (1) Under different skill numbers, none of the C.V. of the HSATS algorithm
are large. It shows that the stability of the algorithm will not change obviously with the number of
skills. (2) Under the same sample, the solution time of the HSATS algorithm increases slightly with the
increase of the number of skills, but the increase is small. There is no significant increase in computing
time due to exponential growth in the number of combinations, resulting in the algorithm not being
available, but also the stability and applicability of the algorithm is also side validated.

Tables 11 and 12 of the comprehensive considerations can be seen—for such problems, from
the test examples (including large, medium, and small—three kinds of scale), the HSATS algorithm
proposed in this paper to obtain a stable solution time is within half a minute. For VRPTW, since its
exact solution is very difficult to obtain, it is particularly important to obtain a reasonable solution in
the effective time. Finding a reasonable result in a short time is a solution principle for most VRPs with
time windows and a discriminating basis for the performance of the algorithm. From this perspective,
the HSATS algorithm is an effective and practical algorithm.
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Table 10. Results of different algorithm strategies.

Example Salary Path Length
LS LS + SA HSATS Significance Test 3

O.V. 1 Mean C.V. 2 O.V. 1 Mean C.V. 2 O.V.1 Mean C.V. 2 t Value p Value 4

C101 3000 828.94 828.94 835.50 1.68% 828.94 829.48 0.28% 828.94 828.94 0.00% −1.887 0.024
C102 3000 828.94 821.93 897.10 11.77% 821.93 821.93 0.00% 821.93 821.93 0.00% N/A N/A
C103 3000 828.06 816.31 826.98 1.35% 815.44 818.27 0.34% 815.44 816.24 0.22% −2.909 0.006
R101 5700 1645.79 1649.34 1546.49 12.34% 1217.19 1539.76 12.11% 1215.90 1537.70 12.10% −1.890 0.023
R102 5100 1648.12 1472.81 1528.25 5.34% 1466.60 1524.19 5.28% 1472.81 1522.57 5.10% −2.172 0.020
R103 3900 1292.68 1213.62 1368.05 5.60% 1270.59 1366.39 5.63% 1211.00 1303.12 9.28% −2.389 0.012

RC101 4200 1696.94 1632.90 1653.98 1.11% 1626.16 1646.68 0.65% 1642.88 1643.18 0.03% −2.872 0.007
RC102 3600 1554.75 1471.16 1476.83 0.36% 1466.60 1474.05 0.30% 1472.81 1475.10 0.30% −1.669 0.035
RC103 3300 1261.67 1274.82 1318.59 1.26% 1270.59 1313.07 1.45% 1215.00 1221.30 0.26% −28.671 0.000
C201 900 591.56 591.56 591.56 0.00% 591.56 591.56 0.00% 591.56 591.56 0.00% N/A N/A
C202 900 591.56 591.56 594.02 1.25% 591.56 592.27 0.66% 591.56 591.56 0.00% −2.883 0.007
C203 900 591.17 591.56 616.47 1.96% 591.17 612.49 1.85% 591.17 592.58 0.92% −13.415 0.000
R201 1200 1252.37 1189.41 1193.30 0.59% 1189.41 1194.67 0.76% 1184.36 1193.15 0.63% −3.2186 0.002
R202 900 1191.7 1041.10 1045.96 0.62% 1041.10 1046.82 0.51% 1041.10 1050.32 1.52% −1.796 0.026
R203 900 939.54 879.80 880.51 0.05% 879.80 881.92 0.42% 879.80 881.72 0.43% −1.652 0.042

RC201 1200 1406.91 1310.44 1350.79 2.47% 1310.44 1318.75 0.84% 1310.44 1319.10 0.91% −1.913 0.022
RC202 1200 1367.09 1118.66 1126.11 0.70% 1118.66 1122.16 0.43% 1118.66 1120.64 0.34% −2.525 0.009
RC203 1200 1049.62 937.45 942.65 0.43% 937.45 941.18 0.44% 928.43 939.97 0.39% −2.682 0.008

1 O.V. = optimum value; 2 C.V. = coefficient of variation; 3 between hybrid simulated annealing tabu search (HSATS) and local search (LS) + simulated annealing (SA); 4 significance 2-tailed.

Table 11. Total cost in different algorithm strategies.

Example Non
Multi-Skill 1

LS 2 LS + SA 2 HSATS 2 Number of
Vehicles Required

Solving
Time (s)O.V. 3 Mean C.V. 4 O.V. 3 Mean C.V. 4 O.V. 3 Mean C.V. 4

C101 3828.94 3668.39 3742.94 1.17% 3404.65 3557.09 3.02% 3398.13 3565.57 3.30% 12.03 13.79
C102 3828.94 3605.70 3746.78 2.71% 3372.87 3505.16 2.01% 3322.70 3413.64 2.56% 12.40 18.11
C103 3828.06 2918.17 3019.06 1.87% 3145.51 3565.80 5.98% 2902.96 2963.92 0.03% 11.73 20.64
R101 7345.79 5499.05 6482.29 6.21% 4728.88 4964.37 2.92% 4737.71 4905.07 3.36% 23.30 13.95
R102 6748.12 4586.25 5579.13 8.02% 4542.94 4605.69 0.88% 4513.38 4565.15 0.84% 21.17 18.22
R103 5192.68 3499.03 3551.96 0.81% 3476.91 3576.80 3.07% 3460.70 3503.75 0.80% 16.10 20.41

RC101 5896.94 4408.44 5015.56 6.60% 4432.44 4668.37 3.08% 4346.76 4447.54 1.64% 19.47 15.26
RC102 5154.75 3930.85 4250.21 3.25% 3921.06 4137.01 3.08% 3926.82 4033.47 1.44% 17.17 19.37
RC103 4561.67 3476.22 3678.32 3.91% 3482.32 3607.96 2.88% 3429.77 3503.05 1.16% 14.77 20.30
C201 1491.56 1491.56 1491.56 0.00% 1491.56 1491.56 0.00% 1491.56 1491.56 0.00% 3.10 14.40
C202 1491.56 1491.56 1491.56 0.00% 1491.56 1491.56 0.00% 1491.56 1491.56 0.00% 3.03 19.59
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Table 11. Cont.

Example Non
Multi-Skill 1

LS 2 LS + SA 2 HSATS 2 Number of
Vehicles Required

Solving
Time (s)O.V. 3 Mean C.V. 4 O.V. 3 Mean C.V. 4 O.V. 3 Mean C.V. 4

C203 1491.17 1491.17 1498.65 0.68% 1491.17 1492.06 0.33% 1491.17 1491.17 0.00% 3.07 21.73
R201 2452.37 2427.48 2538.71 2.81% 2372.59 2487.25 1.28% 2350.23 2462.41 1.57% 4.73 14.07
R202 2091.7 2138.74 2292.70 3.18% 2146.09 2253.94 2.30% 2137.84 2204.57 1.62% 4.97 16.96
R203 1839.54 1743.87 1902.00 4.40% 1782.73 1880.76 2.54% 1757.78 1776.16 0.76% 3.97 17.86

RC201 2606.91 2572.36 2750.00 2.77% 2543.08 2621.48 2.21% 2525.18 2632.17 2.64% 4.73 17.40
RC202 2467.09 2373.03 2522.44 2.74% 2362.33 2522.44 2.85% 2362.33 2391.38 1.01% 4.37 19.94
RC203 2049.62 1969.99 2111.62 2.42% 1987.01 2071.75 2.83% 1983.15 2060.58 1.86% 3.87 21.65

1 Without considering multi-skill requirements; 2 consider multi-skill requirements; 3 O.V. = optimum value; 4 C.V. = coefficient of variation.

Table 12. Performance of the algorithm when the skill number k is equal to 3, 4, and 5, respectively.

Example
k = 3 k = 4 k = 5

O.V. 1 Mean C.V. 2 A.T. 3 O.V. 1 Mean C.V. 2 A.T. 3 O.V. 1 Mean C.V. 2 A.T. 3

C101 3398.13 3565.57 3.30% 9.88 3511.17 3721.28 3.19% 15.94 3658.00 3792.51 2.57% 17.19
C102 3322.70 3413.64 2.56% 14.81 3440.76 3542.14 2.56% 17.10 3621.13 3735.28 2.41% 17.53
C103 2902.96 2963.92 1.11% 17.14 3005.30 3087.38 1.24% 19.45 3055.29 3156.36 1.61% 19.88
R101 4737.71 4905.07 3.36% 13.98 4849.42 5034.01 3.25% 16.25 4903.55 5103.30 3.31% 16.72
R102 4513.38 4565.15 0.84% 18.09 4634.77 4693.55 0.94% 20.34 4683.33 4770.90 0.92% 20.85
R103 3460.70 3503.75 0.80% 19.75 3572.01 3629.25 0.86% 22.00 3650.36 3707.68 0.84% 22.52

RC101 4346.76 4447.54 1.64% 4.45 4467.53 4571.64 1.69% 18.19 4547.43 4646.25 1.73% 18.61
RC102 3926.82 4033.47 1.44% 19.86 4028.88 4160.53 1.52% 22.13 4116.73 4237.59 1.59% 22.61
RC103 3429.77 3503.05 1.16% 21.39 3556.40 3625.34 1.32% 23.70 3610.20 3700.38 1.56% 24.17
C201 1491.56 1491.56 0.00% 12.43 1491.56 1491.56 0.00% 14.68 1491.56 1491.56 0.00% 17.49
C202 1491.56 1491.56 0.00% 16.80 1491.56 1491.56 0.00% 19.02 1491.56 1491.56 0.00% 19.53
C203 1491.17 1491.17 0.00% 19.79 1491.17 1491.17 0.00% 22.02 1491.17 1491.17 0.00% 22.54
R201 2350.23 2462.41 1.57% 16.70 2478.35 2591.36 1.64% 18.92 2578.15 2665.51 1.78% 19.44
R202 2137.84 2204.57 1.62% 19.35 2259.38 2326.10 1.52% 21.62 2291.80 2404.34 1.88% 22.13
R203 1757.78 1776.16 0.76% 20.85 1859.27 1901.14 1.06% 23.08 1909.08 1980.59 1.67% 23.59

RC201 2525.18 2632.17 2.64% 17.63 2644.61 2755.00 2.46% 19.87 2692.69 2824.93 2.72% 20.41
RC202 2309.00 2436.63 2.95% 2.44 2415.95 2560.97 2.88% 21.95 2503.37 2632.30 2.67% 22.40
RC203 1983.15 2060.58 1.86% 22.05 2091.75 2187.46 1.85% 24.27 2183.92 2260.86 1.86% 24.80

1 O.V. = optimum value; 2 C.V. = coefficient of variation; 3 A.T. = average time.
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In summary, the HSATS algorithm proposed in this paper has obvious advantages in accuracy,
stability, and practicability.

5. Conclusions

Under the current general trend of the decline of the labor force population and the improvement
of the quality of laborers in the world, enterprises are more inclined to employ laborers with multiple
skills, in order to improve the flexibility of enterprise human resource management and reduce the
cost of enterprise operation. For example, the U-shaped cell presents in the just-in-time production
line, in which multi-skilled employees are widely used [25]. While the flexibility of human resource
management is improving, and the operating costs of enterprises is reducing, there are also difficulties
in personnel dispatching and scheduling. Aiming at this kind of problem, this paper establishes an
optimization model of a human resource path problem with time window and multi-skill resource
constraints. Because this kind of problem is NP-hard, in this paper, a heuristic algorithm was designed
based on the TS + SA algorithm framework of various local search operators.

Based on the typical instances in the classical Solomon instances library, the example calculation
and algorithm performance analysis show that: (1) The HSATS algorithm proposed in this paper is
more suitable for solving the optimization problem proposed in this paper than the LS and LS + SA
algorithms, and there is a significant difference between HSATS and LS + SA in solving performance.
(2) Compared with the single skilled employee model, the use of multi-skilled employees can effectively
reduce the overall cost of the enterprise. (3) With the increase of the number of employee skills, the
solving time of the algorithm will increase slightly, but an optimal solution of this kind of problem can
still be obtained in a relatively short time.

The research in this paper is a preliminary exploration of such problems. In the future, we
can do further research in the following aspects: (1) This paper considers the static optimization
problem. In the future we can consider multi-cycle and multi-stage dynamic optimization problems.
For example, the multi-skilled personnel scheduling problem between multiple engineering projects
at different construction stages. (2) In the design of the algorithm, combined with the existing and
advanced path optimization operators, there is still room for improvement in the path conversion
strategy of this paper. Through the continuous improvement of the above-mentioned problems and
algorithms, we shall constantly enrich and perfect the research and application of this problem.
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