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Abstract: The independent number of a graph G is the cardinality of the maximum independent
set of G, denoted by α(G). The independent dominating number is the cardinality of the smallest
independent set that dominates all vertices of G. In this paper, we introduce a new class of graphs
called semi-square stable for which α(G2) = i(G). We give a necessary and sufficient condition for
a graph to be semi-square stable, and we study when interval graphs are semi-square stable.
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1. Introduction

In a graph G, a set of vertices S is called a dominating set in G if every vertex of G, that is not
in S, is adjacent to a vertex in S; a minimum size of such a set is called the dominating number of G
and denoted by γ(G). An independent set of the graph G (or stable set) is a set of vertices where no
two vertices are adjacent. A set that admits both independent and dominating properties is called an
independent dominating set; the minimum size of such a set (independent dominating set) is called
the independent dominating number denoted by i(G). On the other hand, the maximum size of
sets that admit the independence property is called the independent number of G, denoted by α(G).
Immediately from the above definition, for any graph G, the following inequality holds:

γ(G) ≤ i(G) ≤ α(G).

A γ-set of the graph G is a dominating set of G of size γ(G), while an i-set (α-set) of G is any
independent dominating set (independent set) of size i(G)(α(G)).

A complete subgraph of a graph G is called clique; it is called maximal if it is not a proper
subgraph of a clique in G. The maximum size of cliques in a graph G is called the clique number of
G, denoted by ω(G). A collection of subgraphs of a graph G is called a cover of G if the union of its
vertices is V(G); also, the minimum number of cliques that cover V(G) is called the clique covering
number, denoted by θ(G).

Given a graph G and a positive integer d, a new graph Gd, called the dth power of G, is defined as
the graph whose vertex set is V(Gd) = V(G), and two distinct vertices x and y are adjacent in Gd if
the distance between x and y in G, dG(x, y), is at most d.

A graph G is a well-covered graph if i(G) = α(G). A graph G is called a square stable graph if
α(G) = α(G2). This class of graphs has been proven to be an interesting class of graphs. Levit and
Mandrescu in [1] proved that every square stable graph is a well-covered graph. Well-covered graphs
have been intensively studied in the literature; see [1–4].
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Our aim is to initiate a study of a larger class of graphs called semi-square stable graphs. Levit and
Mandrescu in [1] mentioned the following inequality:

α(G2) ≤ θ(G2) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ θ(G).

The equality α(G2) = α(G) is equivalent to:

α(G2) = θ(G2) = γ(G) = i(G) = α(G).

They defined and studied the square stable graphs.
In the literature, there are many papers that have studied when certain independent sets for

certain graphs are equal. Alomari et al. in [5] showed that the independent number of a square of
a graph is equal to the independent number of its complement, and it is obvious that every square
complementary graph [6–8] will satisfy this condition. Such a property may be extended to a wide
class of graphs such as the kth complementary graph as in [9]. Motivated by [5] and Levit’s work, we
define the graph G to be semi-square stable (SSS-graph) if the equality i(G) = α(G2) holds. According
to Levit’s inequality, we have α(G2) = γ(G) = i(G). Therefore, every square stable graph is a
semi-square stable graph.

Unless stated otherwise, all graphs considered in this paper will be connected, finite, simple,
and undirected.

Definition 1. A graph G is called semi-square stable, an SSS-graph for short, if i(G) = α(G2).

Semi-square stable graphs are a generalization of square stable graphs. Levit and Mandrescu [1]
proved that every square stable graph is well covered, while the converse need not be true. The
following result shows when the converse is true.

Corollary 1. A graph G is a square stable graph if and only if it is a well-covered semi-square stable graph.

The proof is straightforward from the definitions and the fact that every square stable graph is a
well-covered graph.

2. Constructions and Examples

In this section, after characterizing when the cycle Cn and the path Pn are semi-square stable,
we give two constructions giving ways of constructing new semi-square stable graphs out of
known ones.

Theorem 1.

1. i(Cn) = α(C2
n) if and only if n ≡ 0( mod 3).

2. i(Pn) = α(P2
n) for all n.

Proof.

1. Consider the set I = {0, 3, 6, . . . , 3(b n
3 c − 1)} ⊂ V(Cn)); I is an independent set of vertices with

the property that for any vertex i of Cn, there is at most one vertex in I that dominates i; so,
if n ≡ 0( mod 3), then I forms the minimum independent set in Cn, and if n 6≡ 0( mod 3),
then I ∪ {3b n

3 c+ 2} forms the minimum independent set in Cn; therefore,

i(Cn) =

{
n
3 if n ≡ 0( mod 3),

b n
3 c+ 1 if n 6≡ 0( mod 3),

= dn
3
e.
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On the other hand, I forms a maximum independent set in C2
n; therefore, α(C2

n) = b n
3 c. Therefore,

Cn is a semi-square stable graph if and only if d n
3 e = b

n
3 c; therefore, n ≡ 0( mod 3).

2. i(Pn) = d n
3 e = α(P2

n).

For the set of integers R = {ri}n
i=1 and a graph G of order n with vertices of V(G) =

{v1, v2, . . . , vn}, the graph exp(G, R) is the graph obtained from G as follows:

1. For each 1 ≤ i ≤ n, replace the vertex vi ∈ V(G) with the independent set Ivi = {v(i,m)}
ri
m=1 of

size ri,
2. For each 1 ≤ i, j ≤ n, if vivj ∈ E(G), then {v(i,m)v(j,k)}

ri ,rj
m=1,j=1 ⊆ E(exp(G, R)), so we just replace

the old edges of G by the complete bipartite graph with partite sets Ivi and Ivj in the graph
exp(G, R).

In Figure 1 we illustrate the graph exp(P5, 1, 1, 2, 3, 1, 1).

Figure 1. Graph of exp(P5, 1, 1, 2, 3, 1, 1).

Theorem 2. Let G be a semi-square stable graph of order n and R = {ri}n
i=1 be a set of integers; if I = {vi ∈

V(G) : ri = 1} contains an i-set of G, then exp(G, R) is a semi-square stable graph.

Proof. Let I′ ⊂ I be an i − set of G and S = {aj}
i(G)
j=1 be an α − set of G; then, by the

definition of exp(G, R), I′ is an i − set of exp(G, R); on the other hand, since for 1 ≤ k ≤ i(G),
dexp(G,R)(a(i,k), a(i,m)) = 2, we have a(i,k)a(i,m) ∈ exp(G, R)2, therefore, S′ = {a(j,1)}

i(G)
j=1 will dominate

all vertices of the graph exp(G, R)2; also, since S is maximum independent set in G, S′ is a maximum
independent set in exp(G, R)2. Using the fact |S′| = |I′| = i(G), we have that exp(G, R) is a
semi-square stable graph.

For any given graphs G and a family of graphsH = {Hi}n
i=1, define the corona product between

G and H, denoted by coro(G,H), as the graph obtained from G and H by joining the ith vertex of
G with each vertex of Hi. Therefore, if V(G) = {v1, v2, . . . , vn} and V(Hi) = {a(i,1), a(i,2), . . . , a(i,mi)

},
then Coro(G,H) = V(G) ∪ V(H1) ∪ V(H2) ∪ · · · ∪ V(Hn), where V(Hi) = {a(i,j)|1 ≤ j ≤ mi} is the
vertex-set of Hi, and E(coro(G,H)) = E(G) ∪ {via(i,j)|1 ≤ j ≤ mi, 1 ≤ i ≤ n} ∪n

i=1 E(Hi), see Figure 2.

Figure 2. Graph of Coro(G,H).

Theorem 3. Let G be a semi-square stable graph and {vkj
}i(G)

j=1 ⊂ V(G) be an i-set in G; for anyH = {Hi}n
i=1

collection of graphs, the graph coro(G,H) is a semi-square stable graph if the following conditions hold:
1. Hi is a non-empty graph if i = k j for some 1 ≤ j ≤ i(G).
2. Hi is an empty graph if i 6= k j for all 1 ≤ j ≤ i(G).
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Proof. Let I = {vkj
}i(G)

j=1 be an i-set in G and {bj}
i(G)
j=1 be an α-set in G2. I is an i-set in coro(G,H);

moreover, since dcoro(G,H)(a(i,m), a(i,k)) ≤ 2 for each a(i,m) and a(i,k) in Hi, we have that {bj}
i(G)
j=1 is an

α-set in coro(G,H); therefore, coro(G,H) is a semi-square stable graph.

3. Efficient Dominating Set

Given a group A and a subset S of A, the Cayley graph, Cay(A : S), is the undirected graph with:

1. the vertex set represented by elements of A,
2. the edge set that connects the vertex a with the vertices sa and s−1a for each s ∈ S.

A vertex set A and edge set contain an edge from a to sa and from a to s−1a whenever a ∈ G and
s ∈ S. A special case of Cayley graphs is the circulant graphs, which can be defined as follows:

For any two integers n, m and set of positive integers {a1, a2, ..., am} where 1 ≤ ai ≤ b n
2 c,

the circulant graph, denoted by C(n; a1, a2, . . . , am) is defined to be the undirected graph with vertex
set V = {v1, v2, . . . , vn} and the edge set E = {vivi+aj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, where the indices are
considered to be taken modulo n. The graphs of C(6; 1) and C(12; 1, 5, 6, 7) are shown in Figure 3.

Cayley graphs have been proven useful in various sciences especially in computer science fields
such as computer architecture, theoretical computer science, routing problem, coding theory, and
networking. In coding theory, regular graphs, distance transitive graphs, and vertex transitive graphs
play a central role. Error-correcting codes were introduced by Biggs [10], in particular perfect one-codes,
that is one error can be corrected.

A dominating set D is efficient (perfect codes) if it is independent and each vertex v /∈ D has
exactly one neighbor in D. Kumar and MacGillivray in [11] investigated when certain circulant graphs
admit an efficient dominating set; they used the lexicographic product to construct infinitely many
circulant graphs that admit an efficient dominating set. In this section, we give a sufficient and
necessary condition for regular graphs to admit an efficient dominating set.

Theorem 4. A regular graph G admits an efficient dominating set if and only if G is a semi-square stable graph.

Proof. Suppose that D is an efficient dominating set, then |D| = i(G) and for each u, v ∈ D, dG(u, v) ≥
3. Therefore, D is an independent set in G2 and:

α(G2) ≤ i(G) = |D| ≤ α(G2),

thus
α(G2) = i(G),

and so, G is a semi-square stable graph.
Suppose that G is a semi-square stable graph. Let D be a maximum independent set in G2, then

{NG(u)}u∈D are mutually disjoint sets. Therefore,

α(G2)(δ + 1) ≤ |V(G)|,

where δ is the vertex degree. On the other hand, if D∗ is an independent set in G, then:

|D∗|(δ + 1) ≥ |V(G)|,

so:
i(G)(δ + 1) ≥ |V(G)|;

therefore,
α(G2)(δ + 1) ≤ |V(G)| ≤ i(G)(δ + 1).
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Figure 3. Circ(6, 1) and Circ(12, 1, 5, 6, 7) admit efficient dominating sets.

Since G is a semi-square stable graph, we have α(G2)(δ + 1) = |V(G)|. Therefore, {NG(u)}u∈G
form a partition of V(G). Therefore, D is an efficient dominating set of G.

The above theorem not only characterizes an efficient dominating set in regular graphs, it also
determines the efficient dominating set.

Corollary 2. If G is a regular semi-square stable graph and D is a maximum dominating set of G2, then D is
an efficient dominating set of G.

Corollary 3. If G is a regular graph that admits an efficient dominating set, then:

α(G2) = θ(G2) = γ(G) = i(G).

The following theorem was proven by Kumar and MacGillivray in [11]. We provide a new and
simpler proof using the above theorem.

Theorem 5 ([11]). Let F = Circ(mn, T), and suppose T ∪ {0} is a union of cosets of 〈n〉. Let S be any set
of representatives of the cosets 〈n〉+ t, t ∈ T − 〈n〉. Then, F has an efficient dominating set if and only if
G = Circ(n, S) has an efficient dominating set.

Proof. Consider the natural homomorphism:

ψ : Znm → Znm/〈n〉 ∼= Zn

defined by:
ψ(x) = x + 〈n〉 .

Now, x and y are independent in Circ(mn, T):

⇐⇒ x− y /∈ T

⇐⇒ ψ(x + y) /∈ S.

Therefore,

D is an independent dominating set in Circ(nm, T)

⇐⇒
ψ(D) is an independent dominating set in Circ(n, S),

so,

i(Circ(nm, T)) = i(Circ(n, S)),
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and:

α((Circ(nm, T))2) = α(Circ(nm,∪{s1 + s2 + 〈n〉 : s1, s2 ∈ S}))
= α(Circ(n, {s1 + s2 : s1, s2 ∈ S}))
= α((Circ(n, S))2).

Therefore, Circ(nm, (T)), admits an efficient dominating set if and only if Circ(n, S) admits an
efficient dominating set.

Theorem 6. The circulant graph Circ(n, {1, 2, 3, . . . , k}) has an efficient dominating set if and only if n =

r(2k + 1) for some integer r.

Proof. Let G = Circ(n, {1, 2, 3, . . . , k}). Since G2 = Circ(n, {1, 2, 3, . . . , 2k}), we have that D = {2rk +

r}b
n

2k+1 c
r=1 is a maximum independent set in G2, and it forms an independent set in G.

Therefore, if n = r(2k + 1) for some integer r, then D is an independent dominating set in G;
therefore, α(G2) = i(G). Therefore, G admits an efficient dominating set.

If n 6= r(2k + 1), then D will not dominate all vertices in G; therefore, α(G2) < i(G), and
therefore it does not admit an efficient dominating set.

4. Proper Interval Graphs

An interval graph is any graph whose vertices can be represented as a set of intervals and an
edge set that connects vertices corresponding to intervals with a non-empty intersection. An interval
graph with assigned intervals has the property that no interval contains any other interval and is
properly called a proper interval graph. The applications of these classes of graphs are important;
their applications can be found in biology, scheduling problems, social science, circuit design, and
psychology. An interval graph is called a unit interval graph, if the assigned intervals are of the
same length.

As seen before, all paths, Pn, are semi-square stable graphs. Therefore, one might raise the
question, “Is every interval graph a semi-square stable graph?”. In fact, the answer is no, as one can see
that a double star graph with n ≥ 2 leaves on every side is an interval graph that is not a semi-square
stable graph.

In this section, we study the independent number and independent dominating number of proper
interval graphs. In [12], Bogart and West showed that proper interval graphs, claw-free interval graphs,
and unit interval graphs are equivalent. It turns out that all proper interval graphs are semi-square
stable graphs.

Definition 2. For an interval graph G of order n, G has a normal interval representation (NIR) if the vertices
can be represented by intervals satisfying the conditions:

1. All intervals are semi-open and of the form [i, j), where 0 ≤ i < j ≤ n.
2. No two intervals start at the same number.

Lemma 1 ([13]). An arbitrary graph is an interval graph if and only if it can be represented by the NIR form.

Now, consider the case where G is a proper interval graph, that is no interval is contained properly
in another interval. Since G is also an interval graph, G has the NIR form. In fact, G has a special type
of NIR form as described in the following definition:

Definition 3. For a proper interval graph G, an NIR form of the graph G is called a stair normal interval
representation (SNIR) if it has the following additional property:

For any two intervals [a, b) and [c, d), whenever a < c holds, we have that b < d holds.
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Lemma 2 ([13]). An arbitrary graph is a proper interval graph if and only if it can be represented by the
SNIR form.

Let G be a proper graph with the S = {Ii = [ai, bi)}n
i=1 SNIR form. Define the function f by:

f (1) = 1, and, f (k + 1) = max{i : ai < b f (k)}.

Figure 4 illustrates the idea of the function f defined above.

Theorem 7. If G is a connected proper interval graph with the S = {Ii = [ai, bi)}n
i=1 SNIR form, then the

vertices corresponding to the intervals {I f (2), I f (4),...} form an i-set in G.

Proof. Using the definition of f , we have, for any i,

a f (2i+1) < b f (2i) < a f (2i+2) < b f (2i+1).

Therefore, whenever i 6= j, I f (2i) ∩ I f (2j) = φ, and therefore, the vertices corresponding to
{I f (2), I f (4), . . . } form an independent set.

Now, let Ij ∈ S; if j = f (k) for some k, then I f (k) ∩ I f (k+1) 6= φ.
If j 6= f (k), then for k∗ = min{r : aj < b f (r)}, we have,

aj < a f (k∗+1) < b f (k∗) < bj;

therefore, Ij ∩ I f (k∗) 6= φ and Ij ∩ I f (k∗+1) 6= φ.

Since either k or k + 1 is even, we have that {I f (2), I f (4), . . . , } form an i-set.

Now, let G be an interval graph with the NIR form and S = {Ii = [ai, bi)}n
i=1 satisfying the

property ai < aj =⇒ bi ≤ bj. Define the function g by:

g(1) = 1, and, g(k + 1) = min{i : bg(k) ≤ ai}

Theorem 8. If G is an interval graph with the S = {Ii = [ai, bi)}n
i=1 NIR form satisfying the property

whenever ai < aj, we have bi ≤ bj, then the vertices corresponding to the intervals {Ig(1), Ig(2), . . . } form an
α-set in G.

Proof. Since G is a connected graph, for any i, bg(i) < ag(i+1), the vertices corresponding to the
intervals {Ig(1), Ig(2), Ig(3), . . . , } form an independent set in G.

Now, suppose that D is an α-set in G, then using the definition of g and since D is the maximum
independent set, we have:

ag(1) ≤ ai1 < bg(1) < bi1 < bg(2)

ag(2) ≤ ai2 < bg(2) < bi2 < bg(3)

...

Therefore,
|D| = |{Ig(1), Ig(2), Ig(3), . . . , }|
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Figure 4. Red intervals form an independent set, and green intervals form an independent dominating set.

Theorem 9. If G is a proper interval graph with the S = {Ii = [ai, bi)}n
i=1 SNIR form, then G2 is an interval

graph with the S′ = {[aj, bkj
) : k j = max{i : ai < bj}} NIR form.

Proof. First, it is obvious that if Ii ∩ Ij 6= φ, then, [aj, bkj
) ∩ [ai, bki

) 6= φ, and so, E(G) ⊂ E(G2).
Now, let Im, Ir and Is ∈ S with am < ar < as, Im ∩ Ir 6= φ and Ir ∩ Is 6= φ, then bm > ar and br > as;

this means that bkm ≥ br > as. Therefore, [am, bkm) ∩ [as, bks) 6= φ. This proves that if dG(u, v) ≤ 2,
then, uv ∈ E(G2).

Finally, suppose that Im, Is ∈ S with am < as and dG(Im, Is) ≥ 3, then if there is Ir such that
am < ar < bm < as < br, then dG(Im, Is) = 2. Therefore, for any Ir ∈ S, if ar < bm, then br < as;
therefore, bkm < as. This proves that if dG(u, v) ≥ 3, then uv /∈ E(G2).

Finally, we give the proof of our main result.

Theorem 10. Any proper interval graph is a semi-square stable graph.

Proof. Let G be a proper interval graph with the S = {Ii = [ai, bi)}n
i=1 SNIR form and S′ = {Ii =

[aj, bkj
) : k j = max{i : ai < bj}}n

i=1 be the SNIR form of G2, then using Theorems 7 and 8, we have:
D = {[a1, bk1), [ag(2), bg(k2)

), . . . } is the independent set of G2, and D′ =

{[a f (2), b f (2)), [a f (4), b f (4)), . . . } is the dominating set of G.
Since b f (2r) = bg(kr), we have |D| = |D′|, and so, G is a semi-square stable graph.
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