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Abstract: This study considers an asset-liability optimization model based on constraint robustness
with the chance constraint of capital to risk assets ratio in a safety-first framework under the condition
that only moment information is known. This paper aims to extend the proposed single-objective
capital to risk assets ratio chance constrained optimization model in the literature by considering the
multi-objective constraint robustness approach in a modified safety-first framework. To solve the
optimization model, we develop a deterministic convex counterpart of the capital to risk assets ratio
robust probability constraint. In a consolidated risk measure of variance and safety-first framework,
the proposed distributionally-robust capital to risk asset ratio chance-constrained optimization model
guarantees banks will meet the capital requirements of Basel III with a likelihood of 95% irrespective
of changes in the future market value of assets. Even under the worst-case scenario, i.e., when loans
default, our proposed capital to risk asset ratio chance-constrained optimization model meets the
minimum total requirements of Basel III. The practical implications of the findings of this study are
that the model, when applied, will provide safety against extreme losses while maximizing returns
and minimizing risk, which is prudent in this post-financial crisis regime.

Keywords: robust optimization; capital to risk asset ratio; chance constraint; safety-first principle;
Basel III; capital requirements

1. Introduction

Undoubtedly, after the Global Financial Crisis (GFC) of 2007–2008, the spotlight on capital
requirement heightened. The Global Financial Crisis was caused by “sub-prime” housing loans in
the form of mortgage-backed securities. Numerous determinants for the Global Financial Crisis
have been proposed, with various weights assigned by researchers [1]. The Financial Crisis Inquiry
Commission stated that the Global Financial Crisis was avertable and its root cause was “widespread
failures in financial regulation and supervision...”. A persistent deficit of bank capital and a 25%
dip in private investment on average comprise some of the aftermaths of GFC [2]. In tackling the
problems and loopholes in financial regulations unveiled by the GFC, Basel III was proposed. Its
main objective is to bolster bank capital requirement by expanding bank liquidity and lessening bank
leverage. The changes in Basel III include a meaningful surge in the Capital to Risk (weighted) Assets
Ratio (CRAR) [3].

The utilization of CRAR safeguards depositors and improves the efficiency and stability of
financial frameworks. In [4], a CRAR chance-constrained optimization model was proposed to
guarantee that a bank can cope with the capital requirements of Basel III with a probability of 95%,
irrespective of the changes in the future market value of assets. The proposed model considered loans
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having truncated Gaussian distributed returns, which allowed reformulating the chance constraint
related to capital requirements in a second-order cone condition. For the purpose of completeness, the
CRAR chance constraint is re-introduced:

P
{

y0(x) + y(x)Tζ ≤ 0
}
≥ α, (1)

where y0(x) = TL−DR− Rr− LP−M ∑u+v
k=u+1(1 + Rk)xk and y(x) = M ∑u

k=1(λvk − 1)xk. TL is the
bank’s total liability, and M is the bank’s total asset amount. For the purpose of this study, Tier 1 capital
(core capital) consists of shareholders’ equity and disclosed reserves, DR. Tier 2 (supplementary
capital) consists of revaluation reserves, Rr, and general loan loss provisions, LP. Denote R =

[R1, R2, . . . , Ru, Ru+1, . . . , Ru+v]T as the vector of the annual interest rate of loans and the treasury
bill, fixed assets, and non-interest earning assets (riskless). Ω = [ζT , ξT ]T is the vector of assets with
ζ = [ζ1, ζ2, . . . , ζu]T and ξ = [ξ1, ξ2, . . . , ξv]T corresponding to loans and riskless assets (treasury bill,
fixed assets, and non-interest earning assets), respectively. ζ constitutes uncertain parameters that can
be estimated, and ξ is a deterministic vector of [1 + Ru+1, 1 + Ru+2, . . . , 1 + Ru+v]T . The Basel III total
capital requirement ratio is denoted as λ; vk is the kth asset’s weight factor; and α is the safety factor.
Denote x = [x1, x2, . . . , xu, xu+1, . . . , xu+v]T as the vector of asset allocation or investment proportion,
which is the decision variable.

The work in [4] assumed that the full and accurate probability distribution of the random
vector ζ is known, given estimations from historical data and information from the literature.
However, one might have only partial information about the probability distribution: its moment
information. Therefore, replacing an unknown distribution with a particular distribution might lead to
an over-optimistic solution, resulting in an unsatisfactory chance constraint under the true or actual
distribution of random vector ζ. The work in [5] stated that a more difficult challenge that arises is the
need to commit to a particular distribution of random vector ζ given only restricted information about
the stochastic parameter. To avoid the difficulty of selecting a proper distribution and uncertainty
surrounding it, the work in [6] explored the distributionally-robust optimization approach. In this
approach, after defining a set P of possible probability distributions that are assumed to include the
true probability distribution D of random vector ζ, the optimization problem is reconstructed with
respect to the worst case expected function over the selection of the probability distribution in this set.
Uncertainty in parameter ζ is described through uncertainty sets that contain many possible values
realized for random vector ζ. When the uncertainty set is characterized by statistical estimates of the
mean and covariance, the work in [7] provided a sufficient condition to guarantee the satisfaction of
the constraint with distribution uncertainty at a specified confidence level.

A natural way to tackle a chance constraint against parameter uncertainty is to use the constraint
robustness approach. In particular, the distributionally-robust CRAR chance constraint can be
expressed as:

inf
P∈P

P{y0(x) + y(x)Tζ ≤ 0} ≥ α, (2)

where P denotes the set of all probability distributions that are consistent with the first and second
moments of the probability distribution of the random vector, ζ. Whenever x satisfies (2) and D ∈ P is
the true distribution, x satisfies the chance constraint (1) under true probability distribution D. The
work in [8] revealed that contrary to the stochastic programming approach, the distributionally robust
chance constraint reflects investors’ risk and aversion towards exposure to uncertainty about the
probability distribution of the outcomes via consideration of the worst probability distribution within
P . Thus, this study aims to close the research gap by employing the distributionally-robust approach
as a way to avoid the difficulty of selecting a proper distribution and uncertainty surrounding the
random vector in the framework of meeting capital requirements.

Empirical evidence indicates that the failures of several banks during the GFC kindled concern
about maintaining the excessive risk-taking behaviour of banks. Thus, employing variance-Roy’s
safety-first risk measure as a way of minimizing risk while providing a safety net against extreme
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losses is reasonable and worth investigating. Therefore, we employed the modified and improved
Roy’s safety-first principle investigated by [9]. It is important to note that appropriately modelling risk
and meeting capital requirements among other objectives are important for financial stability and that
an economy with an efficient financial market structure develops faster.

This paper aims to extend the proposed single-objective CRAR chance constrained optimization
model in [4] by considering the multi-objective constraint robustness approach in a modified safety-first
framework. This paper also considers credit risk and the expected value of the portfolio. In solving
the model, Section 3 introduces steps in constructing a deterministic convex counterpart of robust the
probability constraint (2).

In summary, this paper considers a multi-objective distributionally-robust chance-constrained
model for capital adequacy. A deterministic equivalent of the robust chance constraint is developed,
and computational results are provided to suggest that the model is effective at generating
capital allocation decisions even under the worst case realizations (i.e., default) of the debt
instruments considered.

The structure of this study is organized as follows: in the next sections, literature review on
optimization under uncertainty is discussed, and problem definition and assumption are presented.
Section 4 provides the model formulation and approach, and the next section presents the development
of the model. Numerical examples and computational results of our method are shown in Section 6.
The last section concludes the paper.

2. Literature Review: Optimization under Uncertainty

Dependent on objectives, constraints, and decision variables, the literature on deterministic
programming models categorizes problems as linear programming [10], non-linear programming [11],
and integer programming [12], among others. However, real-life data are usually not certain, and some
methods have been proposed for treating such parameter uncertainty. One conventional approach is
sensitivity analysis [13], which deals with uncertainty after finding the optimal solution.

Other frameworks that explicitly incorporate uncertainty into the computation of the optimal
solution are stochastic programming, dynamic programming, and robust optimization [14]. Although
the above-mentioned methods overlap, they have unfolded independently of each other. Stochastic
programming incorporates stochastic components into the programming framework. The method
represents uncertain data by scenarios via for example, Monte Carlo sampling, and simple average
approximation. Dynamic programming deals with stochastic uncertain systems in a multi-stage
framework. It is a technique more widely utilized in derivative pricing as it tackles problems with
uncertain coefficients over multiple horizons. In recent times, robust optimization method is a widely
acceptable approach in tackling uncertainty. Robust optimization models uncertainty by using a certain
membership (uncertainty sets that are based on statistical estimates and probabilistic guarantees on
the solution) and optimizes the worst possible case of the problem. When the uncertain parameters are
known within certain bounds, robust optimization is best suited [14].

Let us consider a general stochastic programming problem:

maximize f (x) = maximize E[F(x, ζ)], (3)

where the expectation is taken over ζ. Here, the objective function F(x, ζ) is dependent on decision
variable x and uncertain parameter ζ. The objective function is well defined, as it is optimized on the
average. An important question often asked is what if the uncertainty resides in the constraints [15].
One approach is to formulate such problems similarly by incorporating penalties for constraint
violations [9]. An alternative approach also employed in this study is to require that the constraints are
satisfied for all possible values of the uncertain parameters with a high probability. Contemporary work
in robust optimization has resulted in defining and specifying uncertainty sets to guarantee that chance
constraints are satisfied with a targeted probability, thus providing a connection between stochastic
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programming and robust optimization. For the purpose of this study, the theory of chance-constrained
models is explored further.

The chance-constrained stochastic optimization method is one of the major approaches to solving
optimization problems under uncertainty. It ensures that an individual constraint is satisfied with
a target probability. Mainly, it restricts the feasible region so that a solution is obtained at a high
probability. Chance-constrained programming was first investigated by [16] to ensure that the optimal
solution satisfied constraints at a certain probability or confidence level. Many research works have
now delved into more ways of tackling chance-constrained problems and increasing the efficiencies of
such optimization problems.

A general chance-constrained programming problem takes the form:

maximize f (x) (4)

subject to P{g(x, ζ) ≤ 0} ≥ α, (5)

x ∈ Λ, (6)

where x denotes decision variables, Λ denotes a set of all feasible solutions, ζ represents uncertain
parameters, and α ∈ (0, 1) is a desired safety factor chosen by the modeler. The chance constraint
ensures that the constraint g(x, ζ) ≤ 0 is satisfied with a probability α at least.

Chance-constrained optimization problems are challenging computationally. Even checking
the feasibility of a chance constraint is NP-hard, and the feasible region is usually non-convex. It
is also difficult to obtain samples to estimate the uncertain parameter’s probability distribution
accurately. In practice, assumptions about the probability distribution of the uncertain parameters in a
chance-constrained problem need to be made to express the probabilistic constraint (5) in closed form.
It is, however, difficult to obtain an equivalent deterministic constraint for most probability constraints.

A more difficult challenge that arises is the need to commit to a particular distribution of the
uncertain parameter ζ given only restricted information about the stochastic parameters [5]. To
avoid the above difficulties such as a selection of the proper probability distribution of the uncertain
parameter, NP-hard feasibility checking, and nonconvexity, approximation methods have been
proposed. In general, there exist two kinds of approximation approaches for a chance constraint: the
analytical approximation method and the sampling-based method. Given the disadvantages of the
sampling-based method such as the use of an emprical distribution of the random samples to model
the actual distribution [17] among others, we pursue the analytical approximation approach. The
analytical approximation method formulates the chance constraint into an equivalent deterministic
counterpart. Robust optimization presents a way to approximate analytically a chance constraint. This
technique requires a mild assumption on the probability distribution of the uncertain parameters and
provides a tractable and feasible solution to the chance-constrained problem. Research contributions
using the framework of robust counterpart optimization were explored by [18,19].

A natural way to tackle a chance constraint against parameter uncertainty, which is itself
characterized by an uncertain probability distribution, is to use the Distributionally-Robust
Chance-Constrained (DRCC) approach, a variant of distributionally-robust optimization.
Distributionally-robust optimization is an approach that bridges the gap between robust optimization
and stochastic programming [20]. In particular, the distributionally-robust chance constraint can be
expressed as:

inf
P∈P

P{g(x, ζ) ≤ 0} ≥ α, (7)

where P represents a set of all probability distributions that is in line with the characteristic properties
of the true probability D such as moment information or its support [21]. Whenever x satisfies (7)
and D ∈ P is the true distribution, x satisfies the chance constraint (5) under the true probability
distribution D.
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In the DRCC paradigm, the distribution of ζ is not exactly known, but rather assumed to belong to
a given set P . In other words, Equation (7) requires that for all probability distributions of ζ, the chance
constraint holds. In the DRCC framework, the work in [22] investigated safe tractable approximations
of chance-constrained affinely-perturbed linear matrix inequalities. The work in [7] showed that
in some cases of a linear chance constraint problem, the worst case moment expression could be
analytically expressed. Based on S-lemma, the work in [23] showed that a distributionally-robust
chance constraint is tractable when f (x, ζ) is linear in the decision variable x and piecewise linear or
quadratic in the uncertainty parameter ζ. In this study, to obtain a well-posed optimization problem
without assuming full knowledge of the probability measure, in moment-based optimization, a
distributionally-robust counterpart to a defined chance constraint of capital requirement is considered
to guarantee satisfying bank capital requirements.

3. Problem Definition and Assumption: Chance Constraint with an Unknown Distribution

The proposed asset-liability optimization model is based on constraint robustness with the chance
constraint of capital to risk assets ratio in a safety-first framework under the condition that only
moment information is known. This paper aims to extend the proposed single-objective capital to
the risk asset ratio chance-constrained optimization model in [4] by considering the multi-objective
constraint robustness approach in a modified safety-first framework.

The following assumptions were made to develop the model: First, the set of all probability
distributions have known first and second moments. Second, the set of probability distributions were
assumed to include the true probability distribution of the random vector.

Motivated by [7], this study examines an aspect of a chance-constrained robust problem with
known first and second moments. For the purpose of completeness, a reintroduction of the description
of the notations and parameters is needed.

Notation and Parameter Description

Without loss of generality, define the single generic constraint as:

P
{

y0(x) + y(x)Tζ ≤ 0
}
≥ α, α ∈ (0, 1) (8)

and define the random vector:
r = [1 ζT ]T ∈ Rh+1

and:

r̂ = E{r} = E{[1 ζT ]T} = [1 ζ̂T ]T

Γ = var{r} = var{[1 ζT ]}

Consider v ≤ h + 1 as the rank of Γ and Γ f .r ∈ Rh+1 as a full rank factor such that Γ = Γ f .rΓT
f .r.

Let:
z̃ = [y0(x) y(x)T ]T ∈ Rh+1

Let us define the quantity:
ϕ(z) = rT z̃

and:
ϕ̂(z) = E{ϕ(z)} = r̂T z̃ (9)

σ2(z) = var{ϕ(z)} = z̃TΓz̃ (10)
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The normalized random variable is defined as:

ϕ̃(z) =
ϕ(z)− ϕ̂(z)

σ(z)

Therefore, one can rewrite Constraint (1) as:

P{rT z̃ ≤ 0} = P{ϕ(z) ≤ 0} = P{ϕ̃(z) ≤ −ϕ̂(z)/σ(z)} ≥ α.

By distributional constraint robustness, the chance constraint P{rT z̃ ≤ 0} ≥ α should be robustly
enforced by considering the problem:

inf
r∼P

P{rT z̃ ≤ 0} ≥ α = inf
r∼(r̂,Γ)

P{rT z̃ ≤ 0} ≥ α (11)

where r ∼ P means that the distribution of r belongs to the family P with P having known first and
second moments.

4. Model Formulation and Approach

4.1. Formulation

Let us consider the random variable Y such that YT z̃ = (2r̂T − rT)z̃. From the result of [24] on the
tight bound Chebyshev inequality [25], the following holds:

sup
r∼(r̂,Γ)

P{rT z̃ > 0} = sup
r∼(r̂,Γ)

P{YT z̃− r̂T z̃ > r̂T z̃}

≤


1

1+ (r̂T z̃)2

z̃T Γz̃

, if r̂T z̃ ≥ 0

1, Otherwise.

(12)

Obviously,

P{YT z̃− r̂T z̃ > r̂T z̃} = P{r̂T z̃− YT z̃ < −r̂T z̃}
= P{rT z̃− r̂T z̃ < −r̂T z̃}.

This, combined with (12), implies that:

sup
r∼(r̂,Γ)

P{rT z̃− r̂T z̃ < −r̂T z̃} ≤ z̃TΓz̃

z̃TΓz̃ + (r̂T z̃)2

Hence,
z̃TΓz̃

z̃TΓz̃ + (r̂T z̃)2 ≤ 1− α

is sufficient for Constraint (11) to hold. The expression can be recast in various forms as:

z̃TΓz̃ ≤ (1− α)(z̃TΓz̃ + (r̂T z̃)
2
),

αz̃TΓz̃ ≤ (1− α)(r̂T z̃)
2
,

α

(1− α)
z̃TΓz̃ ≤ (r̂T z̃)

2
,

(r̂T z̃)
2 ≥ z̃TΓz̃

α

(1− α)
,

ϕ̂2(z) ≥ σ2(z)
α

(1− α)
.
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Theorem 1. The chance constraint, P{r̂T z̃ ≤ 0} ≥ α, for any α ∈ (0, 1) expressed as a constraint robust term
in the form inf

r∼(r̂,Γ)
P{rT z̃ ≤ 0} ≥ α is equivalent to the second-order cone constraint (r̂T z̃)2 ≥ z̃TΓz̃ α

(1−α)
.

4.2. CreditMetrics Approach

Future bank capital depends on future market values of assets and liabilities. This paper
employs a modified CreditMetrics approach to estimate the future market value of loans, i.e., the
uncertainty parameter in (1). A modified CreditMetrics approach has been proposed by [4]. We
adopted this approach for the sole aim of determining the future market value of loans and the
associated risk measure.

Migration of Ratings

Credit rating transition is the migration of loans across different ratings over a risk period. Credit
risk arises from changes in the loan value as a result of upgrades and downgrades. Therefore, it
is prudent to evaluate the probability of default and the possibility of migration to other ratings.
Table 1 shows a transition matrix developed from historical data by CRISIL (Credit Rating Information
Services of India Limited). The likelihood that an A borrower will remain at A over the next year
is 71.23%.

Table 1. CRISIL’s one-year mean transition rates (1993–2014)(%). Source: CRISIL Default Study 2014.

Rating AAA AA A BBB BB B C D

AAA 98.23 1.54 0.23 0.00 0.00 0.00 0.00 0.00
AA 17.04 78.52 3.70 0.74 0.00 0.00 0.00 0.00
A 9.59 15.07 71.23 4.11 0.00 0.00 0.00 0.00

BBB 4.02 3.29 15.69 76.28 0.00 0.37 0.37 0.00
BB 11.11 22.22 22.22 22.22 22.22 0.00 0.00 0.00
B 0.00 0.00 0.00 0.00 0.00 50.00 0.00 50.00
C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100

The recovery rate is a measure of the extent to which a creditor recovers the principal and accrued
interest due on a defaulted debt [26]. According to Moody’s “Default and Recovery rates for project
bank loans, 1983–2014”, the ultimate recovery rates average 80%, which is roughly consistent with
existing works of [27] (84.14%), [28] (81.12%), [29] (80%), and [30] (87%). For the purpose of this study,
we consider loan recovery rates estimated by Moody’s Investors Service.

4.3. Loan Valuation and Credit Risk

In this section, the year-ahead market value of loans and credit risk are estimated. Reference is
made to the approach employed by [4] and followed accordingly. Table 2 contains entries of (j− 1)-year
forward rates, f 1,j

cr , which are spot rates from now with credit rating cr.

Table 2. One-year forward zero curve for each credit rating category (%). Adapted from [4] with
permission from authors.

Category Year 1( f 1,2
cr ) Year 2 ( f 1,3

cr ) Year 3( f 1,4
cr ) Year 4( f 1,5

cr )

AAA 3.60 4.17 4.73 5.12
AA 3.65 4.22 4.78 5.17
A 3.72 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63
BB 5.55 6.02 6.78 7.27
B 6.05 7.02 8.03 8.52

CCC/C 15.05 15.02 14.03 13.52
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Please refer to [4] for the mathematical expression of the forward value of a unit capital invested
in the kth loan with either a default (ζkdt ) or non-default (ζkt) migration path, expected forward loan
value (E(ζk)), and variance of unit capital invested (Var(ζk)).

Credit risk arises because loan values can vary depending on the credit quality changes, and so,
any reasonable risk measure must reflect this variability. CreditMetrics proposed two measures to
characterize credit risk: variance or standard deviation and percentile level [31,32]. The risk measures
reflect the portfolio distribution, and both contribute in the effort to quantify risk. The two risk
measures also reflect potential losses from the same portfolio distribution. The variance measure
reflects how different the expected value of the loans will be from the actual value, and the percentile
levels aid in arriving at the unexpected losses of the portfolio.

The specified percentile level is interpreted as the lowest value the loan portfolio will achieve for
say 5% of the time: the fifth percentile. Therefore, the likelihood that the true loan portfolio value is less
than the calculated fifth percentile level is only 5%. Given the full distribution of loan portfolio values,
ζkt and ζkdt, one can derive the percentile level. It is important to note that the two credit risk measures
(variance and the use of percentile level) give different values and must be interpreted in a different
manner. According to the CreditMetrics Technical document [32], the process of estimating credit risk
via percentile levels, for e.g. fifth percentile, is as follows: First, the fifth-percentile level number is
obtained from the loan value distribution, and second, using the fifth percentile, the amount of credit
risk is estimated by taking the difference of the mean portfolio and the fifth percentile level number.

The percentile level approaches often used in the literature are Value-at-Risk (VaR) and
Conditional Value-at-Risk (CVaR), as they assess risk within the full context of a portfolio. The
percentile level is naturally appealing to employ as it shows precisely the likelihood that the portfolio
value will fall below that number.

This study in the context of credit risk infers VaR and CVaR from a distribution of the value of the
portfolio and not from a distribution of the losses in the portfolio. Credit VaR is defined as the distance
from the percentile to the mean of the forward distribution, at the desired confidence level. Credit
CVaR is the average distance beyond VaR from the percentile to the mean of the forward distribution,
at the desired confidence level. Both reflect (average) unexpected credit loss at the desired confidence
level. However, there is another way to look at credit VaR if one considers the distribution of losses: it
can also be interpreted as percentile loss itself, i.e., including expected losses.

This paper uses the credit VaR and credit CVaR to replace the market VaR and market CVaR used
in a modified safety-first framework described in [9] to avert extreme unexpected credit losses and
control the downside risk.

5. Model Development

The asset-liability optimization model based on the chance constraint of capital to the risk
(weighted) asset requirement is structured and presented in this section. Objective functions consider
maximizing the annual interest rate and expected portfolio value, minimizing credit risk, and providing
a safety-net against extreme losses.
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Given definitions of input parameters and replacing chance Constraint (1) with its robust
constraint counterpart (2) provide the following distributionally-robust chance-constrained problem:

maximize
x

R(x)

maximize
x

µ(x)

minimize
x

σ2(x)

minimize
x

(1− α)creditCVaR(x)
creditVaR(x)− R

subject to inf
P∈P

P{y0(x) + y(x)Tζ ≤ 0} ≥ α

u+v

∑
k=1

xk = 1

x1, x2, . . . , xu+v ≥ 0

(13)

Based on Theorem 1, the robust chance constraint is equivalent to a deterministic convex
counterpart. Therefore, the multi-objective robust chance-constrained optimization model is:

maximize
x

R(x)

maximize
x

µ(x)

minimize
x

σ2(x)

minimize
x

(1− α)creditCVaR(x)
creditVaR(x)− R

subject to ϕ̂2(z) ≥ σ2(z)
α

(1− α)
u+v

∑
k=1

xk = 1

x1, x2, . . . , xu+v ≥ 0

(14)

where α ∈ (0, 1), ϕ̂(z) = r̂T z̃, σ(z) = z̃Γz̃, and z̃ = [y0(x) y(x)T ]T .
Given a portfolio x for u number of loans, the probability of the loss function not exceeding an

acceptable threshold δ is:

Ξ(x, δ) =
∫

f (x,ζ)≤δ
p(ζ)dζ. (15)

For a confidence level α, the VaR of portfolio x is given by:

VaRα(x) = min{δ | Ξ(x, δ) ≥ α}. (16)

The corresponding CVaR is expressed as conditional expectation of the loss of the portfolio
exceeding or equal to VaR, i.e., when all random values are continuous, the following is derived:

CVaRα(x) = E{ f (x, ζ) | f (x, ζ) ≥ VaRα(x)}

=
1

1− α

∫
f (x,ζ)≥VaRα(x)

f (x, ζ)p(ζ)dζ.
(17)

The work in [33] proposed an equivalent function for CVaR. They expressed their idea as:

CVaRα(x) = minFα(x, δ), (18)
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where:
Fα(x, δ) = δ +

1
1− α

∫
f (x,ζ)≥δ

( f (x, ζ)− δ)p(ζ)dζ.

One can find the optimal CVaR by solving the right-hand side of Equation (18). In order to
minimize CVaR over x, we minimized the auxiliary function with respect to x and δ:

minxCVaRα(x) = minx,δFα(x, δ). (19)

The work in [33] presented an approximation to the auxiliary function Fα(x, δ) via the
sampling method:

F̂α(x, δ) = δ +
1

(1− α)u

u

∑
i=1

max( f (x, ζ)− δ, 0). (20)

Comparing Equation (20) to Equation (18), the problem minxCVaRα(x) can be approximated by
replacing Fα(x, δ) with F̂α(x, δ) in Equation (19):

min
x,δ

δ +
1

(1− α)u

u

∑
i=1

max( f (x, ζ)− δ, 0). (21)

To solve this optimization problem, one can replace max( f (x, ζ)− δ, 0) with artificial variables zi
and impose constraints zi ≥ f (x, ζ)− δ and zi ≥ 0:

min
x,z,δ

δ +
1

(1− α)u

u

∑
i=1

zi

subject to zi ≥ 0, i = 1, . . . , u,

zi ≥ f (xi, ζi)− δ, i = 1, . . . , u,

x ∈ Λ.

(22)

For a portfolio of u loans, we assumed µi ∈ Ru is the random vector of the expected returns value
of ζ with a probability density function p(µ). To determine the mean loss of the portfolio, this study
defines the loss function as f (xi, µi) = −∑u

i=1 xiµi = −[µ1x1 + . . . + µuxu]. Since the loss function
is convex, then the auxiliary function Fα(x, δ) is a also a convex function and can be solved using
well-known optimization techniques.
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Representing each objective function by P1(x), . . . , P4(x), the multi-objective robust
chance-constrained optimization problem (23) can be approximated via the approximation technique
(22) as shown below:

maximize
x

P1(x) = R(x)

maximize
x

P2(x) = µ(x)

minimize
x

P3(x) = σ2(x)

minimize
x

P4(x) =
(1− α)(δ + 1

(1−α)u ∑u
i=1 zi)

δ− R

subject to ϕ̂2(z) ≥ σ2(z)
α

(1− α)
,

δ ≥ R,

zi ≥ 0, i = 1, . . . , u,

zi + xT
i µi + δ ≥ 0, i = 1, . . . , u,

u+v

∑
k=1

xk = 1,

x1, x2, . . . , xu+v ≥ 0,

(23)

where α ∈ (0, 1), ϕ̂(z) = r̂T z̃, σ2(z) = z̃Γz̃, and z̃ = [y0(x) y(x)T ]T .

Transformation and Solution to the Multi-objective Model

The multi-objective portfolio optimization model (23) addresses the trade-off between conflicting
or competing objectives. This type of problem is referred to as a Polynomial Goal Programming (PGP)
problem. The idea behind such an approach is to obtain smaller computable elements of the problem
and then find solutions iteratively that meet individual goals.

Generally, there will not be a single solution of Problem (23) that can maximize both Objective 1
and Objective 2. Alternately, the solution of the multi-objective optimization problem (23) has to be
obtained in a two-step process. First, individually solve each objective P1(x), P2(x), P3(x), and P4(x)
subject to the constraints. Denote optimal values (desired goals) after solving the individual objectives
subject to constraints by P∗1 , P∗2 , P∗3 , and P∗4 . Second, find an optimal solution that preserves individual
objectives by minimizing the deviation of each individual objective from the ideal solution. Let
d1, d2, d3, and d4 be non-negative variables that account for deviation from the desired goals, P∗1 , P∗2 , P∗3 ,
and P∗4 . The multi-objective optimization problem (23) transforms into a single objective problem

in a specific form of the general Minkowski distance defined as O =

{
∑h

f=1 |
d f

p

Pf
|
}1/p

, where Pf

represents the corresponding desired goal and is used as basis for normalization of the f th variable.
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The single objective optimization problem derived via PGP for the multi-objective problem (23) is
defined as:

minimize
x,d

O(x) =| d1

P∗1
| + | d2

P∗2
| + | d3

P∗3
| + | d4

P∗4
|

subject to R(x) + d1 = P∗1
µ(x) + d2 = P∗2
σ2(x)− d3 = P∗3
(1− α)(δ + 1

(1−α)u ∑u
i=1 zi)

δ− R
d4 = P∗4

(r̂T z̃)2 ≥ z̃Γz̃
α

(1− α)
,

δ ≥ R,

zi ≥ 0, i = 1, . . . , u,

zi + xT
i µi + δ ≥ 0, i = 1, . . . , u,

u+v

∑
k=1

xk = 1

d f ≥ 0, f = 1, . . . , 4

x1, x2, . . . , xu+v ≥ 0

(24)

where α ∈ (0, 1) and z̃ = [y0(x) y(x)T ]T .
Given that the objective function of Problem (24) has a fractional component, an alternative

equivalent program can be deduced. Under the assumption that the feasible region is non-empty and
bounded, the transformation:

w =
1

δ− R
, w ≥ 0,

x̃ = xw
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translates (24) to the equivalent single objective optimization problem via PGP as:

minimize
x̃,d,w,z,δ

| d1

P∗1
| + | d2

P∗2
| + | d3

P∗3
| + | d4

P∗4
|

subject to RT x̃ + d1 = P∗1 ,

µT x̃ + d2 = P∗2 ,

x̃TQx̃− d3 = P∗3 ,

(w− αw)

(
δ +

1
(1− α)T

T

∑
i=1

zi

)
− d4 = P∗4 ,

(r̂T z̃)2 ≥ z̃Γz̃
α

(1− α)
,

u+v

∑
k=1

x̃k = w,

d f ≥ 0, f = 1, . . . , 4,

δw− Rw = 1,

w ≥ 0,

ziw ≥ 0, i = 1, . . . , u,

ziw + x̃T
i µi + δw ≥ 0, i = 1, . . . , u,

x̃1, x̃2, . . . , x̃u+v ≥ 0,

(25)

where Q is covariance matrix of unit capital invested in loans, α ∈ (0, 1), and z̃ = [y0(x) y(x)T ]T .
One can obtain an optimal solution to the problem by rescaling x̃∗ so that x∗ = x̃∗

w∗ .

6. Numerical Examples

In this section, the proposed model is subjected to numerical experiments [34] by considering a
hypothetical bank operating in the U.S. Loan data are private information and difficult to obtain. This
study defines and uses references and trusted sources such as World Bank, Moody’s Investors Service,
and CRISIL to back the data used for this section.

6.1. Data

Consider the asset structure of a hypothetical bank in the U.S. Let the bank’s total loan and
treasury bill amount, M, be $600, 000 ; the bank’s total liability TL equal $1, 192, 000, disclosed reserves
DR of $166, 000, revaluation reserves Rr of $12, 000, and general loan loss provisions LP of $15, 000.
The financial assets characterizing the financial environment on the bank are five types of loans, a
treasury bill, fixed assets, and non-interest earning assets. Table 3 presents the information about the
assets and capital funds to be allocated.

Interest rate (R) for individual loans was set to lending interest rates for the U.S. quoted by the
World Bank in 2014 as a reference. World Bank’s one-year treasury bill rate of 0.1% for the U.S. in
2014 was used. The standardized approach of the Basel Accord was a reference point for risk weights.
Moody’s recovery rate of 80% was used for recovery rates for loan types. Let us consider correlations
among loan borrowers as shown in Table 4. In financial crises, correlations of random assets tend to
converge positively, maybe even to one. To represent a market in distress, we consider the correlation
matrix in Table 4 to see the effects on capital adequacy.
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Table 3. Asset structure of a U.S. Bank ( IR, Interest Rate; RR, Recovery Rate; RW, Risk Weights; CV, Credit VaR; CCV, Credit CVaR).

Assets Collateral IR (%) RR (%) RW (%) Mean Variance CV CCV Allocation

(ζ1) 3-Year AAA Commercial and Industrial Loan Inventory or account receivables 3.56 80.00 20 1.0243 4.1679 × 10−8 0.2402 0.2829 0.2550
(ζ2) 5-Year AA Agriculture and Farm Loan Equipment, crops, livestock, etc. 4.17 80.00 50 1.0081 1.7196 × 10−5 0.2558 0.2889 0.1663

(ζ3) 2-Year BBBPersonal Loan Savings account, tangible property, etc. 3.11 80.00 75 1.0213 4.2935 × 10−4 0.2323 0.2140 0.2665
(ζ4) 3-Year B Small Business Loan Land, savings account, etc 4.03 80.00 75 0.81911 4.0625 × 10−3 0.0258 0.0689 0.0468

(ζ5) 4-Year A Auto Loan Savings account or car itself 4.21 80.00 75 1.0248 4.7805 × 10−5 0.2512 0.2892 0.2386
1-Year Treasury Bill Not Applicable 0.1 100 0 1.001 0 0 0 0.0268

Fixed Assets Not Applicable 0 100 0 1 0 0 0 -
Non-Interest Earning Assets Not Applicable 0 100 0 1 0 0 0 -

Table 4. Asset correlations among loans of a market in crisis.

Risky Assets ζ1 ζ2 ζ3 ζ4 ζ5

ζ1 1 0.85 0. 8 0.8 0.8
ζ2 0.85 1 0.9 0.85 0.8
ζ3 0.8 0.9 1 0.9 0.8
ζ4 0.8 0.85 0.9 1 0.95
ζ5 0.8 0.8 0.8 0.95 1
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6.1.1. Objective Function

The objective function is filled with various entries of Table 3 and some other computed results.
Thus,

maximize
x

RTx

maximize
x

µTx

minimize
x

xTQx

minimize
x

(1− α)creditCVaR(x)
creditVaR(x)− R

, α = 0.95 and R = 0.009.

(26)

6.1.2. CRAR Constraint

This study employed the CRAR developed by Basel III as the designated regulation requirement.
From the definition of CRAR, i.e.,

MΩTx− TL + DR + Rr + LP
M(v1ζ1x1 + . . . + vuζuxu + vu+1ξu+1xu+1 + . . . + vu+vξu+vxu+v)

≥ λ

where λ is the total capital requirement. The chance-constrained model based on the capital to risk
assets ratio can be expressed as:

P
{

y0(x) + y(x)Tζ ≤ 0
}
≥ α (27)

where:

y0(x) = TL− DR− Rr− LP−M
u+v

∑
k=u+1

(1 + Rk)xk

y(x) = M
u

∑
k=1

(λvk − 1)xk

The year-ahead market value of net assets of the bank should be 600, 000(ζTx + ξ1x6) + 707, 000−
1, 192, 000 + 166, 000 + 12, 000 + 15, 000 where 600, 000(ξ1x6) + 707, 000 represents the year-ahead
market value of riskless assets. In this study, the total capital requirement ratio λ of 11% was used.
The constraint based on CRAR is:

inf
P∈P

P
(

600,000(ζT x+ξ1x6)+707,000−1,192,000+166,000+12,000+15,000
1,500,000(0.2ζ1x1+0.5ζ2x2+...+0.75ζ5x5)

≥ 0.11
)
≥ 0.95 (28)

inf
P∈P

P
{

y0(x) + y(x)Tζ ≤ 0
}
≥ 0.95 (29)

where:

y0(x) = 1, 192, 000− 166, 000− 12, 000− 15, 000− 600, 000(1 + 0.0010)x6 − 707, 000

y(x)T = 600, 000 ((0.11 · 0.2− 1)x1 + (0.11 · 0.5− 1)x2 + . . . + (0.11 · 0.75− 1)x5)

According to Theorem 1, Equation (28) is equivalent to:

(r̂T z̃)2 ≥ z̃TΓz̃
(

0.95
0.05

)
(30)
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where:

z̃ =



292000− 604800x6

−586800x1

−567000x2

−550500x3

−550500x4

−550500x5



Γ =



0 0 0 0 0 0
0 4.1679e− 8 7.1146e− 7 3.3807e− 6 1.0403e− 5 1.1269e− 6
0 7.1146e− 7 1.7196e− 5 7.6383e− 6 2.2199e− 5 2.2632e− 5
0 3.3807e− 6 7.6383e− 6 4.2935e− 4 0.0012 1.1426e− 4
0 1.0403e− 5 2.2199e− 5 0.0012 4.0625e− 3 4.1755e− 4
0 1.1269e− 6 2.2632e− 5 1.1426e− 4 4.1753e− 4 4.7805e− 5


and:

r̂T = [1 1.0243 1.0081 1.0213 0.8911 1.0248]

6.1.3. Constraint Based on Other Factors

The proportions of capital allocations must add up to one. Thus, the following holds.

6

∑
k=1

xk = 1 (31)

For diversification purposes, management sets up constraints with an upper bound limit of 0.4
with respect to loan allocations:

0 ≤ x1, . . . , x5 ≤ 0.4 (32)

Banks often allocate proportions to risky investment after considering riskless assets. For the
purpose of this study, bank management allocates at most 5% of M to treasury bills.

0 ≤ x6 ≤ 0.05 (33)
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The problem is transformed from a multi-objective optimization model to a single-objective model
via Polynomial Goal Programming (PGP) as shown in (24). Thus,

minimize
x,d

| d1

P∗1
| + | d2

P∗2
| + | d3

P∗3
| + | d4

P∗4
|

subject to R(x) + d1 = P∗1
µ(x) + d2 = P∗2
σ2(x)− d3 = P∗3
(1− α)(δ + 1

(1−α)u ∑u
i=1 zi)

δ− R
d4 = P∗4

(r̂T z̃)2 ≥ z̃Γz̃
α

(1− α)
,

δ ≥ R,

zi ≥ 0, i = 1, . . . , 5,

zi + xT
i µi + δ ≥ 0, i = 1, . . . , 5,

6

∑
k=1

xk = 1

d f ≥ 0, f = 1, . . . , 4

0 ≤ x1, . . . , x5 ≤ 0.4

0 ≤ x6 ≤ 0.05

(34)

where α = 0.95, R = 0.009, and z̃ = [y0(x) y(x)T ]T . The above problem can be solved as shown
in (25).

6.2. Results and Remarks

Mathematical computations were executed on a MacBook Pro (Intel(R) Core(TM) i7 @ 2.9 GHz,
16 GB RAM) with MATLAB (2017b).

Column 10 of Table 3 shows the optimal investment of the assets under consideration. The
two-year BBB Personal Loan allocation value of 0.2665 is the highest amongst optimal investment
proportions. This might be ascribed to its proper trade-off between the objective functions of our model.
The high-risk weights are complimented by its high interest rates. The optimal solution minimizes the
deviation of each objective from its ideal solution. The distributionally-robust CRAR chance constraint
optimization model meets the Basel III Tier 1 capital requirements ratio of equal or more than 6% and
also meets the total capital requirements of 11% considered for this study under the guidance of the
Basel III capital requirements.

A sensitivity analysis was performed to determine the robustness of the proposed model by
computing the CRAR value using loan values under the worst-credit migration path from Table 5.
This was done with the dual aim of testing our model under the worst-case scenario, i.e., default and
also to test model robustness. The value of CRAR even under the worst-case scenario confirmed that
the bank was guaranteed to meet our Basel III total capital requirement of 11%.

To further investigate the results of our distributionally-robust CRAR optimization model, this
study explored the CRAR chance constraint with the utilization of the optimal investment proportions
and worst credit migration path values of loans. The expected values of the year-ahead market value
of loans under the worst-case scenario were assigned to ζ, the optimal allocation proportions to x, and
the treasury bill to ξ1.
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Table 5. Year-ahead or forward market value of loans under default.

Loan Type Worst-Credit Migration Path Value

3-Year AAA Commercial and Industrial Loan AAA→ CCC → CCC → D 0.6712
5-Year AA Agriculture and Farm Loan AA→ CCC → CCC → CCC → CCC → D 0.6193

2-Year BBB Personal Loan BBB→ CCC → D 0.7264
3-Year B Small Business Loan B→ CCC → CCC → D 0.6800

4-Year A Auto Loan AAA→ CCC → CCC → CCC → D 0.6501

The findings of this paper explicitly disclose that in a safety-first framework, CRAR values
will be greater than the Basel III minimum capital requirement at a confidence level of 95% if the
model introduced is employed even if the model introduced is employed under the worst-case
scenario. Therefore, the CRAR optimization model does guarantee that banks will cope with the
capital requirements of Basel III with a greater likelihood of 95% irrespective of changes in the forward
market value of assets. This approach also provides a safety-net against extreme losses and controls
credit and capital risk.

6.2.1. Additional Remarks

To further explore our findings, this study subjected our robust approach for comparison to a
stochastic model. This research used the same dataset used by [4].

We replaced the equivalent of our robust chance-constraint ((r̂T z̃)2 ≥ z̃Γz̃ α
(1−α)

) in (34) with an

equivalent term of the stochastic version (F−1
RG(α)

√
z̃Γz̃ + r̂T z̃ ≤ 0) derived from Theorem 4.1 of [4].

F−1
RG(α) was inverse for the standard right truncated Gaussian distribution cumulative probability

function. All other parameters had the same definition in this paper as the following Table 6.

Table 6. Performance index of distributionally- and non-distributionally-robust models. CRAR, Capital
to Risk Assets Ratio (CRAR).

Distributionally Robust Non-distributionally Robust

CRAR 12.2% 11.08%
Worst-case CRAR 8.9% 8.2%

Credit risk (variance) 0.0204 0.0203
Interest rate return 0.0565 0.0546

Portfolio value return 0.7661 0.8559

Under both CRAR chance constrained models, a Tier 1 capital ratio of equal or more than 6%,
and the total capital ratio, i.e., CRAR equal to or greater than 11%, considered for this study were
met. However, the robust chance constraint model meets the capital adequacy to a higher degree.
Using loan values under the worst-credit migration path, the CRAR value of 8.9% was reported for
the robust CRAR chance-constrained optimization model. The stochastic CRAR chance-constrained
model reported a CRAR value of 8.2%. The managerial implications of the findings of this study are
that the distributionally-robust model when applied will meet the capital requirements at a higher rate,
maximize the interest rate return at the expense of a smaller portfolio value return while providing a
better framework for treating parameter uncertainty.

7. Conclusions

This paper studied the asset-liability model, which is an extension of the single-objective CRAR
chance-constrained model [4], by considering the multi-objective constraint robustness approach
in a modified safety-first framework. Specifically, this study constructed a distributionally-robust
optimization model in a safety-first framework under the capital to risk assets ratio chance constraint
with uncertainty set based on the fact that only expectation and second marginal moment information
were known. This approach, which is key to practical implications, on the one hand, provides banks
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with the guarantee of meeting capital regulation with a great probability of 95%, not only controlling
the credit risk but also the capital risk. On the other hand, the approach provides a safety-net against
extreme losses.

The proposed distributionally-robust capital to risk asset ratio chance-constrained optimization
model guarantees banks will meet the capital requirements of Basel III with a likelihood of 95%
irrespective of changes in the future market value of assets. A sensitivity analysis was performed to
determine the robustness of the proposed model by computing the CRAR value using loan values
under the worst-credit migration path. Even under the worst-case scenario, i.e., when loans default, our
proposed capital to risk asset ratio chance-constrained optimization model meets the minimum total
requirements of Basel III. The findings of this research are crucial for practitioners as they showcase a
coherent manner to aid banks in meeting capital requirements.
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