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Abstract: In the year 2004, Chang and Teng investigated an inventory model for deteriorating items in
which the supplier not only provides a cash discount, but also allows a permissible delay in payments.
The main purpose of the present investigation is three-fold, as follows. First, it is found herein that
Theorem 1 of Chang and Teng (2004) has notable shortcomings in terms of their determination of the
optimal solution of the annual total relevant cost Z(T) by adopting the Taylor-series approximation
method. Theorem 1 in this paper does not make use of the Taylor-series approximation method
in order to overcome the shortcomings in Chang and Teng (2004) and alternatively derives all the
optimal solutions of the annual total relevant cost Z(T). Secondly, this paper systematically revisits
the annual total relevant cost Z(T) in Chang and Teng (2004) and presents in detail the mathematically
correct ways for the derivations of Z(T). Thirdly, this paper not only shows that Theorem 1 of Chang
and Teng (2004) is not necessarily true for finding the optimal solution of the annual total relevant
cost Z(T), but it also demonstrates how Theorem 1 in this paper can locate all of the optimal solutions
of Z(T). The mathematical analytic investigation presented in this paper is believed to be useful for
correct managerial considerations and managerial decisions.

Keywords: inventory modelling and optimization; Trade-credit financing; Cash discounts; permissible
delays in payments; Supply chain management; economic order quantity (EOQ); mathematical solution
procedure; deteriorating items; mathematical analytic tools and techniques; managerial considerations
and managerial decisions

JEL: Primary 91B24; 93C15; Secondary 90B30

1. Introduction, Motivation and Preliminaries

Recently, Stokes [1] mentioned that since trade credit arises spontaneously with a firm’s purchases,
it is understood to be one of the most flexible sources of short-term financing which is available to
firms. From the viewpoint of important managerial considerations and managerial decisions, we need
to include the idea to offer trade credit and the determination of the firm’s terms of sale. Additionally,
the decision of the purchasing firm to take (or not to take) any advantage of a cash discount and the
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motivations behind such a decision are also important in managerial considerations. By assuming
the increasing salience of a sales promotion tool, Arcelus et al. [2] analyzed the advantages and
disadvantages of the two most common payment reduction schemes. These schemes include a cash
discount and a delay in the payment of the merchandise. Obviously, a cash discount can encourage the
customer to pay cash upon the delivery and to reduce thereby the default risk. One may consider the
permissible delay in payments as a kind of price reduction. Therefore, clearly, the permissible delay in
payments will not only attract new customers for the firm, but it will also considerably increase the
firm’s sales.

Considering the importance of trade credit and several other features of the firm’s cash-discount
problem, Hill and Riener [3] considered a model for determining the cash discount in the firm’s credit
policy. Huang and Chung [4], on the other hand, studied the optimal replenishment and payment
polices in the EOQ model under cash discount and trade credit. Huang [5] made an attempt to
adopt the payment rule which was already discussed by Chung and Huang [6] as well as the policy
of cash discount which was investigated by Huang and Chung [4] with a view to developing the
buyer’s inventory model. In fact, Chung [7] mentioned several shortcomings in the investigation by
Huang [8] and presented the correct solution procedure for it. In addition, Ouyang et al. [9] studied
an inventory model with the policy of non-instantaneous receipt under the cash discount and trade
credit. Huang and Hsu [10] extended the work of Ouyang et al. [9] to hold true in a more general
situation. Sana and Chaudhuri [11] modelled the retailer’s profit-maximizing strategy in the situation
when the retailer is confronted with the supplier’s offer of trade credit and price discount on the
purchase of a given merchandise. Finally, it was Ho et al. [12] who investigated and determined
the optimal pricing, ordering, shipping, and payment policy with a view to maximizing the joint
expected total profit per unit time under a two-part strategy, i.e., cash discount and delayed payment.
Feng et al. [13] explored the retailer’s optimal replenishment and payment policies in the economic
production quantity (EPQ) model under the policy of cash discount as well as a two-level trade-credit
policy. Yang [14] considered the optimal order and payment policies for deteriorating items in the
analysis of discount cash flows under such alternatives as (for example) conditionally permissible
delay in payments and cash discount. Quite recently, in an interesting paper, Taleizadeh et al. [15]
considered the payment-delay policy in multi-product single-machine EPQ model with repair failure
and back-ordering. Our above-detailed literature review reveals the fact that research about the
inventory model under the cash-discount and trade-credit conditions still constitutes a popular topic in
the study of operations and inventory management. The impact of deterioration in any given system is
remarkably important. It is, therefore, necessary to manage the product’s deterioration as, for instance,
in fruit and vegetables which are known to deteriorate over time. Thus, for example, a model for
exponentially decaying inventory was considered by Chare and Schrader [16], and Philip [17] discussed
an inventory model with a three-parameter Weibull distribution rate and with no shortages. Later, Philip’s
aforementioned model in [17] was extended by Shah [18] who introduced shortages as well. We refer
the reader to the remarkable survey by Aggarwal and Jaggi [19] dealing with some ordering policies
of deteriorating items under permissible delay in payments. An order-level lot size inventory model
with the inventory-level dependent demand and deterioration was discussed by Sarker et al. [20].
Liao et al. [21], on the other hand, studied an inventory model for deteriorating items under inflation
and permissible delay in payments. Chang et al. [22] investigated and determined the optimal cycle
time for deteriorating items under the policy of trade credit. The study by Arcelus et al. [2] included
the retailer’s pricing and trade-credit policy, as well as the inventory policies for deteriorating items.
The work of Manna and Chaudhuri [23] presented an EOQ model involving the ramp-type demand
rate, the time-dependent deterioration rate, the unit production cost, as well as shortages. In the
existing literature on the subject of our present investigation, one can find papers which are related
to variable deterioration such as those by Sana and Chaudhary [11], Skouri et al. [24], Sett et al. [25],
Sarkar [26], Sarkar and Sarkar [27] and Sarker et al. [20]. Other related recent developments on the
subject-matter of this article can be found in the works by (for example) Chung et al. (see [6,7,28–31]),
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Feng et al. [13], Hill and Riener [3], Ho et al. [12], Huang et al. (see [4,5,10]), Liao et al. (see [21,32,33]),
and Srivastava et al. [34].

It should be remarked that Sarkar and Sarkar [27] studied a significantly improved inventory model
involving what may be referred to probabilistic deterioration. Their solution of the model depended
heavily upon Control Theory. On the other hand, Sarkar et al. [35] considered an EOQ model for
deteriorating items together with time-dependent increasing demand. They found the component cost as
well as the selling price as a continuous time-rate. Sarkar and Sarkar [27] also considered an inventory
model involving infinite replenishment rate, stock-dependent demand, time-varying deterioration rates
as well as partial backlogging. A production-inventory model involving probabilistic deterioration
in two-echelon supply chain was discussed by Sarkar [26]. Derivation of the marketing policy for
non-instantaneous deteriorating items involving a generalized-type deterioration and holding-cost
rates can indeed be found in the investigation by Shah et al. [18]. Chung et al. [28] considered inventory
modelling involving non-instantaneous receipt and exponentially deteriorating items in the case of
an integrated three-layer supply chain system under two-level trade-credit. A discussion in the case
of several lot-sizing policies for deterioration items under two-level trade credit with partial trade
credit to credit-risk retailer and limited storage capacity can be seen in the work by Liao et al. [33].
Wu et al. [36] presented inventory-related policies for perishable products with expiration dates and
advance-cash-credit payment schemes. By making use of the Stackelberg and the Nash equilibrium
solution, Jaggi et al. [37] explored inventory and credit decisions in the case of deteriorating items with
displayed stock-dependent demand involving the two-echelon supply chain. Many other remarkable
studies about deteriorating items can be found in the article by Kawale and Sanas [38] (see also [39,40]).

By combining all elements of the trade credit, the cash discount and the deteriorating items,
Chang and Teng [41] studied a certain inventory model for deteriorating items in the case when the
supplier does not only provide a cash discount, but also allows a permissible delay in payments.
We remark in passing that a cash discount can encourage the customer to pay on delivery and it
can also reduce the default risk. In the past few years, marketing researchers and practitioners in
the area of supply chain management appear to have recognized and understood the phenomenon
that the supplier offers a permissible delay in payment to the retailer if the outstanding amount is
paid within the permitted fixed settlement period, known as the trade-credit period. During the
trade-credit period, the retailer is allowed to accumulate revenues received upon selling items and
earning interests. Consequently, without any incentive to make early payments and with the possibility
and prospect of earning interest by means of the accumulated revenue which is received during the
credit period, the retailer chooses to postpone payment until the last moment of the permissible period
which is allowed by the supplier. Thus, clearly, the offer of the trade credit does lead to delayed cash
inflow and to thereby increase the risk of cash-flow shortage as well as bad debt. From the suppliers’
viewpoint, it is always hoped that they will be able to find a trade-credit policy to increase sales and to
decrease the risk of cash-flow shortage and bad debt. In reality, however, especially on the side of the
operations management, a supplier is generally willing and ready to provide the retailer with either a
cash discount or a permissible delay in payments or both.

The main purpose of the present investigation is three-fold as stated below.

1 To observe that Theorem 1 of Chang and Teng [41] has notable shortcomings in their determination
of the optimal solution of the annual total relevant cost Z(T) by adopting the Taylor-series
approximation method. Theorem 1 in this paper does not make use of the Taylor-series approximation
method in order to overcome the shortcomings in Chang and Teng [41] and thereby derive the optimal
solutions of the annual total relevant cost Z(T).

2 To systematically revisit the annual total relevant cost Z(T) in Chang and Teng [41] and to present
in detail the mathematically correct ways for the derivations of Z(T).

3 To not only show that Theorem 1 of Chang and Teng [41] is not necessarily true for finding the
optimal solution of the annual total relevant cost Z(T), but to also demonstrate how Theorem 1
in this paper can locate all of the optimal solutions of Z(T).
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The mathematically correct analytic investigation of the model, which we have presented in this
paper, is believed to be useful for correct managerial considerations and right managerial decisions
(see also [41]).

2. The Mathematical Modelling of the Problem

This paper adopts the same assumptions and notations as described in Chang and Teng [41].

Assumptions

(1) The demand for the item is constant with time.
(2) Shortages are not allowed.
(3) Replenishment is instantaneous.
(4) During the time the account is not settled, generated sales revenue is deposited in an

interest-bearing account. At the end of this period (that is, M1 or M2 ), the customer pays
the supplier the total amount in the interest-bearing account, and then starts paying off the
amount owed to the supplier whenever the customer has money obtained from sales.

(5) Time horizon is infinite.

Notations

D = the demand rate per year.
h = the unit holding cost per year excluding interest charges.
p = the selling price per unit.
c = the unit purchasing cost, with c < p.
Ic = the interest charged per $ in stocks per year by the supplier or a bank.
Id = the interest earned per $ per year.
S = the ordering cost per order.
r = the cash discount rate, 0 < r < 1.
θ = the constant deterioration rate, where 0 ≤ θ < 1.
M1 = the period of cash discount.
M2 = the period of permissible delay in settling account, with M2 > M1.
T = the replenishment time interval.

I(t) =
D
θ

[
eθ(T−t) − 1

]
, where 0 ≤ t ≤ T.

Policy I: The customer accepts the cash discount and makes the full payment at time M1.
Policy II: The customer does not accept the cash discount and makes the full payment at time M2.
TVC1(T) = the annual total relevant cost when the customer adopts Policy (I).
TVC2(T) = the annual total relevant cost when the customer adopts Policy (II).
T∗1 = the optimal replenishment time of TVC1(T).
T∗2 = the optimal replenishment time of TVC2(T).
Z(T) = the annual total relevant cost

=

{
TVC1(T) if the customer adopts Policy I

TVC2(T) if the customer adopts Policy II.

T∗ = the optimal replenishment time of Z(T).

W1 =

ln

(
pθM1 + pIdθM2

1
c(1− r)

+ 1

)
θ

W3 =

ln

 pθM2 +
pIdθM2

2
2

c
+ 1


θ
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The annual total relevant cost Z(T) consists of the following items:

(a) The cost of placing order;
(b) The cost of purchasing units;
(c) The cost of carrying inventory (excluding interest changes);
(d) The cost discount earned;
(e) The interest earned from sales revenue during the permissible period [0, M1] or [0, M2]

(f) The cost of interest change for unsold items after the permissible delay M1 or M2.
Therefore, we have

the annual total relevant cost = (a) + (b) + (c)− (d)− (e) + ( f ) (1)

Chang and Teng [41] reveal that

(a) Cost of placing order =
S
T

, (2)

(b) Cost of purchasing units =
cD
θT

(
eθT − 1

)
, (3)

(c) Cost of carrying inventory =
hD
θ2T

(
eθT − 1

)
− hD

θ
, (4)

(d) Cash discount earned =


rcD
θT

(
eθT − 1

)
if Policy I is adopted; (5a)

0 if Policy II is adopted. (5b)

Regarding the interest charged and earned, the following four possible cases, which are based
upon the customer’s two choices (Policy I and Policy II), occur:

Case I. The customers adopt Policy (I) and W1 > M1

(A) T > M1

Chang and Teng [41] showed that
(e)

The interest earned per year =
pIdDM2

1
2T

(6)

(f) The internet payable per year
The customer buys I(0) units at time 0, and owes c(1− r)I(0) to the supplier. At the time M1,

the customer sells DM1 units in total, and has pDM1 plus the interest earned
pIdDM2

1
2

to pay the

supplier. From the difference between the total purchase cost c(1− r)I(0) and the total amount
of money in the account, i.e.,

pDM1 +
pIdDM2

1
2

,

the following two cases to occur:

(i) If

pDM1 +
pIdDM2

1
2

> c(1− r)I(0), (7)

Equation (3) in Chang and Teng [41] implies that

W1 =

ln

(
pθM1 + pIdθM2

1
c(1− r)

+ 1

)
θ

> T ≥ M1 (8)

and
the interest payable per year = 0 (9)
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From Equations (2) to (9), the annual total relevant cost Z5(T) is given by

Z5(T) =
S
T
+

D [h + cθ(1− r)]
θ2T

(
eθT − 1

)
−hD

θ
−

pIdDM2
1

2T
if M1 ≤ T < W1. (10)

(ii) If

pDM1 +
pIdDM2

1
2

≤ c(1− r)I(0), (11)

we have T ≥W1. Chang and Teng [41] demonstrated that

the interest payable per year

=
Ic

2pDT

[
c(1− r)D

θ

(
eθT − 1

)
− pDM1

(
1 +

Id M1

2

)]2

. (12)

From Equations (2) to (6) and (10) to (12), we find the annual total relevant cost Z1(T) given
by

Z1(T) =
S
T
+

D [h + cθ(1− r)]
θ2T

(
eθT − 1

)
− hD

θ
−

pIdDM2
1

2T

+
Ic

2pDT

[
c(1− r)D

θ

(
eθT − 1

)
− pDM1

(
1 +

Id M1

2

)]2

if T ≥W1. (13)

(B) T ≤ M1

Under Case I (B), the customer sells DT units in total at time T , and has cDT to pay the supplier
in full at time M1. Therefore, Chang and Teng [41] derived the annual total relevant cost Z2(T)
as follows:

Z2(T) =
S
T
+

D [h + cθ(1− r)]
θ2T

(
eθT − 1

)
−hD

θ
− pIdD

(
M1 −

T
2

)
if 0 < T < M1 (14)

Combining Case I (A) and Case I (B), we have

TVC1(T) =


Z2(T) if 0 < T ≤ M1 (15a)

Z5(T) if M1 < T < W1 (15b)

Z1(T) if T ≥W1 (15c)

Since
Z2(M1) = Z5(M1) and Z5(W1) = Z1(W1),

the function TVC1(T) is continuous when T > 0 if W1 > M1. For convenience, all the items Z2(T),
Z5(T) and Z1(T) are defined on T > 0. Case 1 in Chang and Teng [41] only discussed Equation (11)
and ignored Equation (7) of this paper. When Equation (11) of this paper holds true, then Equation (3)
in Chang and Teng [41] implies that

T ≥W1 > M1 (16)

Case I (B) and Equation (16) reveal that the domain of the function TVC1(T) is the set given by
(0, M1]

⋃
[W1, ∞), but not the set (0, ∞). The interval (M1, W1) is not contained in the domain of the

function TVC1(T). Therefore, the annual total relevant cost of Cases 1 and 2 in Chang and Teng [41]
can be expressed as follows:
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TVC1(T) =

{
Z2(T) if 0 < T ≤ M1

Z1(T) if T ≥W1.

The functional behavior of TVC1(T) on the interval (M1, W1) was not discussed in Chang and
Teng [41]. This does not make sense, since the domain of TVC1(T) should be (0, ∞). The correct
derivation of TVC1(T) should consider Equations (7) and (11) together. Consequently, it is the
shortcoming of the modelling of Chang and Teng [41]. Equations (15a), (15b) and (15c) correct the
claims made by Chang and Teng [41].

Case II. The customer adopts Policy I and W1 ≤ M1

(C) T > M1

If T ≥ M1 ≥W1, then Equation (11) holds true. Following the same arguments as in Case I (A)
(ii), we find that

the interest payable per year

=
Ic

2pDT

[
c(1− r)D

θ

(
eθT − 1

)
− pDM1

(
1 +

Id M1

2

)]2

. (17)

According to Equations (2) to (6) and (17), the annual total relevant cost TVC1(T) can be expressed
as follows:

TVC1(T) =

{
Z2(T) if 0 < T ≤ M1 (18a)

Z1(T) if M1 < T (18b)

Since Z2(M1) < Z1(M1), the function TVC1(T) is continuous except when T = M1 if M1 ≥W1.

Case III. The customer adopts Policy II and W3 > M2

Following the same arguments as in Case I, the annual total relevant cost TVC2(T) can be
expressed as follows:

TVC2(T) =


Z4(T) if 0 < T ≤ M2, (19a)

Z6(T) if M2 < T < W3, (19b)

Z3(T) if T ≥W3, (19c)

where

Z4(T) =
S
T
+

D(h + cθ)

θ2T

(
eθT − 1

)
− hD

θ
− pIdD

(
M2 −

T
2

)
, (20)

Z6(T) =
S
T
+

D(h + cθ)

θ2T

(
eθT − 1

)
− hD

θ
−

pIdDM2
2

2T
, (21)

Z3(T) =
S
T
+

D(h + cθ)

θ2T

(
eθT − 1

)
− hD

θ
−

pIdDM2
2

2T

+
Ic

2pDT

[
cD
θ

(
eθT − 1

)
− pDM2

(
1 +

Id M2

2

)]2
(22)

and

W3 =

ln

 pθM2 +
pIdθM2

2
2

c
+ 1


θ

. (23)
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Since
Z4(M2) = Z6(M2) and Z6(W3) = Z3(W3),

the function TVC2(T) is continuous when T > 0 if M2 < W3. For convenience, all the items Z4(T),
Z6(T) and Z3(T) are defined on T > 0. Let us now use the inequalities given by Equations (24) and
(25) as follows:

pDM2 +
pIdDM2

2
2

> cI(0) (24)

and

pDM2 +
pIdDM2

2
2

≤ cI(0), (25)

respectively. Case 3 in Chang and Teng [41] only discussed Equation (25) and ignored Equation (24)
above. When Equation (25) in this paper holds true, Equation (3) in Chang and Teng [41] implies that

T ≥W3 > M2. (26)

Case II (D) and Equation (26) reveal that the domain of the function TVC2(T) is the set (0, M2] ∪
[W3, ∞), but not the set (0, ∞). The interval (M2, W3) is not contained in the domain of the function
TVC2(T). Therefore, the annual total relevant cost of Cases 3 and 4 in Chang and Teng [41] can be
expressed as follows:

TVC2(T) =

{
Z4(T) if 0 < T ≤ M2;

Z3(T) if T ≥W3.

The functional behavior of TVC2(T) on (M2, W3) was not discussed in Chang and Teng [41].
This exclusion does not make sense, since the domain of TVC2(T) should be (0, ∞). The correct
derivation of TVC2(T) should, in fact, consider the equations (24) and (25) together. Consequently,
it is another shortcoming of the modelling by Chang and Teng [41]. Equations (19a), (19b) and (19c)
correct the claims by Chang and Teng [41].

Case IV. The customer adopts Policy II and W3 ≤ M2.
Following the same arguments as in Case II, the annual total relevant cost TVC2(T) can be

expressed as follows:

TVC2(T) =

{
Z4(T) if 0 < T ≤ M2; (27a)

Z3(T) if M2 < T. (27b)

Since Z4(M2) < Z3(M2), the function TVC2(T) is continuous except when T = M2 if M2 ≥W3.
Upon combining Cases I to IV, the annual total relevant cost Z(T) can be expressed as follows:

Z(T) =

{
TVC1(T) if the customer adopts Policy I; (28a)

TVC2(T) if the customer adopts Policy II. (28b)

The objective here is to determine which policy [T∗1 (Policy I) or T∗2 (Policy II)] satisfies the
following condition:

Z(T∗) = min{TVC1(T∗1 ), TVC2(T∗2 )}. (29)
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3. The Convexity of Zi(T)

By making use of Equations (10), (13), (14), (20), (21) and (22), we find for the first and the second
derivatives of the annual total relevant cost Z2(T) that

Z
′
2(T) = −

S
T2 +

D [h + cθ(1− r)]
θ2T2

(
θTeθT − eθT + 1

)
+

pIdD
2

, (30)

Z
′′
2 (T) =

2S
T3 +

2D [h + cθ(1− r)]
θ2T3

(
eθT − 1− θTeθT +

1
2

θ2T2eθT
)

, (31)

Z
′
5(T) = −

S
T2 +

D [h + cθ(1− r)]
θ2T2

(
θTeθT − eθT + 1

)
+

pIdDM2
1

2T2 , (32)

Z
′′
5 (T) =

2S− pIdDM2
1

T3 +
D [h + cθ(1− r)]

θ2T3

(
eθT − 1− θTeθT +

1
2

θ2T2eθT
)

, (33)

Z
′
1(T) = −

S
T2 +

Dh + B1θ2

θ2T2

(
θTeθT − eθT + 1

)
+

pIdDM2
1

2T2

+
Ic

2pDT2

(
2B2

1θTe2θT − B2
1e2θT − 2B1W1θTeθT + 2B1W1eθT −W2

1

)
, (34)

Z
′′
1 (T) =

2S
T3 +

2(Dh + B1θ2)

θ2T3

(
eθT − 1− θTeθT +

1
2

θ2T2eθT
)
−

pIdDM2
1

T3

+
Ic

2pDT3

[
4B2

1(θT)2e2θT − 4B2
1θTe2θT + 2B2

1e2θT − 2B1W1(θT)2eθT

+4B1W1θTeθT − 4B1W1eθT + 2W2
1

]
, (35)

Z
′
4(T) = −

S
T2 +

D [h + cθ]

θ2T2

(
θTeθT − eθT + 1

)
+

pIdD
2

, (36)

Z
′′
4 (T) =

2S
T3 +

2D [h + cθ]

θ2T3

(
eθT − 1− θTeθT +

1
2

θ2T2eθT
)

, (37)

Z
′
6(T) = −

S
T2 +

D [h + cθ]

θ2T2

(
θTeθT − eθT + 1

)
+

pIdDM2
2

2T2 , (38)

Z
′′
6 (T) =

2S− pIdDM2
2

T3 +
D [h + cθ]

θ2T3

(
eθT − 1− θTeθT +

1
2

θ2T2eθT
)

, (39)

Z
′
3(T) = −

S
T2 +

Dh + B3θ2

θ2T2

(
θTeθT − eθT + 1

)
+

pIdDM2
2

2T2

+
Ic

2pDT2

(
2B2

3θTe2θT − B2
3e2θT − 2B3W3θTeθT + 2B3W3eθT −W2

3

)
(40)

and

Z
′′
3 (T) =

2S
T3 +

2(Dh + B3θ2)

θ2T3

(
eθT − 1− θTeθT +

1
2

θ2T2eθT
)
−

pIdDM2
2

T3

+
Ic

2pDT3

[
4B2

3(θT)2e2θT − 4B2
3θTe2θT + 2B2

3e2θT − 2B3W3(θT)2eθT

+4B3W3θTeθT − 4B3W3eθT + 2W2
3

]
, (41)
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where

A1 = pDM1

(
1 +

Id M1

2

)
and B1 =

c(1− r)D
θ

,

A3 = pDM2

(
1 +

Id M2

2

)
and B3 =

cD
θ

and
W1 = A1 + B1 and W3 = A3 + B3.

We now suppose that
G = 2S− pIdDM2

2 (42)

Then, clearly, we have the results asserted by Theorem 1 below.

Theorem 1. Each of the following assertions holds true:

(A) eθT − 1− θTeθT +
1
2

θ2T2eθT > 0 if T > 0.

(B) (i) θTeθT − eθT + 1 is increasing if T > 0.

(ii) θTeθT − eθT + 1 >
θ2T2

2
if T > 0.

(C) 2B2
1θTe2θT − B2

1e2θT − 2B1W1θTeθT + 2B1W1eθT −W2
1 ≥ 0 if T ≥W1

(D) 2B2
3θTe2θT − B2

3e2θT − 2B3W3θTeθT + 2B3W3eθT −W2
3 ≥ 0 if T ≥W3

(E) Both Z2(T) and Z4(T) are convex on T > 0.
(F) If G > 0, then both Z5(T) and Z6(T) are convex on T > 0.
(G) If 3B1 > A1, then Z1(T) are convex on T > 0.
(H) If 3B3 > A3, then Z3(T) are convex on T > 0.

Proof.

(A) See Lemma 1 in Huang and Liao [8].
(B) Let

f (x) = xex − ex + 1 (43)

and

k(x) = xex − ex + 1− x2

2
. (44)

Equations (43) and (44) yield
f ′(x) = xex > 0 if x > 0 (45)

and
k′(x) = x(ex − 1) > 0 if x > 0. (46)

Equations (45) and (46) imply that both functions f (x) and k(x) are increasing when x > 0.
Therefore, we get

f (x) > f (0) = 0 and k(x) > k(0) = 0.

We now set x = θT. Consequently, we have

(i) θTeθT − eθT + 1 is increasing if T > 0.

(ii) θTeθT − eθT + 1 >
θ2T2

2
if T > 0.

(C) Let
g(T) = 2B2

1θTe2θT − B2
1e2θT − 2B1W1θTeθT + 2B1W1eθT −W2

1 . (47)
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Then

g′(T) = 2θ2TB2
1eθT

(
2eθT − W1

B1

)
. (48)

So, we have
g′(T) > 0 if T ≥W1. (49)

Equation (47) implies that the function g(T) is increasing if T ≥W1. Therefore, we have

g(T) > g(W1) = 0 if T ≥W1 (50)

Consequently, we obtain

2B2
1θTe2θT − B2

1e2θT − 2B1W1θTeθT + 2B1W1eθT −W2
1 ≥ 0

if T ≥W1.
(D) The proof is similar to that of Theorem 1 (C).
(E) Equations (31), (37) and Theorem 1 (A) imply that Z′′2 (T) > 0 and Z′′4 (T) > 0 . Therefore, both

functions Z2(T) and Z4(T) are convex on T > 0.
(F) If G > 0, then 2S − pIdDM2

1 ≥ G > 0. Equations (33) and (39) imply that Z′′5 (T) > 0 and
Z′′6 (T) > 0 . Therefore, both functions Z5(T) and Z6(T) are convex when T > 0 if G > 0.

(G) See, for details, Lemma 2 in the paper by Huang and Liao [8].
(H) See, for details, Lemma 2 in the paper by Huang and Liao [8].

4. Theorems for the Optimal Cycle T∗ of Z(T)

Equations (30), (32), (34), (36), (38) and (40) yield

Z′2(M1) = Z′5(M1)

=
1

θ2M2
1

{
−Sθ2 + D [h + cθ(1− r)]

(
θM1eθM1 − eθM1 + 1

)
+

pIdDθ2M2
1

2

}
,

(51)

Z′5(W1) = Z′1(W1)

=
1

θ2W1
2

{
−Sθ2 + D [h + cθ(1− r)]

(
θW1eθW1 − eθW1 + 1

)
+

pIdDθ2M2
1

2

}
,

(52)

Z′1(M1) =
1

θ2M2
1

{
−Sθ2 + D [h + cθ(1− r)]

(
θM1eθM1 − eθM1 + 1

)
+

pIdDθ2M2
1

2

+
Icθ2

2pD

[
2B2

1θM1e2θM1 − B2
1e2θM1 − 2B1W1θM1eθM1 + 2B1W1eθM1 −W2

1

]}
,

(53)
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Z′4(M2) = Z′6(M2)

=
1

θ2M2
2

{
−Sθ2 + D(h + cθ)

(
θM2eθM2 − eθM2 + 1

)
+

pIdDθ2M2
2

2

}
,

(54)

Z′6(W3) = Z′3(W3)

=
1

θ2W3
2

{
−Sθ2 + D(h + cθ)

(
θW3eθW3 − eθW3 + 1

)
+

pIdDθ2M2
2

2

}
(55)

and

Z′3(M2) =
1

θ2M2
2

{
−Sθ2 + D(h + cθ)

(
θM2eθM2 − eθM2 + 1

)
+

pIdDθ2M2
2

2

+
Icθ2

2pD

[
2B2

3θM2e2θM2 − B2
3e2θM2 − 2B3W3θM2eθM2 + 2B3W3eθM2 −W2

3

]}
.

(56)

Case I. Policy I is adopted and M1 < W1.
Let

425 = θ2M2
1Z′2(M1) = θ2M2

1Z′5(M1)

= −Sθ2 + D [h + cθ(1− r)]
(

θM1eθM1 − eθM1 + 1
)
+

pIdDθ2M2
1

2
(57)

and

451 = θ2 (W1
)2 Z′5(W1) = θ2 (W1

)2 Z′1(W1)

= −Sθ2 + D [h + cθ(1− r)]
(

θW1eθW1 − eθW1 + 1
)
+

pIdDθ2M2
1

2
. (58)

Since M1 < W1, Theorem 1 (B) implies that

451 > 425 (59)

Case II. Policy I is adopted and M1 ≥W1.
Let

42 = θ2M2
1Z′2(M1)

= −Sθ2 + D [h + cθ(1− r)]
(

θM1eθM1 − eθM1 + 1
)
+

pIdDθ2M2
1

2
(60)
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and

41 = θ2M2
1Z′1(M1)

= −Sθ2 + D [h + cθ(1− r)]
(

θM1eθM1 − eθM1 + 1
)
+

pIdDθ2M2
1

2

+
Icθ2

2pD

[
2B2

1θM1e2θM1 − B2
1e2θM1 − 2B1W1θM1eθM1 + 2B1W1eθM1 −W2

1

]
.

(61)

Now, since M1 ≥W1, Theorem 1 (C) implies that

41 > 42. (62)

Case III. Policy II is adopted and M2 < W3.
Let

446 = θ2M2
2Z′4(M2) = θ2M2

2Z′6(M2)

= −Sθ2 + D(h + cθ)
(

θM2eθM2 − eθM2 + 1
)
+

pIdDθ2M2
2

2
> 425 = 42 (63)

and

463 = θ2 (W3
)2 Z′4(W3) = θ2 (W3

)2 Z′3(W3)

= −Sθ2 + D(h + cθ)
(

θW3eθW3 − eθW3 + 1
)
+

pIdDθ2M2
2

2
(64)

Since M2 < W3, Theorem 1 (B) implies that

463 > 446 > 425 = 42 (65)

Case IV. Policy II is adopted and M2 ≥W3.
Let

44 = θ2M2
2Z′4(M2)

= −Sθ2 + D(h + cθ)
(

θM2eθM2 − eθM2 + 1
)
+

pIdDθ2M2
2

2
= 446 > 425 = 42 (66)

and

43 = θ2M2
2Z′3(M2)

= −Sθ2 + D(h + cθ)
(

θM2eθM2 − eθM2 + 1
)
+

pIdDθ2M2
2

2

+
Icθ2

2pD

[
2B2

3θM2e2θM2 − B2
3e2θM2 − 2B3W3θM2eθM2 + 2B3W3eθM2 −W2

3

]
.

(67)

Thus, since M2 ≥W3, Theorem 1 (D) implies that

43 ≥ 44. (68)
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Henceforth, in our investigation, we assume that

G > 0, (69)

3B1 > A1 (70)

and
3B3 > A3. (71)

Theorem 1 (E) to Theorem 1 (H), together, imply that the function Zi(T) is convex when T > 0 for
all i = 1, 2, 3, 4, 5, 6. Let Ti denote the root of the following equation:

Zi(T) = 0 (i = 1, 2, 3, 4, 5, 6) (72)

From the convexity of the function Zi(T) when T > 0, we conclude that

Z′i(T) =


< 0 if 0 < T < Ti; (73a)

= 0 if T = Ti; (73b)

> 0 if T > Ti. (73c)

Therefore, clearly, the function Zi(T) is decreasing on (0, Ti] and increasing on [Ti, ∞)

for i = 1, 2, 3, 4, 5, 6.

Proposition 1. Suppose that Policy I is adopted and M1 < W1. Then the following assertions hold true:

(A) If425 > 0, then T∗1 = T2.
(B) If425 ≤ 0 < 451, then T∗1 = T5.
(C) If451 ≤ 0, then T∗1 = T1.

Proof.

(A) If425 > 0, then451 > 425 > 0. From Equations (73a), (73b) and (73c), we thus find that

(i) Z2(T) is decreasing on (0, T2] and increasing on [T2, M1].
(ii) Z5(T) is increasing on [M1, W1].
(iii) Z1(T) is increasing on [W1, ∞).

Since the function TVC1(T) is continuous when T > 0 if M1 < W1, Equations (15a), (15b) and
(15c) and the above observations (i) to (iii) imply that T∗1 = T2.

(B) If425 ≤ 0 < 451, from Equations (73a), (73b) and (73c), we find that

(iv) Z2(T) is decreasing on (0, M1].
(v) Z5(T) is decreasing on [M1, T5] and increasing on [T5, W1].
(vi) Z1(T) is increasing on [W1, ∞).

Since the function TVC1(T) is continuous when T > 0 if M1 < W1, Equations (15a), (15b) and
(15c), together with the above observations (iv) to (vi), imply that T∗1 = T5.

(C) If451 ≤ 0, then425 < 451 ≤ 0. From Equations (73a), (73b) and (73c), we obtain

(vii) Z2(T) is decreasing on (0, M1].
(viii) Z5(T) is decreasing on [M1, W1].
(ix) Z1(T) is decreasing on [W1, T1] and increasing on [T1, ∞).

Since TVC1(T) is continuous on T > 0 if M1 < W1, Equations (15a), (15b) and (15c), and the
above observations (vii) to (ix), imply that T∗1 = T1.
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Proposition 2. Suppose that Policy I is adopted and M1 ≥W1. Then the following assertions hold true:

(A) If42 > 0, then T∗1 = T2.
(B) If42 ≤ 0 < 41, then T∗1 = M1.
(C) If41 ≤ 0, then T∗1 = M1 or T1 is associated with the least cost.

Proof.

(A) If42 > 0, then41 ≥ 42 > 0. From Equations (73a), (73b) and (73c), we have

(i) Z2(T) is decreasing on (0, T2] and increasing on [T2, M1].
(ii) Z1(T) is increasing on (M1, ∞).

Since Z1(M1) > Z2(M1), Equations (18a) and (18b), together with the above observations (i) and
(ii), imply that T∗1 = T2.

(B) If42 ≤ 0 < 41, from Equations (73a), (73b) and (73c), we have

(iii) Z2(T) is decreasing on (0, M1].
(iv) Z1(T) is increasing on (M1, ∞).

Since Z1(M1) > Z2(M1), Equations (18a) and (18b) and the above observations (iii) and (iv)
imply that T∗1 = M1.

(C) If41 ≤ 0, then42 ≤ 41 ≤ 0. Thus, from Equations (73a), (73b) and (73c), we get

(v) Z2(T) is decreasing on (0, M1].
(vi) Z1(T) is decreasing on (M1, T1] and increasing on [T1, ∞).

Since Z1(M1) > Z2(M1), Equations (18a) and (18b), together with the above observations (v) and
(vi), imply that T∗1 = M1 or T1 is associated with the least cost.

Proposition 3. Suppose that Policy II is adopted and M2 < W3. Then the following assertions hold true:

(A) If446 > 0, then T∗2 = T4.
(B) If446 ≤ 0 < 463, then T∗2 = T6.
(C) If463 ≤ 0, then T∗2 = T3.

Proof. The proof of Proposition 3 is similar to that of Proposition 1. We, therefore, choose to skip the
details involved.

Proposition 4. Suppose that Policy II is adopted and M2 ≥W3. Then the following assertions hold true:

(A) If44 > 0, then T∗2 = T4.
(B) If44 ≤ 0 < 43, then T∗2 = M2.
(C) If43 ≤ 0, then T∗2 = M2 or T3 is associated with the least cost.

Proof. The proof of Proposition 4 would run parallel to that of Proposition 2. The details involved are,
therefore, omitted.

Theorem 2. Suppose that
M1 < W1 and M2 < W3.

Then each of the following assertions holds true:
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(i) If425 > 0, then T∗ = T2 or T4 is associated with the least cost.
(ii) If425 ≤ 0 < 451 and446 > 0, then T∗ = T5 or T4 is associated with the least cost.
(iii) If425 ≤ 0 < 451 and446 ≤ 0 < 463,, T∗ = T5 or T6 is associated with the least cost.
(iv) If425 ≤ 0 < 451 and463 ≤ 0, then T∗ = T5 or T3 is associated with the least cost.
(v) If451 ≤ 0 and446 > 0, then T∗ = T1 or T4 is associated with the least cost.
(vi) If451 ≤ 0 and446 ≤ 0 < 463, then T∗ = T1 or T6 is associated with the least cost.
(vii) If451 ≤ 0 and463 ≤ 0, then T∗ = T1 or T3 is associated with the least cost.

Proof. The demonstration of Theorem 2 would make use of Propositions 1 and 3.

Theorem 3. Suppose that M1 < W1 and M2 ≥W3. Then each of the following assertions holds true:

(i) If425 > 0, then T∗ = T2 or T4 is associated with the least cost.
(ii) If425 ≤ 0 < 451 and44 > 0, then T∗ = T5 or T4 is associated with the least cost.
(iii) If425 ≤ 0 < 451 and44 ≤ 0 < 43, then T∗ = T5 or M2 is associated with the least cost.
(iv) If425 ≤ 0 < 451 and43 ≤ 0, then T∗ = T5, then M2 or T3 is associated with the least cost.
(v) If451 ≤ 0 and44 > 0, then T∗ = T1 or T4 is associated with the least cost.
(vi) If451 ≤ 0 and44 ≤ 0 < 43, then T∗ = T1 or M2 is associated with the least cost.
(vii) If451 ≤ 0 and43 ≤ 0, then T∗ = T1, M2 or T3 is associated with the least cost.

Proof. The proof of Theorem 3 follows from Propositions 1 and 4.

Theorem 4. Suppose that M1 ≥W1 and M2 < W3. Then each of the following assertions holds true:

(i) If42 > 0, then T∗ = T2 or T4 is associated with the least cost.
(ii) If42 ≤ 0 < 41 and446 > 0, then T∗ = M1 or T4 is associated with the least cost.
(iii) If42 ≤ 0 < 41 and446 ≤ 0 < 463, then T∗ = M1 or T6 is associated with the least cost.
(iv) If42 ≤ 0 < 41 and463 ≤ 0, then T∗ = M1 or T3 is associated with the least cost.
(v) If41 ≤ 0 and446 > 0,, then T∗ = M1, T1 or T4 is associated with the least cost.
(vi) If41 ≤ 0 and446 ≤ 0 < 463, then T∗ = M1, T1 or T6 is associated with the least cost.
(vii) If41 ≤ 0 and463 ≤ 0, then T∗ = M1, T1 or T3 is associated with the least cost.

Proof. Theorem 4 can be proven by applying Propositions 2 and 3.

Theorem 5. Suppose that M1 ≥W1 and M2 ≥W3. Then each of the following assertions holds true:

(i) If42 > 0, then T∗ = T2 or T4 is associated with the least cost.
(ii) If42 ≤ 0 < 41 and44 > 0, then T∗ = M1 or T4 is associated with the least cost.
(iii) If42 ≤ 0 < 41 and44 ≤ 0 < 43, then T∗ = M1 or M2 is associated with the least cost.
(iv) If42 ≤ 0 < 41 and43 ≤ 0, then T∗ = M1, M2 or T3 is associated with the least cost.
(v) If41 ≤ 0 and44 > 0, then T∗ = M1, T1 or T4 is associated with the least cost.
(vi) If41 ≤ 0 and44 ≤ 0 < 43, then T∗ = M1, T1 or M2 is associated with the least cost.
(vii) If41 ≤ 0 and43 ≤ 0, then T∗ = M1, T1, M2 or T3 is associated with the least cost.

Proof. It is easy to derive Theorem 5 by making use of Propositions 2 and 4.

5. Discussions Concerning Theorem 1 of Chang and Teng [41]

(A) About Theorem 1 (1) in Chang and Teng [41]:
Equation (29) reveals that

Z(T∗) = min{TVC1(T∗1 ), TVC2(T∗2 )}
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Therefore, clearly, we have T∗ = T∗1 (Policy I) or T∗2 (Policy II) associated with the least cost. Chang
and Teng [41] do not make the comparison between TVC1(T∗1 ) and TVC2(T∗2 ). Consequently, in
general, the claimed assertion of Theorem 1 (1) in Chang and Teng [41] is not necessarily true.

(B) About Theorem 1 (2) in the paper by Chang and Teng [41]:

If
2S = [h + cθ(1− r) + pId] DM2

1,

our Theorem 1 (B) (ii) implies that

Z′2(M1) =
1

θ2M2
1

{
−Sθ2 + D [h + cθ(1− r)]

(
θM1eθM1 − eθM1 + 1

)
+

pIdDθ2M2
1

2

}

>
1

θ2M2
1
{−Sθ2 + D [h + cθ(1− r)]

θ2M2
1

2
+

pIdDθ2M2
1

2
}

=
1

2M2
1
{−2S + [h + cθ(1− r) + pId] DM2

1}

= 0.

Since Z′2(M1) > 0, M1 is not the optimal solution of TVC1(T). Therefore, in general, the result
claimed in Theorem 1 (2) of Chang and Teng [41] is not true.

(C) About Theorem 1 (3) in the paper by Chang and Teng [41]:
Let T∗CT denote the optimal solution obtained by Theorem 1 in Chang and Teng [41]. In this case,
we consider the following example.

Example 1. Given D = 500 units/year, h = $4/unit/year, Ic = 0.09/year, Id = 0.06/year, c = $30 per
unit, p = $35 per unit, r = 0.02, Q = 0.07, M1 = 30 days = 30/365 years, M2 = 56 days = 56/365
years and S = $13.85 per order. Then

(h + cθ + pId)DM2
2 > 2S > [h + cθ(1− r) + pId] DM2

1,

G = 2.9839 > 0, A1 = 1441.9028, B1 = 210000, A3 = 2697.2895, B3 = 214285.7143, W1 = 0.09775,
W3 = 0.178696983, M1 = 0.08219 years and M2 = 0.1787 years. We thus observe that M1 < W1,
M2 < W3, 3B1 > A1 , 3B1 > A1 and 3B3 > A3. Furthermore, we get425 = −1.59779× 10−4 < 0,
446 = 0.1698 > 0 and 451 = 0.02795 > 0. Then, by applying Theorem 2 (ii) of this paper, we have
T∗ = T5 or T4. The familiar Intermediate Value Theorem (see, for example, Varberg et al. [42]) can now be
used to locate T5 and T4. We thus find that T5 = 0.08231, T4 = 0.08207, TVC1(T5) = 14950.0759 and
TVC2(T4) = 15176.1460. Since

TVC1(T5) < TVC2(T4),

we have T∗ = T5. Moreover, by applying the Intermediate Value Theorem, we conclude that

0 < T1 < W1,

since451 > 0, G > 0 and
lim

T→0+
Z′5(T) = −∞.

Therefore, T1 does not satisfy Equation (24) in Chang and Teng [41]. Consequently, Theorem 1 (3) in
Chang and Teng [41] can be used. We then get T∗CT = T4. However, the accurate optimum solution of the
above Example should be T∗ = T5 . Therefore, by contradiction, Theorem 1 (3) in Chang and Teng [41] is
not necessarily true.
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(D) About Theorem 1 (4) in the paper by Chang and Teng [41]:
The proof in this case is similar to that in (B) above. Therefore, Theorem 1 (4) in Chang and
Teng [41] is not true.

(E) About Theorem 1 (5) in the paper by Chang and Teng [41]:
Our reasoning here is the same as that of (A) above. Therefore, Theorem 1 (5) in the work of
Chang and Teng [41] is not necessarily true.

By incorporating (A) to (E) above, it is concluded that in general, Theorem 1 in Chang and
Teng [41] is not necessarily true.

6. Concluding Remarks and Observations

In our present investigation, we have successfully divided all our mathematical analytic
derivations of the annual total relevant cost Z(T) into the following four cases:

(1) M1 < W1

(2) M1 ≥W1

(3) M2 < W3

(4) M2 ≥W3

When the above Case 2 and Case 4 hold true, the annual total relevant costs in this paper are seen
to be consistent with those of Chang and Teng [41]. However, if the above Case 1 and Case 3 hold true,
then the annual total relevant costs in the work by Chang and Teng [41] are observed to be incorrect.
Furthermore, this paper has also indicates that Theorem 1 in Chang and Teng [41] is based on the
assumption that θT is small. However, our present investigation does not include this assumption.
On the other hand, in general, Theorem 1 in the work by Chang and Teng [41] is not necessarily true.
Theorems 2 to 5 in this paper have been fruitfully used to characterize the optimal solutions and to
demonstrate the fact that they can locate all optimal solutions of Z(t). By incorporating the above
arguments. we conclude that our present investigation has not only removed all those shortcomings in
the paper by Chang and Teng [41], but it has also presented solvable ways for the problem considered
by Chang and Teng [41]. Consequently, in this paper, we have corrected and substantially improved
the work of Chang and Teng [41]. Therefore, it can significantly reduce the cost of the inventory model.

The mathematically correct analytic investigation of the model, which we have presented in this
paper, is believed to be useful for correct managerial considerations and right managerial decisions.

The proposed model, for which we have presented a mathematical analytic investigation in this
article, is capable of being extended in several different directions. Among other such possibilities
of extension and generalization of our study here, it may be worthwhile to extend the constant
demand rate to hold true in the case of a more realistic situation when the time-varying demand
rate is a function of the time, the selling price, the advertisement of the product quality, and sundry
other considerations. Yet another direction for future research on the subject-matter of our present
investigation is the possibility of generalization and extension of the model with a view to allowing for
shortages, quantity discounts, inflation rates, and other business-related considerations.
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