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Abstract: As an extension of the fuzzy set, the hesitant fuzzy set is used to effectively solve the
hesitation of decision-makers in group decision-making and to rigorously express the decision
information. In this paper, we first introduce some new hesitant fuzzy Hamacher power-aggregation
operators for hesitant fuzzy information based on Hamacher t-norm and t-conorm. Some desirable
properties of these operators is shown, and the interrelationships between them are given.
Furthermore, the relationships between the proposed aggregation operators and the existing hesitant
fuzzy power-aggregation operators are discussed. Based on the proposed aggregation operators,
we develop a new approach for multiple-attribute decision-making problems. Finally, a practical
example is provided to illustrate the effectiveness of the developed approach, and the advantages of
our approach are analyzed by comparison with other existing approaches.

Keywords: hesitant fuzzy element (HFE); Hamacher operations; hesitant fuzzy Hamacher
power-aggregation operators; multiple-attribute decision-making (MADM)

1. Introduction

Since the fuzzy set (FS) was introduced by Zadeh [1], it has received much attention for its
applicability. Some classical extensions of the FS, such as the interval-valued fuzzy set (IVFS) [2],
intuitionistic fuzzy set (IFS) [3], interval-valued intuitionistic fuzzy set (IVIFS) [4], type-2 fuzzy set
(T2FS) [5], type-n fuzzy set (TnFS) [5], and fuzzy multiset (FMS) [6], were then developed. However,
it is often faced with the fact that the difficulty of setting membership degree for an element in a set
arises not from the possibility distribution of possible values (as in T2FS) or the margin of error (as in
IVFS or IFS), but from the hesitation between several different values. The concept of hesitant fuzzy
set (HFS) was introduced by Narukawa and Torra [7,8] to deal with such cases. The HFS has the
advantage of representing the membership degree of one element to a set by a set of possible values
between 0 and 1, so it is an effective tool to represent a decision-maker’s hesitation in expressing
his/her preferences for objects than the FS or its classical extensions. In this regard, the HFS theory has
been applied to many practical applications such as decision-making [9–18].

The goal of multiple-attribute decision-making (MADM), based on preferences provided by the
decision-makers, is to select the most desirable alternative(s) from a given set of feasible alternatives.
MADM methods classified as conventional and fuzzy. The conventional MADM methods are seen
inadequate to handle uncertainty in linguistic terms [19]. Hence, it is proposed to apply MADM
methods with the FS and its extensions to cope with vagueness in a decision-making process.
Furthermore, these fuzzy methods enable more concrete results. Besides, the FS and its extensions helps
to decision-makers to express their opinions by means of linguistic terms. Therefore, more sensitive
results can be obtained by applying fuzzy MADM methods to various science and engineering fields
such as supplier selection and forecasting [20–23].
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The aggregation operators are most commonly used as tools to combine each individual preference
information into the overall preference information and to elicit collective preference value for each
alternative. The power average (PA) and power-ordered weighted average (POWA), introduced by
Yager [24], are the nonlinear weighted average aggregation tools whose weight vectors depend on the
input arguments and allow the argument values to support each other [25]. In particular, compared
to most aggregation operators, the PA and POWA operators have the advantage of incorporating
information about the relationship between argument values that are combined. So these operators
have received a lot of attention from researchers in recent years, particularly Xu and Yager [25],
Zhou et al. [26] and Zhang [15] introduced some new power-aggregation operators, including the
weighted generalizations of these operators. However, these power-aggregation operators only deal
with arguments, which are exact numerical values.

In real life, we often face situations where input arguments are expressed not as exact numerical
values but as interval numbers [27], intuitionistic fuzzy numbers [28–30], interval-valued intuitionistic
fuzzy numbers [31], linguistic variables [32–34], uncertain linguistic variables [35–37], or hesitant fuzzy
elements (HFEs) [10,11]. Many extensions of power-aggregation operators have been proposed
to address these situations: the uncertain power-aggregation operators [25,38,39], intuitionistic
fuzzy power-aggregation operators [26,40], interval-valued intuitionistic fuzzy power-aggregation
operators [40], linguistic power-aggregation operators [41–44] and hesitant fuzzy power-aggregation
operators [15,18]. In particular, with respect to HFEs, Zhang [15] proposed a family of hesitant
fuzzy power-aggregation operators, including the hesitant fuzzy power-weighted average/geometric
(HFPWA or HFPWG), generalized hesitant fuzzy power-weighted average/geometric (GHFPWA or
GHFPWG), hesitant fuzzy power-ordered weighted average/geometric (HFPOWA or HFPOWG),
and generalized hesitant fuzzy power-ordered weighted average/geometric (GHFPOWA or
GHFPOWG) operators, and applied them to solve multiple criteria group decision-making problems
under hesitant fuzzy environment.

It is worthwhile to mention that operational rules play a key role in integrating information
using power-aggregation operators. A lot of research about power-aggregation operators for the
FS and its extensions has been done by operational rules using various pairs of triangular norm
(shortly t-norm) and triangular conorm (shortly t-conorm) [45] in recent years. The aforementioned
hesitant fuzzy power-aggregation operators, such as the HFPWA, HFPWG, GHFPWA, GHFPWG,
HFPOWA, HFPOWG, GHFPOWA, and GHFPOWG operators, are based on the algebraic product
and algebraic sum operational rules on HFEs, which are a pair of the special dual t-norm and
t-conorm [45]. The algebraic product and algebraic sum are the basic operations on HFEs, they
are not the only ones. The Einstein t-norm and t-conorm, as another pair of special t-norm and dual
t-conorm, are alternatives to the algebraic product and algebraic sum, respectively, for operational
rules on HFEs. Yu [16] extended the Einstein t-norm and t-conorm to HFEs, and developed
some hesitant fuzzy Einstein aggregation operators based on the Einstein product and Einstein
sum operational rules on HFEs. By mean of these operational rules on HFEs, Yu et al. [18]
proposed a wide range of hesitant fuzzy power-aggregation operators, such as the hesitant fuzzy
Einstein power-weighted average/geometric (HFEPWA or HFEPWG), generalized hesitant fuzzy
Einstein power-weighted average/geometric (GHFEPWA or GHFEPWG), hesitant fuzzy Einstein
power-ordered weighted average/geometric (HFEPOWA or HFEPOWG), and generalized hesitant
fuzzy Einstein power-ordered weighted average/geometric (GHFEPOWA or GHFEPOWG) operators,
and applied them to deal with MADM with hesitant fuzzy information. Hamacher [46] proposed a
more generalized t-norm and t-conorm, called the Hamacher t-norm and t-conorm. These Hamacher
t-norm and t-conorm are more general and flexible because they are a generalization of the algebraic
t-norm and t-conorm and the Einstein t-norm and t-conorm [46]. Tan et al. [17] gave some operations
on HFEs based on Hamacher t-norm and t-conorm, and developed some hesitant fuzzy Hamacher
aggregation operators. In this paper, by means of Hamacher operations on HFEs, we propose a family
of hesitant fuzzy Hamacher power-aggregation operators that allow decision-makers to have more
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choices in MADM problems. This study is very necessary because it is an integrated treatment of
works by Zhang [15] and Yu et al. [18].

To do so, this paper is organized as follows: In Section 2, some basic concepts and notions of
HFSs and Hamacher operations of HFEs based on the Hamacher t-norm and t-conorm are reviewed.
Some results of Hamacher operations of HFEs are investigated. In Section 3, we present a wide range
of hesitant fuzzy Hamacher power-aggregation operators for hesitant fuzzy information, some of their
basic properties are discussed, and the relationships between the proposed operators and the existing
hesitant fuzzy aggregation operators are investigated. In Section 4, we apply the proposed operators to
develop an approach to MADM with hesitant fuzzy information. An example application of the new
approach is provided, and a comparison with other hesitant fuzzy MADM approaches is performed.
Some concluding remarks is given in Section 5.

2. Basic Concepts and Operations

2.1. Triangular Norms and Conorms

The operators play an important role in the beginning of FS theory. The t-norm and t-conorm
used to define generalized union and intersection, respectively, is one of the important concepts in FS
theory. They are defined as follows.

Definition 1. [45] A triangular norm (t-norm) is a binary operation T on the unit interval [0, 1], i.e., a function
T : [0, 1]× [0, 1]→ [0, 1], such that for all x, y, z ∈ [0, 1], the following four axioms are satisfied:

(1) (Boundary condition) T(1, x) = x;
(2) (Commutativity) T(x, y) = T(y, x);
(3) (Associativity) T(x, T(y, z)) = T(T(x, y), z);
(4) (Monotonicity) T(x1, y1) ≤ T(x2, y2) if x1 ≤ x2 and y1 ≤ y2.

The corresponding triangular conorm (t-conorm) of T (or the dual of T) is the function S : [0, 1]× [0, 1]→ [0, 1]
defined by S(x, y) = 1− T(1− x, 1− y) for each x, y ∈ [0, 1].

Among many t-norms and t-conorms, there are the following basic t-norms and t-conorms:
minimum TM and maximum SM, algebraic product TA and algebraic sum SA, Einstein product TE and
Einstein sum SE, bounded difference TB and bounded sum SB, and drastic product TD and drastic
sum SD, given respectively as follows:

• TM(x, y) = min(x, y), SM(x, y) = max(x, y);

• TA(x, y) = xy, SA(x, y) = x + y− xy;

• TE(x, y) =
xy

1 + (1− x)(1− y)
, SE(x, y) =

x + y
1 + xy

;

• TB(x, y) = max(0, x + y− 1), SB(x, y) = min(1, x + y);

• TD(x, y) =

{
0, if (x, y) ∈ [0, 1)2

min(x, y), otherwise
, SD(x, y) =

{
1, if (x, y) ∈ (0, 1]2

max(x, y), otherwise.

These t-norms and t-conorms are ordered as follows:

TD ≤ TB ≤ TE ≤ TA ≤ TM, and SM ≤ SA ≤ SE ≤ SB ≤ SD. (1)

From (1), since the drastic product TD and minimum TM are the smallest and the largest t-norms,
respectively, we know that TD ≤ T ≤ TM for any t-norm T. In particular, the algebraic product TA and
the Einstein product TE are two prototypic examples of the class of strict Archimedean t-norms [45].
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Hamacher [46] proposed, as more generalized t-norm and t-conorm, the Hamacher t-norm and
t-conorm as follows:

Tζ
H(x, y) =

xy
ζ + (1− ζ)(x + y− xy)

, Sζ
H(x, y) =

x + y− xy− (1− ζ)xy
ζ + (1− ζ)xy

, ζ > 0. (2)

From (2), when ζ = 1, then the Hamacher t-norm and t-conorm reduce to the algebraic t-norm TA
and t-conorm SA, respectively; when ζ = 2, then then the Hamacher t-norm and t-conorm reduce to
the Einstein t-norm TE and t-conorm SE, respectively.

2.2. Hesitant Fuzzy Sets and Hesitant Fuzzy Elements

In the following, some basic concepts of hesitant fuzzy set and hesitant fuzzy element are briefly
reviewed [7,8,10].

Definition 2. [7,8] Let X be a fixed set, a hesitant fuzzy set (HFS) on X is defined in terms of function h that
returns a subset of [0, 1] when applied to X. The HFS can be represented as the following mathematical symbol:

E = {〈x, hE(x)〉|x ∈ X}, (3)

where hE(x) is a set of values in [0, 1] that denote the possible membership degrees of the element x ∈ X to the
set E. For convenience, we refer to h = hE(x) as a hesitant fuzzy element (HFE) and to H the set of all HFEs.

Given three HFEs h, h1 and h2, Torra and Narukawa [7,8] and Xia and Xu [10] defined the
following HFE operations:

(1) hc = ∪γ∈h{1− γ};
(2) h1 ∪ h2 = ∪γ1∈h1,γ2∈h2{γ1 ∨ γ2};
(3) h1 ∩ h2 = ∪γ1∈h1,γ2∈h2{γ1 ∧ γ2};
(4) hλ = ∪γ∈h{γλ}, λ > 0;
(5) λh = ∪γ∈h{1− (1− γ)λ}, λ > 0;
(6) h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2};
(7) h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2}.

Xia and Xu [10] also defined the following comparison rules for HFEs:

Definition 3. [10] For a HFE h, s(h) = ∑γ∈h γ

l(h) is called the score function of h, where l(h) is the number of
elements in h. For two HFEs h1 and h2,

• if s(h1) > s(h2), then h1 is superior to h2, denoted by h1 > h2;
• if s(h1) = s(h2), then h1 is indifferent to h2, denoted by h1 = h2.

Let h1 and h2 be two HFEs. In the most case, l(h1) 6= l(h2); for convenience, let l =

max{l(h1), l(h2)}. To compare h1 and h2, Xu and Xia [11] extended the shorter HFE until the length
of both HFEs was the same. The simplest way to extend the shorter HFE is to add the same value
repeatedly. In fact, we can extend the shorter ones by adding any values in them. The selection of
these values mainly depends on the decision-makers’ risk preferences. Optimists anticipate desirable
outcomes and may add the maximum value, while pessimists expect unfavorable outcomes and may
add the minimum value [11]. In this paper, we assume that the decision-makers are all pessimistic
(other situation can also be studied similarly).

Xu and Xia [11] proposed various distance measures for HFEs, including the hesitant normalized
Hamming distance defined as follows:

d(h1, h2) =
1
l

l

∑
i=1

∣∣∣hσ(i)
1 − hσ(i)

2

∣∣∣ , (4)
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where hσ(i)
1 and hσ(i)

2 are the ith largest values in h1 and h2, respectively.
Intrinsically, the addition and multiplication operators proposed by Xia and Xu [10] are algebraic

sum and algebraic product operational rules on HFEs, respectively, and are a special pair of dual
t-norm and t-conorm. Recently, Tan et al. [17] extended these operations to obtain more general
operations on HFEs by means of the Hamacher t-norm and t-conorm as follows:

Definition 4. [17] For any given three HFEs h, h1, h2, and ζ > 0, the Hamacher operations on HFEs are
defined as follows:

(1) h1 ⊕H h2 = ∪γ1∈h1,γ2∈h2

{
γ1+γ2−γ1γ2−(1−ζ)γ1γ2

1−(1−ζ)γ1γ2

}
;

(2) h1 ⊗H h2 = ∪γ1∈h1,γ2∈h2

{
γ1γ2

ζ+(1−ζ)(γ1+γ2−γ1γ2)

}
;

(3) λ ·H h = ∪γ∈h

{
(1+(ζ−1)γ)λ−(1−γ)λ

(1+(ζ−1)γ)λ+(ζ−1)(1−γ)λ

}
, λ > 0;

(4) h∧Hλ = ∪γ∈h

{
ζγλ

(1+(ζ−1)(1−γ))λ+(ζ−1)γλ

}
, λ > 0.

In particular, if ζ = 1, then these operations on HFEs reduce to those proposed by Xia and Xu [10];
if ζ = 2, then these operations on HFEs reduce to the following:

(1) h1 ⊕ε h2 = ∪γ1∈h1,γ2∈h2

{
γ1+γ2

1−γ1γ2

}
;

(2) h1 ⊗ε h2 = ∪γ1∈h1,γ2∈h2

{
γ1γ2

1+(1−γ1)(1−γ2)

}
;

(3) λ ·ε h = ∪γ∈h

{
(1+γ)λ−(1−γ)λ

(1+γ)λ+(1−γ)λ

}
, λ > 0;

(4) h∧ελ = ∪γ∈h

{
2γλ

(2−γ)λ+γλ

}
, λ > 0,

which are defined as Einstein operations on HFEs by Yu [16].

Theorem 1. Let h, h1 and h2 be three HFEs, λ > 0, λ1 > 0 and λ2 > 0, then
(1) h1 ⊕H h2 = h2 ⊕H h1;
(2) h⊕H (h1 ⊕H h2) = (h⊕H h1)⊕H h2;
(3) λ1 ·H (λ2 ·H h) = (λ1λ2) ·H h;
(4) λ ·H (h1 ⊕H h2) = (λ ·H h1)⊕H (λ ·H h2);
(5) h1 ⊗H h2 = h2 ⊗H h1;
(6) h⊗H (h1 ⊗H h2) = (h⊗H h1)⊗H h2;
(7) (h1 ⊗H h2)

∧Hλ = h∧Hλ
1 ⊗H h∧Hλ

2 ;
(8) (h∧Hλ1)∧Hλ2 = h∧H(λ1λ2).

Proof. Since (1), (2), (5) and (6) are trivial, we prove (3), (4), (7) and (8).

(3) Since λ2 ·H h = ∪γ∈h

{
(1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

}
, then we have

λ1 ·H (λ2 ·H h)

= ∪γ∈h


(

1 + (ζ − 1) (1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

)λ1
−
(

1− (1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

)λ1

(
1 + (ζ − 1) (1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

)λ1
+ (ζ − 1)

(
1− (1+(ζ−1)γ)λ2−(1−γ)λ2

(1+(ζ−1)γ)λ2+(ζ−1)(1−γ)λ2

)λ1


= ∪γ∈h

{
(1 + (ζ − 1)γ)(λ1λ2) − (1− γ)(λ1λ2)

(1 + (ζ − 1)γ)(λ1λ2) + (ζ − 1)(1− γ)(λ1λ2)

}
= (λ1λ2) ·H h.
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(4) Since h1 ⊕H h2 = ∪γ1∈h1,γ2∈h2

{
γ1+γ2−γ1γ2−(1−ζ)γ1γ2

1−(1−ζ)γ1γ2

}
, by the operational law (3) in

Definition 4, we have

λ ·H (h1 ⊕H h2)

= ∪γ1∈h1,γ2∈h2

 (1 + (ζ − 1) γ1+γ2−γ1γ2−(1−ζ)γ1γ2
1−(1−ζ)γ1γ2

)λ − (1− γ1+γ2−γ1γ2−(1−ζ)γ1γ2
1−(1−ζ)γ1γ2

)λ

(1 + (ζ − 1) γ1+γ2−γ1γ2−(1−ζ)γ1γ2
1−(1−ζ)γ1γ2

)λ + (ζ − 1)(1− γ1+γ2−γ1γ2−(1−ζ)γ1γ2
1−(1−ζ)γ1γ2

)λ


= ∪γ1∈h1,γ2∈h2

{
((1 + (ζ − 1)γ1)(1 + (ζ − 1)γ2))

λ − ((1− γ1)(1− γ2))
λ

((1 + (ζ − 1)γ1)(1 + (ζ − 1)γ2))
λ + (ζ − 1) ((1− γ1)(1− γ2))

λ

}
.

Since λ ·H h1 = ∪γ1∈h1

{
(1+(ζ−1)γ1)

λ−(1−γ1)
λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ

}
and λ ·H h2 = ∪γ2∈h2

{
(1+(ζ−1)γ2)

λ−(1−γ2)
λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ

}
,

we have

(λ ·H h1)⊕H (λ ·H h2)

= ∪γ1∈h1,γ2∈h2




(1+(ζ−1)γ1)

λ−(1−γ1)
λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ + (1+(ζ−1)γ2)
λ−(1−γ2)

λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ

− (1+(ζ−1)γ1)
λ−(1−γ1)

λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ
(1+(ζ−1)γ2)

λ−(1−γ2)
λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ

−(1− ζ) (1+(ζ−1)γ1)
λ−(1−γ1)

λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ ·
(1+(ζ−1)γ2)

λ−(1−γ2)
λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ


1− (1− ζ) (1+(ζ−1)γ1)λ−(1−γ1)λ

(1+(ζ−1)γ1)λ+(ζ−1)(1−γ1)λ ·
(1+(ζ−1)γ2)λ−(1−γ2)λ

(1+(ζ−1)γ2)λ+(ζ−1)(1−γ2)λ


= ∪γ1∈h1,γ2∈h2

{
((1 + (ζ − 1)γ1)(1 + (ζ − 1)γ2))

λ − ((1− γ1)(1− γ2))
λ

((1 + (ζ − 1)γ1)(1 + (ζ − 1)γ2))
λ + (ζ − 1) ((1− γ1)(1− γ2))

λ

}
.

Hence λ ·H (h1 ⊕H h2) = (λ ·H h1)⊕H (λ ·H h2).
(7) Since h1⊗H h2 = ∪γ1∈h1,γ2∈h2

{
γ1γ2

ζ+(1−ζ)(γ1+γ2−γ1γ2)

}
, by the operational law (4) in Definition 4,

we have

(h1 ⊗H h2)
∧Hλ

= ∪γ1∈h1,γ2∈h2


ζ
(

γ1γ2
ζ+(1−ζ)(γ1+γ2−γ1γ2)

)λ

(
1 + (ζ − 1)(1− γ1γ2

ζ+(1−ζ)(γ1+γ2−γ1γ2)
)
)λ

+ (ζ − 1)
(

γ1γ2
ζ+(1−ζ)(γ1+γ2−γ1γ2)

)λ


= ∪γ1∈h1,γ2∈h2

{
ζγλ

1 γλ
2

((1 + (ζ − 1)(1− γ1))(1 + (ζ − 1)(1− γ2)))
λ + (ζ − 1)γλ

1 γλ
2

}
.
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Since h∧Hλ
1 = ∪γ1∈h1

{
ζγλ

1
(1+(ζ−1)(1−γ1))λ+(ζ−1)γλ

1

}
and h∧Hλ

2 = ∪γ2∈h2

{
ζγλ

2
(1+(ζ−1)(1−γ2))λ+(ζ−1)γλ

2

}
,

we have

h∧Hλ
1 ⊗H h∧Hλ

2

= ∪γ1∈h1,γ2∈h2



ζγλ
1

(1+(ζ−1)(1−γ1))λ+(ζ−1)γλ
1
· ζγλ

2
(1+(ζ−1)(1−γ2))λ+(ζ−1)γλ

2 ζ + (1− ζ)

(
ζγλ

1
(1+(ζ−1)(1−γ1))λ+(ζ−1)γλ

1
+

ζγλ
2

(1+(ζ−1)(1−γ2))λ+(ζ−1)γλ
2

− ζγλ
1

(1+(ζ−1)(1−γ1))λ+(ζ−1)γλ
1
· ζγλ

2
(1+(ζ−1)(1−γ2))λ+(ζ−1)γλ

2

)



= ∪γ1∈h1,γ2∈h2

{
ζγλ

1 γλ
2

((1 + (ζ − 1)(1− γ1))(1 + (ζ − 1)(1− γ2)))
λ + (ζ − 1)γλ

1 γλ
2

}
.

Hence (h1 ⊗H h2)
∧Hλ = h∧Hλ

1 ⊗H h∧Hλ
2 .

(8) Since h∧Hλ1 = ∪γ∈h

{
ζγλ1

(1+(ζ−1)(1−γ))λ1+(ζ−1)γλ1

}
, we have

(h∧H λ1)∧H λ2

= ∪γ∈h


ζ
(

ζγλ1

(1+(ζ−1)(1−γ))λ1+(ζ−1)γλ1

)λ2

(
1 + (ζ − 1)(1− ζγλ1

(1+(ζ−1)(1−γ))λ1+(ζ−1)γλ1
)
)λ2

+ (ζ − 1)
(

ζγλ1

(1+(ζ−1)(1−γ))λ1+(ζ−1)γλ1

)λ2


= ∪γ∈h

{
ζγ(λ1λ2)

(1 + (ζ − 1)(1− γ))(λ1λ2) + (ζ − 1)γ(λ1λ2)

}
= h∧H(λ1λ2).

However, the operational laws (λ1 ·H h)⊕H (λ2 ·H h) = (λ1 + λ2) ·H h and h∧Hλ1 ⊗H h∧Hλ2 =

h∧H(λ1+λ2) do not hold in general. To illustrate these, we give an example as follows:

Example 1. Let h = {0.3, 0.5}, λ1 = λ2 = 1 and ζ = 3, then

(λ1 ·H h)⊕H (λ2 ·H h) = h⊕H h = ∪i,j=1,2

{
γi + γj + γiγj

1 + 2γiγj

}
= {0.5874, 0.7308, 0.7308, 0.8333},

(λ1 + λ2) ·H h = 2 ·H h = ∪i=1,2

{
(1 + 2γi)

2 − (1− γi)
2

(1 + 2γi)2 + 2(1− γi)2

}
= {0.5874, 0.8333}.

From Definition 3, we have s((λ1 ·H h)⊕H (λ2 ·H h)) = 0.7199 > 0.7104 = s((λ1 + λ2) ·H h) and thus
(λ1 ·H h)⊕H (λ2 ·H h) 6= (λ1 + λ2) ·H h. Furthermore, we have s(h∧Hλ1 ⊗H h∧Hλ2) = 0.0971 < 0.1060 =

s(h∧H(λ1+λ2)) and thus h∧Hλ1 ⊗H h∧Hλ2 6= h∧H(λ1+λ2).

3. Hesitant Fuzzy Hamacher Power-Weighted Aggregation Operators

In this section, based on the Hamacher operation, we shall extend the power-aggregation operators
to accommodate the situations where the input arguments are HFEs.
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3.1. Hesitant Fuzzy Hamacher Power-Weighted Average/geometric Operators

Based on the PA operator [24] and hesitant fuzzy Hamacher weighted average (HFHWA)
operator [17], we firstly define the hesitant fuzzy Hamacher power-weighted average (HFHPWA)
operator as follows.

Definition 5. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. A hesitant fuzzy Hamacher power-weighted
average (HFHPWA) operator is a function Hn → H such that

HFHPWAζ(h1, h2, . . . , hn) = ⊕H
n
i=1

(
wi(1 + T(hi)) ·H hi

∑n
i=1 wi(1 + T(hi))

)
, (5)

where parameter ζ > 0, T(hi) = ∑n
j=1,j 6=i wjSup(hi, hj) and Sup(hi, hj) is the support for hi from hj, satisfying

the following conditions:
(1) Sup(hi, hj) ∈ [0, 1];
(2) Sup(hi, hj) = Sup(hj, hi);
(3) Sup(hi, hj) ≥ Sup(hs, ht) if d(hi, hj) ≤ d(hs, ht), where d is the hesitant normalized Hamming

distance measure between two HFEs given in Equation (4).

Here, the support measure (Sup) can be used to measure the closeness of a preference value with
other preference value because it is essentially similarity measure.

Theorem 2. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then the aggregated value by HFHPWA operator
is also a HFE, and

HFHPWAζ(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

 ∏n
i=1 (1 + (ζ − 1)γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi )) −∏n
i=1 (1− γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))

∏n
i=1 (1 + (ζ − 1)γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi )) + (ζ − 1)∏n
i=1 (1− γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))

 . (6)

Proof. Equation (6) can be proved by mathematical induction on n as follows.
For n = 1, the result of Equation (6) is clear.
Suppose that Equation (6) holds for n = k, that is

HFHPWAζ(h1, h2, . . . , hk)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk

 ∏k
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k
i=1 wi(1+T(hi)) −∏k

i=1 (1− γi)

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

∏k
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k
i=1 wi(1+T(hi)) + (ζ − 1)∏k

i=1 (1− γi)

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

 .
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Then, when n = k + 1, by Definitions 4 and 5, we have

HFHPWAζ(h1, h2, . . . , hk+1) = ⊕H
k
i=1

(
wi(1 + T(hi)) ·H hi

∑k+1
i=1 wi(1 + T(hi))

)
⊕H

(
wk+1(1 + T(hk+1)) ·H hk+1

∑k+1
i=1 wi(1 + T(hi))

)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk


∏k

i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi)) −∏k

i=1 (1− γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

∏k
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi)) + (ζ − 1)∏k

i=1 (1− γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))


⊕H ∪γk+1∈hk+1


(1 + (ζ − 1)γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi)) − (1− γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

(1 + (ζ − 1)γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi)) + (ζ − 1) (1− γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

 .

Let a1 = ∏k
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi)) , b1 = ∏k

i=1 (1− γi)

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi)) , a2 =

(1 + (ζ − 1)γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi)) and b2 = (1− γk+1)

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi)) , then

HFHPWAζ(h1, h2, . . . , hk+1)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk

{
a1 − b1

a1 + (ζ − 1)b1

}
⊕H ∪γk+1∈hk+1

{
a2 − b2

a2 + (ζ − 1)b2

}

= ∪γ1∈h1,...,γk∈hk ,γk+1∈hk+1



[ a1−b1
a1+(ζ−1)b1

+ a2−b2
a2+(ζ−1)b2

− a1−b1
a1+(ζ−1)b1

· a2−b2
a2+(ζ−1)b2

−(1− ζ) a1−b1
a1+(ζ−1)b1

· a2−b2
a2+(ζ−1)b2

]
1− (1− ζ) a1−b1

a1+(ζ−1)b1
· a2−b2

a2+(ζ−1)b2


= ∪γ1∈h1,γ2∈h2,...,γk+1∈hk+1

{
a1a2 − b1b2

a1a2 + (ζ − 1)b1b2

}

= ∪γ1∈h1,γ2∈h2,...,γk+1∈hk+1

 ∏k+1
i=1 (1 + (ζ − 1)γi)

wi (1+T(hi ))

∑k+1
i=1 wi (1+T(hi )) −∏k+1

i=1 (1− γi)

wi (1+T(hi ))

∑k+1
i=1 wi (1+T(hi ))

∏k+1
i=1 (1 + (ζ − 1)γi)

wi (1+T(hi ))

∑k+1
i=1 wi (1+T(hi )) + (ζ − 1)∏k+1

i=1 (1− γi)

wi (1+T(hi ))

∑k+1
i=1 wi (1+T(hi ))

 ,

i.e., Equation (6) holds for n = k + 1. Thus, Equation (6) holds for all n.

Remark 1. (1) If Sup(hi, hj) = k, for all i 6= j, then

HFHPWAζ(h1, h2, . . . , hn) = ⊕H
n
i=1 (wi ·H hi)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

{
∏n

i=1 (1 + (ζ − 1)γi)
wi −∏n

i=1 (1− γi)
wi

∏n
i=1 (1 + (ζ − 1)γi)

wi + (ζ − 1)∏n
i=1 (1− γi)

wi

}
, (7)

which indicates that when all supports are the same, the HFHPWA operator reduces to the hesitant fuzzy
Hamacher weighted average (HFHWA) operator [17].

(2) For the HFHPWA operator, if ζ = 1, then the HFHPWA operator reduces to the following:

HFHPWA1(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn

{
1−

n

∏
i=1

(1− γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

}
(8)
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which is called the hesitant fuzzy power-weighted average (HFPWA) operator and if ζ = 2, then the HFHPWA
operator reduces to the hesitant fuzzy Einstein power-weighted average (HFEPWA) operator [18]:

HFHPWA2(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

∏n
i=1 (1 + γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) −∏n
i=1 (1− γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + ∏n
i=1 (1− γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

 . (9)

To analyze the relationship between the HFHPWA operator and the HFPWA operator,
we introduce the following lemma.

Lemma 1. [47,48] Let xi > 0, wi > 0, i = 1, 2, . . . , n, and ∑n
i=1 wi = 1, then ∏n

i=1 xwi
i ≤ ∑n

i=1 wixi,
with equality if and only if x1 = x2 = · · · = xn.

Theorem 3. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then

HFHPWAζ(h1, h2, . . . , hn) ≤ HFPWA(h1, h2, . . . , hn).

Proof. For any γi ∈ hi (i = 1, 2, . . . , n), by Lemma 1, we have

n

∏
i=1

(1 + (ζ − 1)γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) + (ζ − 1)

n

∏
i=1

(1− γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

≤
n

∑
i=1

wi(1 + T(hi))

∑n
i=1 wi(1 + T(hi))

(1 + (ζ − 1)γi) + (ζ − 1)
n

∑
i=1

wi(1 + T(hi))

∑n
i=1 wi(1 + T(hi))

(1− γi) = ζ.

Then,

∏n
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) −∏n
i=1 (1− γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + (ζ − 1)∏n
i=1 (1− γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

= 1− ζ ∏n
i=1 (1− γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + (ζ − 1)γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + (ζ − 1)∏n
i=1 (1− γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

≤ 1− ζ ∏n
i=1 (1− γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

ζ
= 1−

n

∏
i=1

(1− γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) ,

which implies that ⊕H
n
i=1

(
wi(1+T(hi))·H hi
∑n

i=1 wi(1+T(hi))

)
≤ ⊕n

i=1

(
wi(1+T(hi))hi

∑n
i=1 wi(1+T(hi))

)
. Thus, we obtain

HFHPWAζ(h1, h2, . . . , hn) ≤ HFPWA(h1, h2, . . . , hn).

Theorem 3 shows that the values aggregated by the HFHPWA operator are not larger than those
obtained by the HFPWA operator. That is to say, the HFHPWA operator reflects the decision-maker’s
pessimistic attitude than the HFPWA operator in aggregation process. Furthermore, based on
Theorem 2, we have the properties of the HFHPWA operator as follows.

Theorem 4. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then we have the followings:
(1) Boundedness: If h− = min{γi|γi ∈ hi} and h+ = max{γi|γi ∈ hi}, then

h− ≤ HFHPWAζ(h1, h2, . . . , hn) ≤ h+.
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(2) Monotonicity: Let h′i (i = 1, 2, . . . , n) be a collection of HFEs, if w = (w1, w2, . . . , wn)T is also the
weight vector of h′i, and γi ≤ γ′i for any hi and h′i (i = 1, 2, . . . , n), then

HFHPWAζ(h1, h2, . . . , hn) ≤ HFHPWAζ(h′1, h′2, . . . , h′n).

Proof. (1) Let f (x) = 1+(ζ−1)x
1−x , x ∈ [0, 1), then f ′(x) = ζ

(1−x)2 > 0 and thus f (x) is an increasing

function. Since h− ≤ γi ≤ h+ for all i, then f (h−) ≤ f (γi) ≤ f (h+), i.e., 1+(ζ−1)h−
1−h− ≤ 1+(ζ−1)γi

1−γi
≤

1+(ζ−1)h+
1−h+ . For convenience, let ti =

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))
. Since w = (w1, w2, . . . , wn)T is the weight vector

of hi satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1, then for all i, we have(

1 + (ζ − 1)h−

1− h−

)ti

≤
(

1 + (ζ − 1)γi
1− γi

)ti

≤
(

1 + (ζ − 1)h+

1− h+

)ti

⇔
(

1 +
ζh−

1− h−

)ti

≤
(

1 + (ζ − 1)γi
1− γi

)ti

≤
(

1 +
ζh+

1− h+

)ti

⇔
n

∏
i=1

(
1 +

ζh−

1− h−

)ti

≤
n

∏
i=1

(
1 + (ζ − 1)γi

1− γi

)ti

≤
n

∏
i=1

(
1 +

ζh+

1− h+

)ti

⇔ 1 +
ζh−

1− h−
≤

n

∏
i=1

(
1 + (ζ − 1)γi

1− γi

)ti

≤ 1 +
ζh+

1− h+

⇔ ζ +
ζh−

1− h−
≤

n

∏
i=1

(
1 + (ζ − 1)γi

1− γi

)ti

+ (ζ − 1) ≤ ζ +
ζh+

1− h+

⇔ 1

ζ + ζh+
1−h+

≤ 1

∏n
i=1

(
1+(ζ−1)γi

1−γi

)ti
+ (ζ − 1)

≤ 1

ζ + ζh−
1−h−

⇔ 1− h+

ζ
≤ ∏n

i=1 (1− γi)
ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1− γi)

ti
≤ 1− h−

ζ

⇔ 1− h+ ≤ ζ ∏n
i=1 (1− γi)

ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1− γi)

ti
≤ 1− h−

⇔ h− ≤ 1− ζ ∏n
i=1 (1− γi)

ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1− γi)

ti
≤ h+

⇔ h− ≤ ∏n
i=1 (1 + (ζ − 1)γi)

ti −∏n
i=1 (1− γi)

ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1− γi)

ti
≤ h+.

Thus, we have h− ≤ HFHPWAζ(h1, h2, . . . , hn) ≤ h+.
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(2) Let f (x) = 1+(ζ−1)x
1−x , x ∈ [0, 1), then by (1), f (x) is an increasing function. If for all hi and h′i,

γi ≤ γ′i , then 1+(ζ−1)γi
1−γi

≤ 1+(ζ−1)γ′i
1−γ′i

. For convenience, let ti =
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

, then we have

(
1 + (ζ − 1)γi

1− γi

)ti

≤
(

1 + (ζ − 1)γ′i
1− γ′i

)ti

⇔
n

∏
i=1

(
1 + (ζ − 1)γi

1− γi

)ti

+ (ζ − 1) ≤
n

∏
i=1

(
1 + (ζ − 1)γ′i

1− γ′i

)ti

+ (ζ − 1)

⇔ 1

∏n
i=1

(
1+(ζ−1)γi

1−γi

)ti
+ (ζ − 1)

≥ 1

∏n
i=1

(
1+(ζ−1)γ′i

1−γ′i

)ti
+ (ζ − 1)

⇔
ζ ∏n

i=1 (1− γi)
ti

∏n
i=1 (1 + (ζ − 1)γi)

ti + (ζ − 1)∏n
i=1 (1− γi)

ti
≥

ζ ∏n
i=1
(
1− γ′i

)ti

∏n
i=1
(
1 + (ζ − 1)γ′i

)ti + (ζ − 1)∏n
i=1
(
1− γ′i

)ti

⇔ 1−
ζ ∏n

i=1 (1− γi)
ti[

∏n
i=1 (1 + (ζ − 1)γi)

ti

+(ζ − 1)∏n
i=1 (1− γi)

ti

] ≤ 1−
ζ ∏n

i=1
(
1− γ′i

)ti[
∏n

i=1
(
1 + (ζ − 1)γ′i

)ti

+(ζ − 1)∏n
i=1
(
1− γ′i

)ti

]

⇔ ∏n
i=1 (1 + (ζ − 1)γi)

ti −∏n
i=1 (1− γi)

ti[
∏n

i=1 (1 + (ζ − 1)γi)
ti

+(ζ − 1)∏n
i=1 (1− γi)

ti

] ≤ ∏n
i=1
(
1 + (ζ − 1)γ′i

)ti −∏n
i=1
(
1− γ′i

)ti[
∏n

i=1
(
1 + (ζ − 1)γ′i

)ti

+(ζ − 1)∏n
i=1
(
1− γ′i

)ti

] .

Thus, by Theorem 2, HFHPWAζ(h1, h2, . . . , hn) ≤ HFHPWAζ(h′1, h′2, . . . , h′n).

However, the HFHPWA operator is neither idempotent nor commutative, as illustrated by the
following example.

Example 2. Let h1 = {0.8, 0.6}, h2 = {0.9, 0.5} and h3 = {0.7, 0.6} be three HFEs, w = (0.3, 0.5, 0.2)T

be the weight vector of h1, h2 and h3. Assume that Sup(hi, hj) (i, j = 1, 2, 3, i 6= j) is the support for hi from
hj given by Sup(hi, hj) = 1− d(hi, hj), where d(hi, hj) is the hesitant Hamming distance between hi and hj.
Then by Theorem 2, we have

HFHPWA5(h1, h2, h3) = {0.8388, 0.6555, 0.7942, 0.5797, 0.8261, 0.6332, 0.7786, 0.5549},
HFHPWA5(h2, h3, h1) = {0, 8013, 0.7683, 0.6723, 0.6255, 0.7650, 0.7275, 0.6208, 0.5701},
HFHPWA5(h3, h3, h3) = {0.7000, 0.6559, 0.6704, 0.6237, 0.6793, 0.6334, 0.6485, 0.6000}.

From Definition 3, we have s(h1) = s(h2) = 0, 7, s(h3) = 0.65, s(HFHPWA5(h1, h2, h3)) = 0.7076,
s(HFHPWA5(h2, h3, h1)) = 0.6938 and s(HFHPWA5(h3, h3, h3)) = 0.6514. Then s(HFHPWA5(h3, h3,
h3)) 6= s(h3) and thus HFHPWA5(h3, h3, h3) 6= h3, which implies that the HFHPWA operator is
not idempotent. Furthermore, since s(HFHPWA5(h1, h2, h3)) 6= s(HFHPWA5(h2, h3, h1)), we have
HFHPWA5(h1, h2, h3) 6= HFHPWA5(h2, h3, h1). Thus, the HFHPWA operator is not commutative.

Based on the power geometric (PG) operator [25] and hesitant fuzzy Hamacher weighted
geometric (HFHWG) operator [17], we also define the hesitant fuzzy Hamacher power-weighted
geometric operator as follows.

Definition 6. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. A hesitant fuzzy Hamacher power-weighted
geometric (HFHPWG) operator is a function Hn → H such that

HFHPWGζ(h1, h2, . . . , hn) = ⊗H
n
i=1

h
∧H

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 , (10)
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where parameter ζ > 0, T(hi) = ∑n
j=1,j 6=i wjSup(hi, hj) and Sup(hi, hj) is the support for hi from hj.

Theorem 5. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then the aggregated value by HFHPWG operator
is also a HFE, and

HFHPWGζ(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn


ζ ∏n

i=1 (γi)
wi (1+T(hi ))

∑n
i=1 wi (1+T(hi )) ∏n

i=1 (1 + (ζ − 1)(1− γi))
wi (1+T(hi ))

∑n
i=1 wi (1+T(hi ))

+(ζ − 1)∏n
i=1 (γi)

wi (1+T(hi ))
∑n

i=1 wi (1+T(hi ))




. (11)

Proof. Similar to the proof of Theorem 2, Equation (11) can be proved by mathematical induction
on n.

Remark 2. (1) If Sup(hi, hj) = k, for all i 6= j, then

HFHPWGζ(h1, h2, . . . , hn) = ⊗H
n
i=1

(
h∧Hwi

i

)
(12)

which indicates that when all supports are the same, the HFHPWG operator reduces to the hesitant fuzzy
Hamacher weighted geometric (HFHWG) operator [17].

(2) If ζ = 1, then then the HFHPWG operator reduces to the following:

HFHPWG1(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn

{
n

∏
i=1

(γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

}
(13)

which is called the hesitant fuzzy power-weighted geometric (HFPWG) operator and if ζ = 2, then the HFHPWG
operator reduces to the hesitant fuzzy Einstein power-weighted geometric (HFEPWG) operator [18]:

HFHPWG2(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

 2 ∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (2− γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + ∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

 . (14)

Theorem 6. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then

HFHPWGζ(h1, h2, . . . , hn) ≥ HFPWG(h1, h2, . . . , hn).

Proof. For any γi ∈ hi (i = 1, 2, . . . , n), by Lemma 1, we have

n

∏
i=1

(1 + (ζ − 1)(1− γi))
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) + (ζ − 1)

n

∏
i=1

(γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

≤
n

∑
i=1

wi(1 + T(hi))

∑n
i=1 wi(1 + T(hi))

(1 + (ζ − 1)(1− γi)) + (ζ − 1)
n

∑
i=1

wi(1 + T(hi))

∑n
i=1 wi(1 + T(hi))

γi = ζ.

Then,

ζ ∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + (ζ − 1)(1− γi))

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + (ζ − 1)∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

≥
n

∏
i=1

(γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) ,
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which implies that ⊗H
n
i=1

h
∧H

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 ≥ ⊗n
i=1

h
wi(1+T(hi))hi

∑n
i=1 wi(1+T(hi))

i

, i.e.,

HFHPWGζ(h1, h2, . . . , hn) ≥ HFPWG(h1, h2, . . . , hn).

Theorem 6 shows that the HFHPWG operator reflects the decision-maker’s more optimistic
attitude than the HFPWG operator in aggregation process. Furthermore, similar to Theorem 4, we have
the properties of the HFHPWG operator as follows.

Theorem 7. bLet hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then we have the followings:
(1) Boundedness: If h− = min{γi|γi ∈ hi} and h+ = max{γi|γi ∈ hi}, then

h− ≤ HFHPWGζ(h1, h2, . . . , hn) ≤ h+.

(2) Monotonicity: Let h′i (i = 1, 2, . . . , n) be a collection of HFEs, if w = (w1, w2, . . . , wn)T is also the
weight vector of h′i, and γi ≤ γ′i for any hi and h′i (i = 1, 2, . . . , n), then

HFHPWGζ(h1, h2, . . . , hn) ≤ HFHPWGζ(h′1, h′2, . . . , h′n).

Proof. (1) Let g(x) = 1+(ζ−1)(1−x)
x , x ∈ (0, 1], then g′(x) = −ζ

x2 < 0, thus g(x) is a decreasing function.

Since h− ≤ γi ≤ h+ for all i, then g(h−) ≥ g(γi) ≥ g(h+), i.e., 1+(ζ−1)(1−h+)
h+ ≤ 1+(ζ−1)(1−γi)

γi
≤

1+(ζ−1)(1−h−)
h− . Since w = (w1, w2, . . . , wn)T is the weight vector of hi satisfying wi ∈ [0, 1] and

∑n
i=1 wi = 1, then for all i, let ti =

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))
, we have

(
1 + (ζ − 1)(1− h+)

h+

)ti

≤
(

1 + (ζ − 1)(1− γi)

γi

)ti

≤
(

1 + (ζ − 1)(1− h−)
h−

)ti

⇔
n

∏
i=1

(
1 + (ζ − 1)(1− h+)

h+

)ti

≤
n

∏
i=1

(
1 + (ζ − 1)(1− γi)

γi

)ti

≤
n

∏
i=1

(
1 + (ζ − 1)(1− h−)

h−

)ti

⇔ ζ

h+
− (ζ − 1) ≤

n

∏
i=1

(
1 + (ζ − 1)(1− γi)

γi

)ti

≤ ζ

h−
− (ζ − 1)

⇔ ζ

h+
≤

n

∏
i=1

(
1 + (ζ − 1)(1− γi)

γi

)ti

+ (ζ − 1) ≤ ζ

h−

⇔ h−

ζ
≤ 1

∏n
i=1

(
1+(ζ−1)(1−γi)

γi

)ti
+ (ζ − 1)

≤ h+

ζ

⇔ h−

ζ
≤ ∏n

i=1 (γi)
ti

∏n
i=1 (1 + (ζ − 1)(1− γi))

ti + (ζ − 1)∏n
i=1 (γi)

ti
≤ h+

ζ

⇔ h− ≤ ζ ∏n
i=1 (γi)

ti

∏n
i=1 (1 + (ζ − 1)(1− γi))

ti + (ζ − 1)∏n
i=1 (γi)

ti
≤ h+

Thus, we have h− ≤ HFHPWGζ(h1, h2, . . . , hn) ≤ h+.
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(2) Let g(x) = 1+(ζ−1)(1−x)
x , x ∈ (0, 1], then by (1), g(x) is a decreasing function. Then for all i,

γi ≤ γ′i , we have 1+(ζ−1)(1−γi)
γi

≥ 1+(ζ−1)(1−γ′i)
γ′i

. For convenience, let ti =
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

, then we have

(
1 + (ζ − 1)(1− γi)

γi

)ti

≥
(

1 + (ζ − 1)(1− γ′i)

γ′i

)ti

⇔
n

∏
i=1

(
1 + (ζ − 1)(1− γi)

γi

)ti

≥
n

∏
i=1

(
1 + (ζ − 1)(1− γ′i)

γ′i

)ti

⇔
n

∏
i=1

(
1 + (ζ − 1)(1− γi)

γi

)ti

+ (ζ − 1) ≥
n

∏
i=1

(
1 + (ζ − 1)(1− γ′i)

γ′i

)ti

+ (ζ − 1)

⇔ 1

∏n
i=1

(
1+(ζ−1)(1−γi)

γi

)ti
+ (ζ − 1)

≤ 1

∏n
i=1

(
1+(ζ−1)(1−γ′i)

γ′i

)ti
+ (ζ − 1)

⇔ ζ ∏n
i=1 (γi)

ti[
∏n

i=1 (1 + (ζ − 1)(1− γi))
ti

+(ζ − 1)∏n
i=1 (γi)

ti

] ≤ ζ ∏n
i=1
(
γ′i
)ti[

∏n
i=1
(
1 + (ζ − 1)(1− γ′i)

)ti

+(ζ − 1)∏n
i=1
(
γ′i
)ti

] .

Thus, by Theorem 5, HFHPWGζ(h1, h2, . . . , hn) ≤ HFHPWGζ(h′1, h′2, . . . , h′n).

However, the HFHPWG operator is also neither idempotent nor commutative, as illustrated by
the following example.

Example 3. Let h1, h2 and h3 be three HFEs, w be the weight vector of them, and Sup(hi, hj) (i, j = 1, 2, 3,
i 6= j) be the support for hi from hj given in Example 2. Then by Theorem 5, we have

HFHPWG5(h1, h1, h1) = {0.8000, 0.7095, 0.7390, 0.6455, 0.7573, 0.6644, 0.6945, 0.6000},
HFHPWG5(h1, h2, h3) = {0.8277, 0.6398, 0.7678, 0.5751, 0.8077, 0.6177, 0.7467, 0.5532},
HFHPWG5(h2, h3, h1) = {0, 7881, 0.7438, 0.6611, 0.6145, 0.7445, 0.6989, 0.6152, 0.5686}.

According to Definition 3, we have s(HFHPWG5(h1, h1, h1)) = 0.7013, s(HFHPWG5(h1, h2, h3)) =

0.6920 and s(HFHPWG5(h2, h3, h1)) = 0.6793. Then s(HFHPWG5(h1, h1, h1)) 6= s(h1) and thus
HFHPWG5(h1, h1, h1) 6= h1, which implies that the HFHPWG operator is not idempotent. Furthermore,
since s(HFHPWG5(h1, h2, h3)) 6= s(HFHPWG5(h2, h3, h1)), we have HFHPWG5(h1, h2, h3) 6=
HFHPW5(h2, h3, h1). Thus, the HFHPWG operator is not commutative.

Theorem 8. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then we have
(1) HFHPWAζ(hc

1, hc
2, . . . , hc

n) = (HFHPWGζ(h1, h2, . . . , hn))c;
(2) HFHPWGζ(hc

1, hc
2, . . . , hc

n) = (HFHPWAζ(h1, h2, . . . , hn))c.
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Proof. Since (2) is similar (1), we only prove (1).

HFHPWAζ(hc
1, hc

2, . . . , hc
n)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn

 ∏n
i=1 (1 + (ζ − 1)(1− γi))

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) −∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

∏n
i=1 (1 + (ζ − 1)(1− γi))

wi(1+T(hi))
∑n

i=1 wi(1+T(hi)) + (ζ − 1)∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))



= ∪γ1∈h1,γ2∈h2,...,γn∈hn


1− ζ ∏n

i=1 (γi)
wi(1+T(hi))

∑n
i=1 wi(1+T(hi)) ∏n

i=1 (1 + (ζ − 1)(1− γi))
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

+(ζ − 1)∏n
i=1 (γi)

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))




= (HFHPWGζ(h1, h2, . . . , hn))

c.

3.2. Generalized Hesitant Fuzzy Hamacher Power-Weighted Average/Geometric Operators

Definition 7. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, w = (w1, w2, . . . , wn)T be the weight vector of
hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. For a parameter λ > 0, a generalized hesitant fuzzy
Hamacher power-weighted average (GHFHPWA) operator is a function Hn → H such that

GHFHPWAζ(h1, h2, . . . , hn) =

(
⊕H

n
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i
∑n

i=1 wi(1 + T(hi))

))∧H
1
λ

, (15)

where parameter ζ > 0, T(hi) = ∑n
j=1,j 6=i wjSup(hi, hj) and Sup(hi, hj) is the support for hi from hj.

Theorem 9. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector of
hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then the aggregated value by GHFHPWA operator is
also a HFE, and

GHFHPWAζ(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn



ζ

∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ



∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + (ζ2 − 1)∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ

+(ζ − 1)

∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ





, (16)

where ai = (1 + (ζ − 1)(1− γi))
λ + (ζ2 − 1)γλ

i and bi = (1 + (ζ − 1)(1− γi))
λ − γλ

i .
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Proof. We first use the mathematical induction on n to prove

⊕H
n
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i
∑n

i=1 wi(1 + T(hi))

)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn


∏n

i=1 a
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

i −∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + (ζ − 1)∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 . (17)

(1) When n = 1, since wi(1+T(hi))
∑n

i=1 wi(1+T(hi))
= 1, we have

⊕H
n
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i
∑n

i=1 wi(1 + T(hi))

)
= h∧Hλ

1

= ∪γ1∈h1

{
ζγλ

1

(1 + (ζ − 1)(1− γ1))λ + (ζ − 1)γλ
1

}

= ∪γ1∈h1

{
a1 − b1

a1 + (ζ − 1)b1

}
.

Thus, Equation (17) holds for n = 1.
(2) Suppose that Equation (17) holds for n = k, that is

⊕H
k
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i

∑k
i=1 wi(1 + T(hi))

)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk


∏k

i=1 a

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

i −∏k
i=1 b

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

i

∏k
i=1 a

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

i + (ζ − 1)∏k
i=1 b

wi(1+T(hi))

∑k
i=1 wi(1+T(hi))

i

 ,

then, when n = k + 1, by the operational laws in Definition 4, we have

⊕H
k+1
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i

∑k+1
i=1 wi(1 + T(hi))

)

= ⊕H
k
i=1

(
wi(1 + T(hi)) ·H h∧Hλ

i

∑k+1
i=1 wi(1 + T(hi))

)
⊕H

(
wk+1(1 + T(hk+1)) ·H h∧Hλ

k+1

∑k+1
i=1 wi(1 + T(hi))

)

= ∪γ1∈h1,γ2∈h2,...,γk∈hk


∏k

i=1 a

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i −∏k
i=1 b

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i

∏k
i=1 a

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i + (ζ − 1)∏k
i=1 b

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i


⊕H ∪γk+1∈hk+1


a

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

k+1 − b

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

k+1

a

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

k+1 + (ζ − 1)b

wk+1(1+T(hk+1))

∑k+1
i=1 wi(1+T(hi))

k+1


= ∪γ1∈h1,γ2∈h2,...,γk∈hk ,γk+1∈hk+1


∏k+1

i=1 a

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i −∏k+1
i=1 b

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i

∏k+1
i=1 a

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i + (ζ − 1)∏k+1
i=1 b

wi(1+T(hi))

∑k+1
i=1 wi(1+T(hi))

i

 ,

i.e., Equation (17) holds for n = k + 1. Thus, Equation (17) holds for all n.
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Hence, by the operational laws in Definition 4, we have

GHFHPWAζ(h1, h2, . . . , hn) =

(
⊕H

n
i=1

(
wi(1 + T(hi)) ·H h∧H λ

i
∑n

i=1 wi(1 + T(hi))

))∧H
1
λ

= ∪γ1∈h1,γ2∈h2,...,γn∈hn



ζ

 ∏n
i=1 a

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))
i −∏n

i=1 b

wi(1+T(hi ))
∑n

i=1 wi (1+T(hi))
i

∏n
i=1 a

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))
i +(ζ−1)∏n

i=1 b

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))
i


1
λ



1 + (ζ − 1)(1− ∏n
i=1 a

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))
i −∏n

i=1 b

wi(1+T(hi ))
∑n

i=1 wi (1+T(hi))
i

∏n
i=1 a

wi(1+T(hi ))
∑n

i=1 wi (1+T(hi))
i +(ζ−1)∏n

i=1 b

wi(1+T(hi ))
∑n

i=1 wi (1+T(hi))
i

)


1
λ

+(ζ − 1)

 ∏n
i=1 a

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))
i −∏n

i=1 b

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))
i

∏n
i=1 a

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))
i +(ζ−1)∏n

i=1 b

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))
i


1
λ





= ∪γ1∈h1,γ2∈h2,...,γn∈hn



ζ

∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 b

wi (1+T(hi))
∑n

i=1 wi(1+T(hi ))

i

 1
λ



∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi (1+T(hi ))

i + (ζ2 − 1)∏n
i=1 b

wi (1+T(hi))
∑n

i=1 wi(1+T(hi ))

i

 1
λ

+(ζ − 1)

∏n
i=1 a

wi(1+T(hi ))
∑n

i=1 wi (1+T(hi))

i −∏n
i=1 b

wi(1+T(hi ))
∑n

i=1 wi(1+T(hi))

i

 1
λ





,

which completes the proof of the theorem.

Remark 3. (1) If Sup(hi, hj) = k, for all i 6= j, then

GHFHPWAζ(h1, h2, . . . , hn) =
(
⊕H

n
i=1

(
wi ·H h∧Hλ

i

))∧H
1
λ (18)

and thus, the GHFHPWA operator reduces to the generalized hesitant fuzzy Hamacher weighted average
(GHFHWA) operator [17].

(2) If ζ = 1, then the GHFHPWA operator reduces to the generalized hesitant fuzzy power-weighted
average (GHFPWA) operator [15]:

GHFHPWA1(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn


(

1−
n

∏
i=1

(
1− γλ

i

) wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

) 1
λ

 (19)
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and if ζ = 2, then the GHFHPWA operator reduces to the generalized hesitant fuzzy Einstein power-weighted
average (GHFEPWA) operator [18]:

GHFHPWA2(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn



2

∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ



∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + 3 ∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ

+

∏n
i=1 a

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 b

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ





, (20)

where ai = (2− γi)
λ + 3γλ

i , bi = (2− γi)
λ − γλ

i .
(3) If λ = 1, then ai = ζ(1 + (ζ − 1)γi) and bi = ζ(1− γi), and thus the GHFHPWA operator reduces

to the HFHPWA operator.
In particular, if w = ( 1

n , 1
n , . . . , 1

n )
T , then the GHFHPWA operator reduces to the generalized hesitant

fuzzy Hamacher power average (GHFHPA) operator:

GHFHPAζ(h1, h2, . . . , hn) =

(
⊕H

n
i=1

(
(1 + T′(hi)) ·H h∧H λ

i
∑n

i=1(1 + T′(hi))

))∧H
1
λ

= ∪γ1∈h1,γ2∈h2,...,γn∈hn



ζ

∏n
i=1 a

(1+T′(hi))
∑n

i=1(1+T′(hi ))

i −∏n
i=1 b

(1+T′(hi))
∑n

i=1(1+T′(hi ))

i

 1
λ



∏n
i=1 a

(1+T′(hi ))
∑n

i=1(1+T′(hi))

i + (ζ2 − 1)∏n
i=1 b

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

 1
λ

+(ζ − 1)

∏n
i=1 a

wi (1+T(hi ))
∑n

i=1 wi(1+T(hi ))

i −∏n
i=1 b

wi (1+T(hi))
∑n

i=1 wi(1+T(hi ))

i

 1
λ





, (21)

where ai = (1 + (ζ − 1)(1 − γi))
λ + (ζ2 − 1)γλ

i , bi = (1 + (ζ − 1)(1 − γi))
λ − γλ

i and T′(hi) =
1
n ∑n

j=1,j 6=i Sup(hi, hj).

Definition 8. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. For λ > 0, a generalized hesitant fuzzy Hamacher
power-weighted geometric (GHFHPWG) operator is a function Hn → H such that

GHFHPWGζ(h1, h2, . . . , hn) =
1
λ
·H

(
⊗H

n
i=1

(
(λ ·H hi)

∧H
wi(1+T(hi))

∑n
i=1 wi(1+T(hi))

))
, (22)

where ζ > 0, T(hi) = ∑n
j=1,j 6=i wjSup(hi, hj) and Sup(hi, hj) is the support for hi from hj.
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Theorem 10. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi (i = 1, 2, . . . , n) such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then the aggregated value by GHFHPWG operator
is also a HFE, and

GHFHPWGζ(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn





∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + (ζ2 − 1)∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ

−

∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ




∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + (ζ2 − 1)∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ

+(ζ − 1)

∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ





, (23)

where ci = (1 + (ζ − 1)γi)
λ + (ζ2 − 1)(1− γi)

λ and di = (1 + (ζ − 1)γi)
λ − (1− γi)

λ.

Proof. Similar to the proof of Theorem 9, Equation (23) can be proved by mathematical induction
on n.

In particular, if w = ( 1
n , 1

n , . . . , 1
n )

T , then the GHFHPWG operator reduces to the generalized
hesitant fuzzy Hamacher power geometric (GHFHPG) operator:

GHFHPAζ(h1, h2, . . . , hn) =
1
λ
·H

(
⊗H

n
i=1

(
(λ ·H hi)

∧H
(1+T′(hi))

∑n
i=1(1+T′(hi))

))

= ∪γ1∈h1,γ2∈h2,...,γn∈hn





∏n
i=1 c

(1+T′(hi))
∑n

i=1(1+T′(hi))

i + (ζ2 − 1)∏n
i=1 d

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

 1
λ

−

∏n
i=1 c

(1+T′(hi))
∑n

i=1(1+T′(hi))

i −∏n
i=1 d

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

 1
λ




∏n
i=1 c

(1+T′(hi))
∑n

i=1(1+T′(hi))

i + (ζ2 − 1)∏n
i=1 d

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

 1
λ

+(ζ − 1)

∏n
i=1 c

(1+T′(hi))
∑n

i=1(1+T′(hi))

i −∏n
i=1 d

(1+T′(hi))
∑n

i=1(1+T′(hi))

i

 1
λ





, (24)

where ci = (1 + (ζ − 1)γi)
λ + (ζ2 − 1)(1 − γi)

λ, di = (1 + (ζ − 1)γi)
λ − (1 − γi)

λ and T′(hi) =
1
n ∑n

j=1,j 6=i Sup(hi, hj).

Remark 4. (1) If ζ = 1, then the GHFHPWG operator reduces to the generalized hesitant fuzzy power-weighted
geometric (GHFPWG) operator [15]:

GHFHPWG1(h1, h2, . . . , hn) = ∪γ1∈h1,γ2∈h2,...,γn∈hn


(

n

∏
i=1

(
γλ

i

) wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

) 1
λ

 . (25)
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and if ζ = 2, then the GHFHPWG operator reduces to the generalized hesitant fuzzy Einstein power-weighted
geometric (GHFEPWG) operator [18]:

GHFHPWG2(h1, h2, . . . , hn)

= ∪γ1∈h1,γ2∈h2,...,γn∈hn





∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + 3 ∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ

−

∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ




∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i + 3 ∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ

+(ζ − 1)

∏n
i=1 c

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i −∏n
i=1 d

wi(1+T(hi))
∑n

i=1 wi(1+T(hi))

i

 1
λ





, (26)

where ci = (1 + γi)
λ + 3(1− γi)

λ, di = (1 + γi)
λ − (1− γi)

λ. (2) If Sup(hi, hj) = k, for all i 6= j, then

GHFHPWGζ(h1, h2, . . . , hn) =
1
λ
·H
(
⊗H

n
i=1 (λ ·H hi)

∧Hwi
)

(27)

and thus, the GHFHPWG operator reduces to the generalized hesitant fuzzy Hamacher weighted geometric
(GHFHWG) operator [17].

(3) If λ = 1, then ci = ζ(1 + (ζ − 1)(1− γi)) and di = ζγi, and so the GHFHPWG operator reduces to
the HFHPWG operator.

Theorem 11. Let hi (i = 1, 2, . . . , n) be a collection of HFEs and w = (w1, w2, . . . , wn)T be the weight vector
of hi such that wi ∈ [0, 1] and ∑n

i=1 wi = 1, then we have
(1) GHFHPWAζ(hc

1, hc
2, . . . , hc

n) = (GHFHPWGζ(h1, h2, . . . , hn))c;
(2) GHFHPWGζ(hc

1, hc
2, . . . , hc

n) = (GHFHPWAζ(h1, h2, . . . , hn))c.

Proof. Similar to the proof of Theorem 8.

3.3. Hesitant Fuzzy Hamacher Power-Ordered Weighted Average/Geometric Operators

Motivated by the idea of the POWA operator [24], POWG operator [25] and Hamacher operations,
we define the hesitant fuzzy Hamacher power-ordered weighted average (HFHPOWA) operator and
hesitant fuzzy Hamacher power-ordered weighted geometric (HFHPOWG) operator as follows.

Definition 9. Let hi (i = 1, 2, . . . , n) be a collection of HFEs. A hesitant fuzzy Hamacher power-ordered
weighted average (HFHPOWA) operator is a function Hn → H such that

HFHPOWAζ(h1, h2, . . . , hn) = ⊕H
n
i=1

(
ui ·H hσ(i)

)
, (28)

where parameter ζ > 0, hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) is a collection
of weights such that

ui = g
(

Ri
TV

)
− g

(
Ri−1

TV

)
, Ri =

i

∑
j=1

Vσ(j), TV =
n

∑
i=1

Vσ(i),

Vσ(i) = 1 + T(hσ(i)), T(hσ(i)) =
n

∑
j=1,j 6=i

Sup(hσ(i), hσ(j)), (29)
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where T(hσ(i)) denotes the support of ith largest HFE by all of the other HFEs, Sup(hσ(i), hσ(j)) indicates the
support of the ith largest HFE for the jth largest HFE, and g : [0, 1]→ [0, 1] is a basic unit-interval monotone
(BUM) function with the following properties: (1) g(0) = 0; (2) g(1) = 1; and (3) g(x) ≥ g(y) if x > y.

Theorem 12. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, then the aggregated value by HFHPOWA operator
is also an HFE, and

HFHPOWAζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)


∏n

i=1

(
1 + (ζ − 1)γσ(i)

)ui −∏n
i=1

(
1− γσ(i)

)ui

∏n
i=1

(
1 + (ζ − 1)γσ(i)

)ui
+ (ζ − 1)∏n

i=1

(
1− γσ(i)

)ui

 , (30)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29).

Remark 5. (1) If Sup(hi, hj) = k for all i 6= j and g(x) = x, then ui =
1
n , i = 1, 2, . . . , n, and so

HFHPOWAζ(h1, h2, . . . , hn) = ⊕H
n
i=1

(
1
n
·H hi

)
which indicates that the HFHPOWA operator reduces to the hesitant fuzzy Hamacher average (HFHA) operator
[17].

(2) If ζ = 1, then the HFHPOWA operator reduces to the hesitant fuzzy power-ordered weighted average
(HFPOWA) operator [15]:

HFHPOWA1(h1, h2, . . . , hn) = ⊕n
i=1

(
uihσ(i)

)
= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)

{
1−

n

∏
i=1

(
1− γσ(i)

)ui

}
, (31)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29). If ζ = 2, then the HFHPOWA
operator (30) reduces to the hesitant fuzzy Einstein power-ordered weighted average (HFEPOWA) operator [18]:

HFHPOWA2(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)


∏n

i=1

(
1 + γσ(i)

)ui −∏n
i=1

(
1− γσ(i)

)ui

∏n
i=1

(
1 + γσ(i)

)ui
+ ∏n

i=1

(
1− γσ(i)

)ui

 , (32)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29).

Similar to Theorems 3 and 4, we have the properties of HFHPOWA operator as follows.

Theorem 13. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights which satisfies the condition (29), then

HFHPOWAζ(h1, h2, . . . , hn) ≤ HFPOWA(h1, h2, . . . , hn).

Theorem 14. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights which satisfies the condition (29), then we have the followings:

(1) Boundedness: If h− = min{γi|γi ∈ hi} and h+ = max{γi|γi ∈ hi}, then

h− ≤ HFHPOWAζ(h1, h2, . . . , hn) ≤ h+.
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(2) Monotonicity: Let h′i (i = 1, 2, . . . , n) be a collection of HFEs, if for any hσ(i) and h′
σ(i) (i = 1, 2, . . . , n),

γσ(i) ≤ γ′
σ(i) , then

HFHPOWAζ(h1, h2, . . . , hn) ≤ HFHPWAζ(h′1, h′2, . . . , h′n).

Definition 10. Let hi (i = 1, 2, . . . , n) be a collection of HFEs. A hesitant fuzzy Hamacher power-ordered
weighted geometric (HFHPOWG) operator is a function Hn → H such that

HFHPOWGζ(h1, h2, . . . , hn) = ⊗H
n
i=1

(
h∧Hui

σ(i)

)
, (33)

where parameter ζ > 0, hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) is a collection
of weights satisfying the condition (29).

Theorem 15. If hi (i = 1, 2, . . . , n) is a collection of HFEs, then the aggregated value by HFHPOWG operator
is also an HFE, and

HFHPOWGζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)


ζ ∏n

i=1 γ
ui
σ(i)

∏n
i=1

(
1 + (ζ − 1)(1− γσ(i))

)ui
+ (ζ − 1)∏n

i=1 γ
ui
σ(i)

 , (34)

where hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n) and ui (i = 1, 2, . . . , n) is the collection of the weights
satisfying the condition (29).

Remark 6. (1) If Sup(hi, hj) = k, for all i 6= j, and g(x) = x, then

HFHPOWGζ(h1, h2, . . . , hn) = ⊗H
n
i=1

(
h∧H

1
n

i

)
which indicates that the HFHPOWG operator reduces to the hesitant fuzzy Hamacher geometric (HFHG)
operator [17].

(2) If ζ = 1, then the HFHPOWG operator (34) reduces to the hesitant fuzzy power-ordered weighted
geometric (HFPOWG) operator [15]:

HFHPOWG1(h1, h2, . . . , hn) = ⊗n
i=1

(
hσ(i)

)ui

= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)

{
n

∏
i=1

γ
ui
σ(i)

}
, (35)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29). If ζ = 2, then the
HFHPOWG operator (34) reduces to the hesitant fuzzy Einstein power-ordered weighted geometric (HFEPOWG)
operator [18]:

HFHPOWG2(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)


2 ∏n

i=1 γ
ui
σ(i)

∏n
i=1

(
2− γσ(i)

)ui
+ ∏n

i=1 γ
ui
σ(i)

 , (36)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29).

Similar to Theorems 6–8, we have the properties of HFHPOWG operator as follows.



Mathematics 2019, 7, 594 24 of 33

Theorem 16. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights which satisfies the condition (29), then

HFHPOWGζ(h1, h2, . . . , hn) ≥ HFPOWG(h1, h2, . . . , hn).

Theorem 17. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights which satisfies the condition (29), then we have the followings:

(1) Boundedness: If h− = min{γi|γi ∈ hi} and h+ = max{γi|γi ∈ hi}, then

h− ≤ HFHPOWGζ(h1, h2, . . . , hn) ≤ h+.

(2) Monotonicity: Let h′i (i = 1, 2, . . . , n) be a collection of HFEs, if for any hσ(i) and h′
σ(i) (i = 1, 2, . . . , n),

γσ(i) ≤ γ′
σ(i) , then

HFHPOWGζ(h1, h2, . . . , hn) ≤ HFHPOWGζ(h′1, h′2, . . . , h′n).

Theorem 18. If hi (i = 1, 2, . . . , n) is a collection of HFEs and ui (i = 1, 2, . . . , n) is the collection of the
weights satisfying the condition (29), then we have

(1) HFHPOWAζ(hc
1, hc

2, . . . , hc
n) = (HFHPOWGζ(h1, h2, . . . , hn))c;

(2) HFHPOWGζ(hc
1, hc

2, . . . , hc
n) = (HFHPOWAζ(h1, h2, . . . , hn))c.

In what follows, we define the generalized hesitant fuzzy Hamacher power-ordered weighted
average (GHFHPOWA) operator and generalized hesitant fuzzy Hamacher power-ordered weighted
geometric (GHFHPOWG) operator.

Definition 11. Let hi (i = 1, 2, . . . , n) be a collection of HFEs. For λ > 0, a generalized hesitant fuzzy
Hamacher power-ordered weighted average (GHFHPOWA) operator is a function Hn → H such that

GHFHPOWAζ(h1, h2, . . . , hn) =
(
⊕H

n
i=1

(
ui ·H h∧Hλ

σ(i)

))∧H
1
λ , (37)

where ζ > 0, hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) is a collection of weights
satisfying the condition (29).

Theorem 19. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, then the aggregated value by GHFHPOWA
operator is also an HFE, and

GHFHPOWAζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)


ζ
(
∏n

i=1 aui
i −∏n

i=1 bui
i
) 1

λ (
∏n

i=1 aui
i + (ζ2 − 1)∏n

i=1 bui
i
) 1

λ

+(ζ − 1)
(
∏n

i=1 aui
i −∏n

i=1 bui
i
) 1

λ




, (38)

where ai = (1 + (ζ − 1)(1− γσ(i))
λ + (ζ2 − 1)γλ

σ(i), bi = (1 + (ζ − 1)(1− γσ(i)))
λ − γλ

σ(i) and ui (i =
1, 2, . . . , n) is a collection of weights satisfying the condition (29).
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Remark 7. (1) If λ = 1, then ai = ζ(1 + (ζ − 1)γσ(i)) and bi = ζ(1− γσ(i)), and thus the GHFHPOWA
operator reduces to the HFHPOWA operator. In fact, by Equation (38), we have

GHFHPOWAζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)


ζ
(
∏n

i=1 aui
i −∏n

i=1 bui
i
) 1

λ (
∏n

i=1 aui
i + (ζ2 − 1)∏n

i=1 bui
i
) 1

λ

+(ζ − 1)
(
∏n

i=1 aui
i −∏n

i=1 bui
i
) 1

λ




= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)

{
∏n

i=1 aui
i −∏n

i=1 bui
i

∏n
i=1 aui

i + (ζ − 1)∏n
i=1 bui

i

}

= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)


∏n

i=1

(
1 + (ζ − 1)γσ(i)

)ui −∏n
i=1

(
1− γσ(i)

)ui

∏n
i=1

(
1 + (ζ − 1)γσ(i)

)ui
+ (ζ − 1)∏n

i=1

(
1− γσ(i)

)ui


= HFHPOWAζ(h1, h2, . . . , hn).

(2) If ζ = 1, then the GHFHPOWA operator reduces to the generalized hesitant fuzzy power-ordered
weighted average (GHFPOWA) operator [15]:

GHFHPOWA1(h1, h2, . . . , hn) = ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)


(

1−
n

∏
i=1

(
1− γλ

σ(i)

)ui

) 1
λ

 , (39)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29), and if ζ = 2, then the
GHFHPOWA operator reduces to the generalized hesitant fuzzy Einstein power-ordered weighted average
(GHFEPOWA) operator [18]:

GHFHPOWA2(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)

 2
(
∏n

i=1 aui
i −∏n

i=1 bui
i
) 1

λ(
∏n

i=1 aui
i + 3 ∏n

i=1 bui
i
) 1

λ +
(
∏n

i=1 aui
i −∏n

i=1 bui
i
) 1

λ

 , (40)

where ai = (2− γσ(i))
λ + 3γλ

σ(i), bi = (2− γσ(i))
λ − γλ

σ(i) and ui (i = 1, 2, . . . , n) is a collection of weights
satisfying the condition (29).

Definition 12. Let hi (i = 1, 2, . . . , n) be a collection of HFEs. For λ > 0, a generalized hesitant fuzzy
Hamacher power-ordered weighted geometric (GHFHPOWG) operator is a function Hn → H such that

GHFHPOWGζ(h1, h2, . . . , hn) =
1
λ
·H
(
⊗H

n
i=1

((
λ ·H hσ(i)

)∧Hui
))

, (41)

where ζ > 0, hσ(i) is the ith largest HFE of hj (j = 1, 2, . . . , n), and ui (i = 1, 2, . . . , n) is a collection of weights
satisfying the condition (29).
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Theorem 20. Let hi (i = 1, 2, . . . , n) be a collection of HFEs, then the aggregated value by GHFHPOWG
operator is also an HFE, and

GHFHPOWGζ(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)



 (
∏n

i=1 cui
i + (ζ2 − 1)∏n

i=1 dui
i
) 1

λ

−
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i=1 cui
i −∏n

i=1 dui
i
) 1

λ


 (
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i
) 1

λ

+(ζ − 1)
(
∏n

i=1 cui
i −∏n

i=1 dui
i
) 1

λ




, (42)

where ci = (1 + (ζ − 1)γσ(i))
λ + (ζ2 − 1)(1− γσ(i))

λ, di = (1 + (ζ − 1)γσ(i))
λ − (1− γσ(i))

λ and ui
(i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29).

Remark 8. (1) If λ = 1, then ci = ζ(1+ (ζ− 1)(1− γσ(i))) and di = ζγσ(i), and the GHFHPOWG operator
reduces to the HFHPOWG operator.

(2) If ζ = 1, then the GHFHPOWG operator reduces to the generalized hesitant fuzzy power-ordered
weighted geometric (GHFPOWG) operator [15]:

GHFHPOWG1(h1, h2, . . . , hn) = ∪γσ(1)∈hσ(1),γσ(2)∈hσ(2),...,γσ(n)∈hσ(n)


(

n

∏
i=1

(
γλ

σ(i)

)ui

) 1
λ

 , (43)

where ui (i = 1, 2, . . . , n) is a collection of weights satisfying the condition (29), and if ζ = 2, then the
GHFHPOWG operator reduces to the generalized hesitant fuzzy Einstein power-ordered weighted geometric
(GHFEPOWG) operator [18]:

GHFHPOWG2(h1, h2, . . . , hn)

= ∪γσ(1)∈hσ(1) ,γσ(2)∈hσ(2) ,...,γσ(n)∈hσ(n)


(
∏n

i=1 cui
i + 3 ∏n

i=1 dui
i
) 1

λ −
(
∏n

i=1 cui
i −∏n

i=1 dui
i
) 1

λ(
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i + 3 ∏n

i=1 dui
i
) 1

λ +
(
∏n
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i
) 1

λ

 , (44)

where ci = (1 + γσ(i))
λ + 3(1− γσ(i))

λ, di = (1 + γσ(i))
λ − (1− γσ(i))

λ, and ui (i = 1, 2, . . . , n) is a
collection of weights satisfying the condition (29).

4. Method for Multiple-Attribute Decision-Making Based on Hesitant Fuzzy Hamacher
Power-Aggregation Operators

In this section, we use hesitant fuzzy Hamacher power-aggregation operators to develop an
approach to MADM with hesitant fuzzy information.

Let X = {x1, x2, . . . , xn} be a set of n alternatives, and G = {g1, g2, . . . , gm} be a set of m attributes,
whose weight vector is w = (w1, w2, . . . , wm)T , satisfying wi > 0 (i = 1, 2, . . . , m) and ∑m

i=1 wi = 1,
where wi denotes the importance degree of the attribute gi. Suppose the group of decision-makers
provides the evaluating value that the alternative xj (i = 1, 2, . . . , n) satisfies the attribute gi (j =

1, 2, . . . , m) represented by the HFEs hij (i = 1, 2, . . . , m; j = 1, 2, . . . , n). All these HFEs are contained in
the hesitant fuzzy decision matrix D =

(
hij
)

m×n.

The following steps can be used to solve the MADM problem under the hesitant fuzzy
environment, and obtain an optimal alternative:

Step 1: Obtain the normalized hesitant fuzzy decision matrix. In general, the attribute set G
can be divided two subsets: G1 and G2, where G1 and G2 are the set of benefit attributes and cost
attributes, respectively. If all the attributes are of the same type, then the evaluation values do not
need normalization, whereas if there are benefit attributes and cost attributes in MADM, in such cases,
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we may transform the evaluation values of cost type into the evaluation values of the benefit type by
the following normalization formula:

rij =

{
hij, j ∈ G1

hc
ij, j ∈ G2,

(45)

where hc
ij = ∪γij∈h̄ij

{1− γij} is the complement of hij. Then we obtain the normalized hesitant fuzzy

decision matrix H =
(
rij
)

m×n.
Step 2: Calculate the supports

Sup(rij, rkj) = 1− d(rij, rkj), j = 1, 2, . . . , n, i, k = 1, 2, . . . , m, (46)

which satisfy conditions (1)–(3) in Definition 5. Here we assume that d(rij, rkj) is the hesitant normalized
Hamming distance between rij and rkj given in Equation (4).

Step 3: Calculate the weights of evaluating values. Use the weights wi (i = 1, 2, . . . , m) of attributes
gi (i = 1, 2, . . . , m) to calculate the weighted support T(rij) of the HFE rij by the other HFEs rkj
(k = 1, 2, . . . , m, and k 6= i):

T(rij) =
m

∑
k=1,k 6=i

wkSup(rij, rkj) (47)

and then use the weights wi (i = 1, 2, . . . , m) of attributes gi (i = 1, 2, . . . , m) to calculate the weights ρij
(i = 1, 2, . . . , m) that are associated with HFEs rij (i = 1, 2, . . . , m):

ρij =
wi(1 + T(rij))

∑m
i=1 wi(1 + T(rij))

, i = 1, 2, . . . , m, (48)

where ρij ≥ 0, i = 1, 2, . . . , m, and ∑m
i=1 ρij = 1.

Step 4: Compute overall assessments of alternatives. Use the HFHPWA operator (Equation (6)):

rj = HFHPWAζ(h1, h2, . . . , hn)

= ∪γ1j∈r1j ,γ2j∈r2j ,...,γmj∈rmj

{
∏m

i=1
(
1 + (ζ − 1)γij

)ρij −∏m
i=1
(
1− γij

)ρij

∏m
i=1
(
1 + (ζ − 1)γij

)ρij + (ζ − 1)∏m
i=1
(
1− γij

)ρij

}
, (49)

or the HFHPWG operator (Equation (11)):

rj = HFHPWGζ(h1, h2, . . . , hn)

= ∪γ1j∈r1j ,γ2j∈r2j ,...,γmj∈rmj

{
ζ ∏m

i=1
(
γij
)ρij

∏m
i=1
(
1 + (ζ − 1)(1− γij)

)ρij + (ζ − 1)∏m
i=1
(
γij
)ρij

}
. (50)

to aggregate all the evaluating values r̄ij (1 = 1, 2, . . . , m) of the jth column and get the overall rating
value r̄j corresponding to the alternative xj (j = 1, 2, . . . , n).

Step 5: Rank the order of all alternatives. Use the method in Definition 3 to rank the overall
rating values rj (j = 1, 2, . . . , n), rank all the alternatives xj (j = 1, 2, . . . , n) in accordance with rj
(j = 1, 2, . . . , n) in descending order, and finally select the most desirable alternative(s) with the largest
overall evaluation value.

Step 6: End.

Remark 9. As previously discussed, a family of hesitant fuzzy Hamacher power-aggregation operators,
including the HFHPWA, HFHPWG, GHFHPWA, GHFHPWG, HFHPOWA, HFHPOWG, GHFHPOWA,
and GHFHPOWG operators, is proposed for aggregating hesitant fuzzy information. This family is composed
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of two kinds: the HFHPWA operator and HFHPWG operator, and other aggregation operators are developed
based on them. Therefore, in Step 3, the HFHPWA and HFHPWG operators are chosen to aggregate hesitant
fuzzy information.

Example 4. There is a five-member board of directors of a company. They plan to invest their money in a suitable
project with a lot of potential over the next five years [17]. Assume that the board of directors will evaluate the four
possible projects X = {x1, x2, x3, x4}. To evaluate and rank these projects, four attributes G = {g1, g2, g3, g4}
are suggested by the Balances Score Card Methodology, i.e., (1) g1 is the financial perspective; (2) g2 is the
customer satisfaction; (3) g3 is the internal business process perspective; and (4) g4 is the learning and growth
perspective. Please note that these attributes are all benefit attributes and the corresponding weight vector is
w = (0.2, 0.3, 0.15, 0.35)T . The five members of the board of directors provide the evaluating values of the
projects xj (j = 1, 2, 3, 4) with respect to attributes gi (i = 1, 2, 3, 4) and construct their hesitant fuzzy decision
matrix D = (hij)4×4 (see Table 1), where hij ∈ H is a HFE that denotes all of the possible values for alternative
xj under the attribute gi.

Table 1. Hesitant fuzzy decision matrix D.

x1 x2 x3 x4

g1 {0.2, 0.4, 0.7} {0.2, 0.4, 0.7, 0.9} {0.3, 0.5, 0.6, 0.7} {0.3, 0.5, 0.6}
g2 {0.2, 0.6, 0.8} {0.1, 0.2, 0.4, 0.5} {0.2, 0.4, 0.5, 0.6} {0.2, 0.4}
g3 {0.2, 0.3, 0.6, 0.7, 0.9} {0.3, 0.4, 0.6, 0.9} {0.3, 0.5, 0.7, 0.8} {0.5, 0.6, 0.7}
g4 {0.3, 0.4, 0.5, 0.7, 0.8} {0.5, 0.6, 0.8, 0.9} {0.2, 0.5, 0.6, 0.7} {0.8, 0.9}

Then we use the above proposed approach to choose the optimal project.
Step 1: Since these attributes are all benefit attributes, it is not necessary to normalize the decision matrix D.
Step 2: Use Equation(46) to calculate the supports Sup(hij, hkj) (j = 1, 2, 3, 4, i, k = 1, 2, 3, 4, i 6= k).

For simplicity, we denote (Sup(hij, hkj))1×4 by Supik, which refers to the supports between the ith and kth
columns of D:

Sup12 = Sup21 = (0.900, 0.750, 0.900, 0.800), Sup13 = Sup31 = (0.800, 0.950, 0.950, 0.867),

Sup14 = Sup41 = (0.800, 0.850, 0.975, 0.633), Sup23 = Sup32 = (0.860, 0.750, 0.850, 0.667),

Sup24 = Sup42 = (0.860, 0.600, 0.925, 0.495), Sup34 = Sup43 = (0.920, 0.850, 0.925, 0.767).

Step 3: Use Equation (47) to calculate the weighted support T(hij) of HFE hij by the other HFEs hkj
(k = 1, 2, 3, 4, k 6= i), which are contained in the matrix T = (T(hij))4×4:

T =


0.6700 0.6650 0.7538 0.5916
0.6100 0.4725 0.6313 0.4333
0.7400 0.7125 0.7688 0.6420
0.5560 0.4775 0.6113 0.3902


and use Equation (48) to calculate the weights ρij of HFEs hij (i = 1, 2, 3, 4), which are contained in the matrix
V = (ρij)4×4:

V =


0.2058 0.2150 0.2101 0.2149
0.2977 0.2852 0.2932 0.2903
0.1609 0.1659 0.1589 0.1663
0.3356 0.3339 0.3378 0.3285

 .

Step 4: Let ζ = 0.5 and use the HFHPWA operator (Equation (49)) to aggregate all of the evaluating
values hij (i = 1, 2, 3, 4) in the jth column of D and then, derive the overall rating value hj (j = 1, 2, 3, 4) of the
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alternative xj (j = 1, 2, 3, 4). The overall rating values hj are not listed here because of limited space. Using
Definition 3, we calculate the score functions s(hj) of hj (j = 1, 2, 3, 4) as follows:

s(h1) = 0.5741, s(h2) = 0.6195, s(h3) = 0.5256, s(h4) = 0.6646.

Then we rank the hj (j = 1, 2, 3, 4) in descending order of s(hj):

h4 > h2 > h1 > h3.

Step 5: Rank all the alternatives xj (j = 1, 2, 3, 4) as follows:

x4 � x2 � x1 � x3.

Thus, the best alternative is x4.

Furthermore, let ζ = 0.1, 0.3, 0.5, 3, 5, 7, respectively, which represents different preferences for
decision-makers on decision information. We can obtain the corresponding score values and rankings of
the alternatives (listed in Table 2).

Table 2. Score values obtained with the HFHPWA operator and rankings of alternatives.

Aggregation Operator Score Values Rankings

HFHPWA0.1 s(h1) = 0.5957, s(h2) = 0.6501, s(h3) = 0.5318, s(h4) = 0.7000 x4 � x2 � x1 � x3
HFHPWA0.3 s(h1) = 0.5826, s(h2) = 0.6314, s(h3) = 0.5298, s(h4) = 0.6780 x4 � x2 � x1 � x3
HFHPWA0.5 s(h1) = 0.5741, s(h2) = 0.6195, s(h3) = 0.5256, s(h4) = 0.6646 x4 � x2 � x1 � x3
HFHPWA3 s(h1) = 0.5419, s(h2) = 0.5752, s(h3) = 0.5063, s(h4) = 0.6186 x4 � x2 � x1 � x3
HFHPWA5 s(h1) = 0.5350, s(h2) = 0.5653, s(h3) = 0.5017, s(h4) = 0.6095 x4 � x2 � x1 � x3
HFHPWA7 s(h1) = 0.5313, s(h2) = 0.5598, s(h3) = 0.4993, s(h4) = 0.6047 x4 � x2 � x1 � x3

To explain how the different parameter value ζ plays a role in the aggregation operator, we use the different
values ζ, given by decision-makers. As shown in Table 2, the score values obtained by the HPHPWA operator
become smaller as the parameter value ζ increases. Thus, decision-makers can choose the parameter value ζ

according to their preferences.

Table 3. Score values obtained with the HFHPWG operator and rankings of alternatives.

Aggregation Operator Score Values Rankings

HFHPWG0.1 s(h1) = 0.4397, s(h2) = 0.4118, s(h3) = 0.4187, s(h4) = 0.4673 x4 � x1 � x3 � x2
HFHPWG0.3 s(h1) = 0.4520, s(h2) = 0.4321, s(h3) = 0.4373, s(h4) = 0.4824 x4 � x1 � x3 � x2
HFHPWG0.5 s(h1) = 0.4603, s(h2) = 0.4444, s(h3) = 0.4483, s(h4) = 0.4930 x4 � x1 � x3 � x2
HFHPWG3 s(h1) = 0.4935, s(h2) = 0.4936, s(h3) = 0.4904, s(h4) = 0.5410 x4 � x2 � x1 � x3
HFHPWG5 s(h1) = 0.5009, s(h2) = 0.5027, s(h3) = 0.5005, s(h4) = 0.5536 x4 � x2 � x1 � x3
HFHPWG7 s(h1) = 0.5049, s(h2) = 0.5126, s(h3) = 0.5061, s(h4) = 0.5608 x4 � x2 � x3 � x1

If the HFHPWA operator is replaced by HFHPWG operator in the above Step 4, Table 3 lists the score
values of overall rating values and rankings of alternatives. The score values obtained by the HFHPWG operator
become larger as parameter ζ increases. Comparing Table 2 with Table 3, we can observe that the score value
obtained by the HFHPWA operator greater than the score value obtained by the HFHPWG operator for the same
parameter value ζ and the same aggregation value. For HFHPWA operators, the parameter value does not affect
the final rankings of the alternatives, but for the HFHPWG operators it is shown that the choice of parameter
value has a greater impact on the score values and thus the rankings of the alternatives. In the above analysis,
we see that while the best alternative obtained by the HFHPWA operator are the same as that obtained by the
HFHPWG operator, the rankings of the alternatives differs between the HFHPWA and HFHPWG operators.
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To compare our approach with some other approaches, we apply Xia and Xu’s approach [10],
Zhu et al.’s approach [13], and Tan et al.’s approach [17] to above example. The results of the rankings
of the alternatives are shown in Table 4 below.

Table 4. Rankings of alternatives by other approaches.

Approach Use Tool Rankings

Xia and Xu [10] HFWA operator x4 � x2 � x1 � x3
HFWG operator x4 � x1 � x3 � x2

Zhu et al. [13] Hesitant fuzzy TOPSIS x4 � x2 � x1 � x3

Tan et al. [17] HFHWA operator x4 � x2 � x1 � x3
HFHWG operator x4 � x3 � x1 � x2 (ζ ∈ (0, 0.36])

x4 � x1 � x3 � x2 (ζ ∈ (0.36, 1.39])
x4 � x1 � x2 � x3 (ζ ∈ (1.39, 3.50])
x4 � x2 � x1 � x3 (ζ ∈ (3.50, 10.0])

From this analysis, we can see that the best alternative is the same for the both HFHPWA and
HFHPWG operators, or both HFWA and HFWG operators, or both HFHWA and HFHWG operators,
but the ranking of alternatives is different between the HFHPWA and HFHPWG operators, or HFWA
and HFWG operators, or HFHWA and HFHWG operators. It reflects that the final results may be
different by different types of hesitant fuzzy aggregation operators. Also, the ranking of alternatives
obtained by the hesitant fuzzy TOPSIS method is the same those by the HFHPWA, HFWA, and HFHWA
operators. This result shows the validity of the proposed approach in this paper.

Compared with the existing hesitant fuzzy MADM approaches, our proposed approach has
two advantages: First, decision-makers often have an optimistic or pessimistic attitude in the face
of decision information. In this case, optimistic attitude often leads to a preference for risk-seeking,
and pessimistic one results in a preference for avoiding risk. The parameter ζ takes into account the
decision-maker’s subjective attitude to decision-making problem and are therefore useful in obtaining
a better decision result. Second, different parameter values clearly indicate changes in the ranking of
alternatives. Compared to a fixed evaluated result obtained by existing aggregation operators such as
the HFWA and HFWG operators, our evaluated result can better reflect the variety.

5. Conclusions

Hesitant fuzzy information aggregation is one of key issues in the hesitant fuzzy MADM,
an important field of research in decision science in an uncertain environment as well as HFS theory.
Based on Hamacher operations of HFEs, in this paper, we have developed a family of hesitant
fuzzy Hamacher power-aggregation operators, including the HFHWPA, HFHPWG, GHFHPWA,
GHFHPWG, HFHPOWA, HFHPOWG, GHFHPOWA, and GHFHPOWG operators. Some basic
properties of the proposed aggregation operators, such as boundedness and monotonicity, and the
relationships between them have been investigated and discussed. We compared the proposed
aggregation operators with the hesitant fuzzy aggregation operators developed by Yu et al. [18] and
Zhang [15] and represented their corresponding relations. These proposed hesitant fuzzy Hamacher
power-aggregation operators are integrated treatment of operators proposed by Yu et al. [18] and
Zhang [15], and provide a complement to the existing work on HFSs. An approach of the hesitant
fuzzy MADM based on the HFHPWA and HFHPWG operators has been developed and an example
of money investment selection has been provided to describe the hesitant fuzzy MADM process.
Some advantages of our proposed approach are shown by comparison with those previously proposed
by Xia and Xu [10], Zhu et al. [13] and Tan et al. [17].

In future work, we will present a series of hesitant fuzzy power-aggregation operators using
Frank t-norm and t-conorm and apply them to develop approaches for multiple-attribute group
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decision-making. Furthermore, we will discuss the extension of power-aggregation operators to
probabilistic hesitant fuzzy environment.
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