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Abstract: In this paper, we noticed that the existence of fixed points of F-contractions, in F -metric
space, can be ensured without the third condition (F3) imposed on the Wardowski function
F : (0, ∞) → R. We obtain fixed points as well as common fixed-point results for Reich-type
F-contractions for both single and set-valued mappings in F -metric spaces. To show the usability
of our results, we present two examples. Also, an application to functional equations is presented.
The application shows the role of fixed-point theorems in dynamic programming, which is widely
used in computer programming and optimization. Our results extend and generalize the previous
results in the existing literature.
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1. Introduction

In recent years, many authors have presented interesting generalizations of metric spaces
(see for example [1–11]). Among them, Jleli et al. [12] presented the idea of F -metric space and,
while comparing it with metric spaces, they proved that every metric space is an F -metric space but
the converse is not true, confirming that F -metric space is more general than the metric space. With the
help of concrete examples, they obtained a similar result for s-relaxed metric space. They discussed
a relation between b-metric and F -metric spaces, defined a natural topology on these spaces and
proved that after imposing a sufficient condition, the closed ball is closed with respect to the given
topology. Finally, they established a fixed-point theorem of the Banach contraction in the frame of
F -metric spaces.

Wardowski [13] extended the Banach Contraction Principle by introducing F-contraction and
established fixed-point theorems in metric spaces. Klim et al. [9] discussed F-contractions with respect
to dynamic process and proved fixed-point theorems involving F-contractions. Nazam et al. [14]
proved fixed-point theorems for Kannan-type F-contractions on closed balls in complete partial metric
spaces. Fixed points and common fixed points of F-contractions under various structures (set-valued
mappings, partial order, α-admissibility, graphic structure, b-metric, partial metric, G-metric etc.) have
been investigated, (see the references [14–22] and references therein).

In this article, we relax the restrictions on Wardowski’s mapping [13] by eliminating the third
condition and prove common fixed-point results of Reich-type F-contractions for both single and
set-valued mappings in F -metric spaces.

This article is organized into seven sections. This first section contains a short history of the
literature providing a motivation for this article. Section 2 contains some basic definitions which
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help readers to understand our results. In Section 3, we established theorems of fixed points and
common fixed points of single-valued F-contractions in F -metric spaces. An example is provided to
explain our results. Section 4 deals with fixed-point theorems of F-contractions with respect to closed
balls in F -metric spaces along with an example. In Section 5, the common fixed-point theorems of
multi-valued modified F-contractions are proved in F -metric spaces. Section 6 is concerned with an
application of the mentioned results to the functional equations in dynamic programming. Section 7
consists of conclusions.

2. Basic Relevant Notions

Wardowski [13] considered a nonlinear function F : (0, ∞)→ R with the following characteristics:

(F1) F is strictly increasing.
(F2) for any sequence {tn} ⊂ (0, ∞), we have

lim
n→∞

tn = 0⇐⇒ lim
n→∞

F(tn) = −∞.

(F3) there exists l ∈ (0, 1) such that limt→0+ tl F(t) = 0.

Wardowski [13] called the mapping T : X → X, defined on a metric space X = (X, d),
an F-contraction if there exist τ > 0 and F satisfying (F1)-(F3) such that

τ + F
(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
for all x, y ∈ X.

In what follows, we let

B = {F : (0, ∞)→ R | F satisfies (F1)− (F2)}.

Definition 1. [12] Suppose A is a non-empty set and (g, α) ∈ B× [0, ∞). Let the function d : A×A→ [0, ∞)

be such that

(d1) for all (a, b) ∈ A× A, d(a, b) = 0⇐⇒ a = b.
(d2) for all (a, b) ∈ A× A, d(a, b) = d(b, a).
(d3) for every (a, b) ∈ A× A, for each N′ ∈ N, N′ ≥ 2 and for every {tn}n

i=1 ⊂ A with (t1, tN′) = (a, b),

we have d(a, b) > 0 =⇒ g(d(a, b)) ≤ g
(

∑N′−1
i=1 d(ti, ti+1)

)
+ α.

Then d is known as an F -metric on A and the pair (A, d) is called an F -metric space.

Example 1. [12] Let A = N (the set of natural numbers) and d : A× A→ (0, ∞) be defined by

d(a, b) =

{
(a− b)2 if (a, b) ∈ [0, 3]× [0, 3]

|a− b| if (a, b) /∈ [0, 3]× [0, 3]

for all (a, b) ∈ A× A. Then d is an F -metric on A.

Example 2. [12] Let A = N and d : A× A→ (0, ∞) be defined by

d(a, b) =

{
0 if a = b

e|a−b| if a 6= b

for all (a, b) ∈ A× A. Then d is an F -metric on A.

Definition 2. [12] Suppose {an} is a sequence in A. Then
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(i) {an} is F -convergent to a point a ∈ A if limn→∞ d(an, a) = 0.
(ii) {an} is an F -Cauchy sequence if limn,m→∞ d(an, am) = 0.

(iii) The space (A, d) is F -complete if every F -Cauchy sequence {an} is F -convergent to a point a ∈ A.

Definition 3. [12] Let (A, d) be an F -metric space. A subset O of A is said to be F -open if for every a ∈ O,
there is some r > 0 such that B(a, r) ⊂ O, where

B(a, r) = {b ∈ A | d(a, b) < r}.

We say that a subset C of A is F -closed if A \ C is F -open.

Definition 4. [12] Let (A, d) be an F -metric space and B be a non-empty subset of A. Then the following
statements are equivalent:

(i) B is F -closed.
(ii) For any sequence {an} ⊂ B, we have

lim
n→∞

d(an, a) = 0, a ∈ A =⇒ a ∈ B.

Theorem 1. [12] Suppose ( f , α) ∈ B × [0, ∞) and (A, d) is an F -complete F -metric space. Let g : A→ A
be a given mapping. Suppose that there exists k ∈ (0, 1) such that

d(g(a), g(b)) ≤ kd(a, b), (a, b) ∈ A× A.

Then g has a unique fixed point a∗ ∈ A. Moreover, for any a0 ∈ A, the sequence defined by an+1 = g(an),
n ∈ N is F -convergent to a∗.

Theorem 2. [11] Suppose A is a complete metric space with metric d, and let g : A → A be a function
such that

d(g(a), g(b)) ≤ αd(a, b) + βd(a, g(a)) + γd(b, g(b))

for all a, b ∈ A, where α, β, γ are non-negative and satisfy α + β + γ < 1. Then g has a unique fixed point.

Remark 1. [1] If F is right continuous and satisfies (F1), then

F(inf A) = inf F(A) for all A ⊂ (0, ∞) with inf A > 0.

3. Fixed Points of Reich-Type F-Contractions in F -Metric Spaces

In this section, we construct fixed-point and common fixed-point results for single-valued
Reich-type and Kannan-type F-contractions in the setting of F -metric spaces.

Theorem 3. Suppose ( f , α) ∈ B × [0, ∞) and (X, d) is an F -complete F -metric space. Let S, T : X → X be
self-mappings. Suppose there exist F ∈ B and τ > 0 such that

τ + F(d(Sx, Ty)) ≤ F
(
ad(x, y) + bd(x, Sx) + cd(y, Ty)

)
(1)

for a, b, c ∈ [0, ∞) such that a + b + c < 1 with min{d(Sx, Ty), d(x, y), d(x, Sx), d(y, Ty)} > 0, for all
(x, y) ∈ X× X. Then S and T have at most one common fixed point in X.

Proof. Suppose x0 is an arbitrary point and define a sequence (xn) by

Sx2j = x2j+1 and Tx2j+1 = x2j+2; j = 0, 1, 2, . . . (2)
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Using (1) and (2) we can write

τ + F
(
d(x2j+1, x2j+2)

)
= τ + F

(
d(Sx2j, Tx2j+1)

)
≤ F

(
ad(x2j, x2j+1) + bd(x2j, Sx2j) + c(x2j+1, Tx2j+1)

)
= F

(
ad(x2j, x2j+1) + bd(x2j, x2j+1) + cd(x2j+1, x2j+2)

)
.

Using (F1) and letting λ = a+b
1−c , we have

d(x2j+1, x2j+2) <
a+b
1−c d(x2j, x2j+1) = λd(x2j, x2j+1).

Similarly
d(x2j+2, x2j+3) <

a+b
1−c d(x2j+1, x2j+2) = λd(x2j+1, x2j+2).

Hence
d(xn, xn+1) < λd(xn−1, xn) for all n ∈ N,

which yields

d(xn, xn+1) < λd(xn−1, xn) < λ2d(xn−2, xn−1) < . . . < λnd(x0, x1), n ∈ N. (3)

Using (3), we can write

m−1

∑
k=n

d(xk, xk+1) < λn
(

1 + λ + λ2 + . . . + λm−n−1
)

d(x0, x1)

≤ λn

1−λ d(x0, x1), m > n.

Since limn→∞
λn

1−λ d(x0, x1) = 0, for any δ > 0 there exists some n′ ∈ N such that

0 < λn

1−λ d(x0, x1) < δ, n ≥ n′. (4)

Furthermore, let ε > 0 be fixed. Since ( f , α) ∈ B × [0, ∞) satisfies (d3), by (F2) it follows that there is
some δ > 0 such that

0 < t < δ =⇒ f (t) < f (ε)− α. (5)

By (4) and (5), we write

f

(
m−1

∑
k=n

d(xk, xk+1)

)
≤ f

(
λn

1−λ d(x0, x1)
)
< f (ε)− α, m > n ≥ n′.

By (d3) and the above inequality, we obtain

d(xn, xm) > 0, m > n > n′ =⇒ f (d(xn, xm)) < f (ε).

This shows
d(xn, xm) < ε, m > n ≥ n′.

Hence, we showed that (xn) is an F -Cauchy sequence in X. Since (X, d) is F -complete, there exists
z∗ ∈ X such that (xn) is F -convergent to z∗, i.e.,

lim
n→∞

d(xn, z∗) = 0.
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To prove that z∗ is the fixed point of S, assume d(Sz∗, z∗) > 0. Then

τ + F
(
d(Sz∗, x2j+2)

)
≤ F

(
ad(z∗, x2j+1) + bd(z∗, Sz∗) + cd(x2j+1, x2j+2)

)
.

By (F1) and letting j→ ∞, we have
(1− b)d(Sz∗, z∗) < 0,

which is a contradiction. Hence d(Sz∗, z∗) = 0, i.e., Sz∗ = z∗. Following the same steps, we get
Tz∗ = z∗. Hence Tz∗ = Sz∗ = z∗.

Now we show the uniqueness. Assume that z∗∗ is also a common fixed point of S and T and
z∗ 6= z∗∗. Then

τ + F
(
d(z∗, z∗∗)

)
= τ + F

(
d(Sz∗, Tz∗∗)

)
≤ F

(
ad(z∗, z∗∗) + bd(z∗, Sz∗) + cd(z∗∗, Tz∗∗)

)
= F

(
ad(z∗, z∗∗) + bd(z∗, z∗) + cd(z∗∗, z∗∗)

)
.

By (F1), we get (1− a)d(z∗, z∗∗) < 0, which is a contradiction. Hence z∗ = z∗∗.

Example 3. Suppose X = {Xn := 2n + 1, n ∈ N}, d(x, y) =

{
0 if x = y

e|x−y| if x 6= y,
F(x) = ln x and

S, T : X → X are defined by

T(Xn) =

{
X1 if n = 1, 2

Xn−1 if n ≥ 3
and S(Xn) =


X1 if n = 1

X2 if n = 2

Xn−2 if n ≥ 3.

It can be easily verified that d is an F -metric and F satisfies (F1)-(F2). Fix b = c = 0 and (x, y) ∈ X× X.
Suppose m 6= n, then

F
(
d(SXn, TXm)

)
= ln e|Xn−2−Xm−1| = ln e|2(n−m)−2|

< ln(e−1 · e|2(n−m)|) = F(ad(Xn, Xm))

= F
(
ad(Xn, Xm) + bd(Xn, SXn) + cd(Xm, TXm)

)
,

whenever min{d(SXn, TXm), d(Xn, Xm)} > 0, where a = e−1. For τ ∈ (0, ln e) = (0, 1), the inequality (1)
holds true. Moreover, it is clear that X1 is the only common fixed point of S and T.

Taking a = 0 in Theorem 3, we get the following result of Kannan-type F-contractions.

Corollary 1. Suppose ( f , α) ∈ B × [0, ∞) and (X, d) is an F -complete F -metric space. Let S, T : X → X be
self-mappings. Suppose that for k ∈ [0, 1), there exist F ∈ B and τ > 0 such that

τ + F
(
d(Sx, Ty)

)
≤ F

(
k
2
(
d(x, Sx) + d(y, Ty)

))
with min{d(Sx, Ty), d(x, Sx), d(y, Ty)} > 0, for all (x, y) ∈ X× X. Then S and T have at most one common
fixed point in X.

Replacing S with T, we get the following result of single mappings.
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Corollary 2. Suppose ( f , α) ∈ B × [0, ∞) and (X, d) is an F -complete F -metric space. Let T : X → X be a
self-mapping. Suppose that for k ∈ [0, 1), there exist F ∈ B and τ > 0 such that

τ + F
(
d(Tx, Ty)

)
≤ F

(
k
2
(
d(x, Tx) + d(y, Ty)

))
with min{d(Tx, Ty), d(x, Tx), d(y, Ty)} > 0, for all (x, y) ∈ X × X. Then T has at most one fixed point
in X.

4. Fixed Points of Reich-Type F-Contractions on F -Closed Balls

This portion of the paper deals with the fixed-point theorems of Reich-type F-contractions that
hold true only on the closed balls rather than on the whole space X.

Definition 5. Let (X, d) be an F -complete F -metric space and S, T : X → X be self-mappings. Suppose that
a + b + c < 1 for a, b, c ∈ [0, ∞). Then the mapping T is called a Reich-type F-contraction on B(x0, r) ⊆ X if
there exist F ∈ B and τ > 0 such that

τ + F(d(Sx, Ty)) ≤ F
(
ad(x, y) + bd(x, Sx) + cd(y, Ty)

)
, ∀x, y ∈ B(x0, r). (6)

Theorem 4. Suppose ( f , α) ∈ B × [0, ∞) and (X, d) is an F -complete F -metric space. Let T be a Reich-type
F-contraction on B(x0, r) ⊆ X. Suppose that for x0 ∈ X and r > 0, the following conditions are satisfied:

(a) B(x0, r) is F -closed,
(b) d(x0, x1) ≤ (1− λ)r, for x1 ∈ X and λ = a+b

1−c ,

(c) There exist 0 < ε < r such that f
(
(1− λk+1)r

)
≤ f (ε)− α, where k ∈ N.

Then S and T have at most one common fixed point in B(x0, r).

Proof. Suppose x0 is an arbitrary point, and define a sequence (xn) by

T(x2j) = x2j+1 and S(x2j+1) = x2j+2; j = 0, 1, 2, . . . .

We need to show that (xn) is in B(x0, r) for all n ∈ N. We show it by mathematical induction. By (b),
we write

d(x0, x1) < r.

Therefore x1 ∈ B(x0, r). Suppose x2, . . . , xk ∈ B(x0, r) for some k ∈ N. Now, if 2j ≤ k , then by (6),
we can write

τ + F
(
d(x2j, x2j+1)

)
= τ + F

(
d(Sx2j−1, Tx2j)

)
≤ F

(
ad(x2j−1, x2j) + bd(x2j−1, Sx2j−1) + cd(x2j, Tx2j)

)
= F

(
ad(x2j−1, x2j) + bd(x2j−1, x2j) + cd(x2j, x2j+1)

)
.

By (F1), we write
d(x2j, x2j+1) <

a+b
1−c d(x2j−1, x2j) = λd(x2j−1, x2j). (7)

Similarly, if 2j + 1 ≤ k,

d(x2j−1, x2j) <
a+b
1−c d(x2j−2, x2j−1) = λd(x2j−2, x2j−1). (8)

Therefore, from inequalities (7) and (8), we write

d(x2j, x2j+1) < λd(x2j−1, x2j) < . . . < λ2jd(x0, x1) (9)
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and
d(x2j−1, x2j) < λd(x2j−2, x2j−1) < . . . < λ2j−1d(x0, x1). (10)

From (9) and (10), we write
d(xk, xk+1) ≤ λkd(x0, x1). (11)

Now, using (11), we have

f (d(x0, xk+1)) ≤ f

(
k+1

∑
i=1

d(xi−1, xi)

)
+ α = f

(
d(x0, x1) + . . . + d(xk, xk+1)

)
+ α

≤ f
(
(1 + λ + λ2 + . . . + λk)d(x0, x1)

)
+ α = f

(
1−λk+1

1−λ d(x0, x1)
)
+ α.

By (b) and (c), we can write

f (d(x0, xk+1)) ≤ f
(
(1− λk+1)r

)
+ α ≤ f (ε) < f (r).

Hence by (F1), we deduce that
xk+1 ∈ B(x0, r).

Therefore, (xn) ⊂ B(x0, r) for all n ∈ N. Now by (6), we have

τ + F
(
d(x2j+1, x2j+2)

)
= τ + F

(
d(Tx2j, Sx2j+1)

)
≤ F

(
ad(x2j, x2j+1) + bd(x2j, Tx2j) + c(x2j+1, Sx2j+1)

)
= F

(
ad(x2j, x2j+1) + bd(x2j, x2j+1) + cd(x2j+1, x2j+2)

)
.

Following the same steps of proof of Theorem 3 and using (a), we obtain that the sequence (xn) is
F -convergent to some z∗ in B(x0, r). Furthermore, z∗ can be proved as common fixed point of S and T
in the same way as in Theorem 3.

Taking S = T in Theorem 4, we get the following result of single mappings.

Corollary 3. Suppose ( f , α) ∈ B × [0, ∞), (F, τ) ∈ B × [0, ∞), (X, d) is an F -complete F -metric space and
T : X → X is a self-mapping. Suppose that a + b + c < 1 for a, b, c ∈ [0, ∞). Suppose that for x0 ∈ X and
r > 0, the following conditions are satisfied:

(a) B(x0, r) ⊆ X is F -closed,
(b) τ + F(d(Tx, Ty)) ≤ F

(
ad(x, y) + bd(x, Tx) + cd(y, Ty)

)
, for all x, y ∈ B(x0, r),

(c) d(x0, x1) ≤ (1− λ)r, for x1 ∈ X and λ = a+b
1−c ,

(d) There exist 0 < ε < r such that f
(
(1− λk+1)r

)
≤ f (ε)− α, where k ∈ N.

Then T has at most one fixed point in B(x0, r).

Example 4. Let X = [0, ∞) and F(x) = ln x. Define T : X → X by

Tx =

{
x
2 if x ∈ [0, 1]

x2 if x ∈ (1, ∞)

and define d by

d(x, y) =

{
(x− y)2 if (x, y) ∈ [0, 1]× [0, 1]

|x− y| if (x, y) /∈ [0, 1]× [0, 1].
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It can be easily verified that d is an F -metric and functions f and F satisfy (F1)-(F2). Fix x0 = r = 1
2 ,

then B(x0, r) ⊂ [0, 1]. Clearly B(x0, r) is F -closed so condition (a) of Corollary 3 is satisfied. Now if
a = 3

4 , b = c = 0, then λ = a and

d(x0, x1) = d(x0, Tx0) = ( 1
2 −

1
4 )

2 = 1
16 <

(
1− 3

4
) 1

2 = (1− λ)r.

This shows that condition (c) is fulfilled. Furthermore, since f is an increasing function and λ < 1, for every
k ∈ N, we can find some ε < r and α ∈ [0, ∞) such that f

(
(1− λk+1)r

)
≤ f (ε)− α is satisfied, i.e., condition

(d) is fulfilled. Now if (x, y) ∈ B(x0, r)× B(x0, r), then

F
(
d(Tx, Ty)

)
= ln

( x
2 −

y
2
)2

< ln 3
4 (x− y)2

= F
(
ad(x, y) + bd(x, Tx) + cd(y, Ty)

)
where b = c = 0 with

τ ∈
(

0, ln 3
4 (x− y)2 − ln

( x
2 −

y
2
)2
)
= (0, ln 3).

Therefore, for all (x, y) ∈ B(x0, r)× B(x0, r), condition (b) is also satisfied. On the other hand, if (x, y) /∈
B(x0, r)× B(x0, r) e.g., x = 2 and y = 3, then

F
(
d(Tx, Ty)

)
= ln |22 − 32| > ln 3

4 |(2− 3)| = F(ad(x, y))

= F
(
ad(x, y) + bd(x, Tx) + cd(y, Ty)).

Hence, condition (b) holds only for B(x0, r) and not on X× X. Moreover, 0 ∈ B(x0, r) is the fixed point of T.

Corollary 4. Suppose ( f , α) ∈ B × [0, ∞), (F, τ) ∈ B × [0, ∞), (X, d) is an F -complete F -metric space.
Let S, T : X → X be self-mappings and κ ∈ [0, 1). Suppose that for x0 ∈ X and r > 0, the following conditions
are satisfied:

(a) B(x0, r) ⊆ X is F -closed,
(b) τ + F

(
d(Tx, Ty)

)
≤ F

(
κ
2 (d(x, Sx) + d(y, Ty))

)
, for all x, y ∈ B(x0, r),

(c) d(x0, x1) ≤ (1− λ)r, for x1 ∈ X and λ = κ
2−κ ,

(d) There exist 0 < ε < r such that f
(
(1− λk+1)r

)
≤ f (ε)− α, where k ∈ N.

Then S and T have at most one common fixed point in B(x0, r).

5. Fixed Points of Set-Valued Reich-Type F-Contractions in F -Metric Spaces

This section is concerned with the fixed points of set-valued Reich-type F-contractions in
F -metric spaces.

Definition 6. [1] Let (X, d) be a metric space. Let CB(X) be the family of all non-empty closed and bounded
subsets of X. Let H : CB(X)× CB(X)→ [0, ∞) be a function defined by

H(A, B) = max{sup
x∈A

D(x, B), sup
y∈B

D(y, A)} for all A, B ∈ CB(X),

where D(x, B) = inf{d(x, y) : y ∈ B}. Then H defines a metric on CB(X) called the Hausdorff metric induced
by d.

Definition 7. Let (X, d) be an F -metric space [23,24]. Suppose F ∈ B and H : CB(X)× CB(X)→ [0, ∞)

be the Hausdorff metric function defined in Definition 6. A mapping T : X → CB(X) is known as a set-valued
Reich-type F-contraction if there is some τ > 0 such that

2τ + F
(

H(Tx, Ty)
)
≤ F

(
ad(x, y) + bd(x, Tx) + cd(y, Ty)

)
(A)
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for (x, y) ∈ X× X and a, b, c ∈ [0, ∞) such that a + b + c < 1.

Theorem 5. Let (X, d) be an F -complete F -metric space and ( f , α) ∈ B × [0, ∞). If the mapping T : X →
CB(X) is a set-valued Reich-type F-contraction such that F is right continuous, then T has a fixed point in X.

Proof. Suppose for a fixed natural number n0, xn0 ∈ X. If xn0 ∈ Txn0 , then xn0 is the fixed point of T.
Let x0 be an initial guess in X. Choose a point x1 in X such that x1 ∈ Tx0 and x1 /∈ Tx1, continuing
in this manner, we can define a sequence (xn) such that xn+1 ∈ Txn and xn+1 /∈ Txn+1 for all n ≥ 0.
Assume that for xn in X, xn /∈ Txn for all n ≥ 0, then Txn−1 6= Txn. Since F is right continuous, there
exists some real value h > 1 such that

F
(
hH(Txn−1, Txn)

)
≤ F

(
H(Txn−1, Txn)

)
+ τ.

By (A), we have

2τ + F
(

H(Txn−1, Txn)
)
≤ F

(
ad(xn−1, xn) + bd(xn−1, Txn−1) + cd(xn, Txn)

)
.

Since
D(xn, Txn) ≤ H(Txn−1, Txn) < hH(Txn−1, Txn),

we have by (F1)

F
(

D(xn, Txn)
)
≤ F

(
hH(Txn−1, Txn)

)
≤ F

(
H(Txn−1, Txn)

)
+ τ. (12)

Since F is right continuous, we can write by Remark 1,

F
(

D(xn, Txn)
)
= inf

y∈Txn
F
(
d(xn, y)

)
.

We also have by (12),
inf

y∈Txn
F
(
d(xn, y)

)
≤ F

(
H(Txn−1, Txn)

)
+ τ. (13)

By (13), there exists xn+1 ∈ Txn such that

F
(
d(xn, xn+1)

)
≤ F

(
hH(Txn−1, Txn)

)
≤ F

(
H(Txn−1, Txn)

)
+ τ.

Thus

2τ + F
(
d(xn, xn+1)

)
≤ 2τ + F

(
H(Txn−1, Txn)

)
+ τ

≤ F
(
ad(xn−1, xn) + bd(xn−1, Txn−1) + cd(xn, Txn)

)
+ τ

≤ F
(
ad(xn−1, xn) + bd(xn−1, xn) + cd(xn, xn+1)

)
+ τ

≤ F
(
(a + b)d(xn−1, xn) + cd(xn, xn+1)

)
+ τ.

By (F1), letting λ = a+b
1−c , we write

d(xn, xn+1) <
a+b
1−c d(xn−1, xn) = λd(xn−1, xn),

which yields

d(xn, xn+1) < λd(xn−1, xn) < λ2d(xn−2, xn−1) < . . . < λnd(x0, x1), n ∈ N.
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Observe that

m−1

∑
k=n

d(xk, xk+1) < λn(1 + λ + λ2 + . . . + λm−n−1)d(x0, x1)

≤ λn

1−λ d(x0, x1), m > n.

Since limn→∞
λn

1−λ d(x0, x1) = 0, for any δ > 0 there exists some n′ ∈ N such that

0 < λn

1−λ d(x0, x1) < δ, n ≥ n′. (14)

Furthermore, assume ( f , α) ∈ B × [0, ∞) satisfies (d3) and let ε > 0 be fixed. By (F2), there is δ > 0
such that

0 < t < δ =⇒ f (t) < f (ε)− α. (15)

By (14) and (15), we write

f

(
m−1

∑
k=n

d(xk, xk+1)

)
≤ f

(
λn

1−λ d(x0, x1)
)
< f (ε)− α, m > n ≥ n′.

Using (d3) and the above inequality, we obtain

d(xn, xm) > 0, m > n > n′ =⇒ f (d(xn, xm)) < f (ε)

which shows
d(xn, xm) < ε, m > n ≥ n′.

This shows that the sequence (xn) is F -Cauchy in X. Since (X, d) is F -complete, there is some
z∗ ∈ X such that (xn) is F -convergent to z∗, i.e.,limn→∞ d(xn, z∗) = 0. We claim that z∗ ∈ Tz∗. If not,
i.e., d(z∗, Tz∗) > 0, then we can write

2τ + F
(
d(xn, Tz∗)

)
≤ 2τ + F

(
H(Txn−1, Tz∗)

)
≤ F

(
ad(xn−1, z∗) + bd(xn−1, Txn−1) + cd(z∗, Tz∗)

)
≤ F

(
ad(xn−1, z∗) + bd(xn−1, xn) + cd(z∗, Tz∗)

)
.

Using (F1) and letting n→ ∞, we get

(1− c)d(z∗, Tz∗) < 0,

which is a contradiction, hence d(z∗, Tz∗) = 0, i.e., z∗ is the fixed point of T.

Corollary 5. Suppose ( f , α) ∈ B × [0, ∞) and (X, d) is an F -complete F -metric space. Let T : X → CB(X)

be a Reich-type F-contraction such that F is right continuous. Suppose that for k ∈ [0, 1), there exist F ∈ B and
τ > 0 such that

τ + F
(
d(Tx, Ty)

)
≤ F

(
k
2 (d(x, Tx) + d(y, Ty))

)
with min{d(Tx, Ty), d(x, Tx), d(y, Ty)} > 0, for all (x, y) ∈ X× X. Then T has a fixed point in X.

6. Applications

In this part, we use the obtained results, to show the existence of a unique common solution of
functional equations in dynamic programming.

The problems of dynamic programming comprise two main parts. One is the state space, which is
a collection of parameters representing different states, including transitional states, initial states,
and action states. The other is the decision space that is the series of decisions taken to solve
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the problems. This setting formulates the problems of computer programming and mathematical
optimization. In particular, the problems of dynamic programming are transformed into the problems
of functional equations:

p(a) = sup
b∈B

{
G(a, b) + g1

(
a, b, p(η(a, b))

)}
for a ∈ A, (16)

q(a) = sup
b∈B

{
G(a, b) + g2

(
a, b, p(η(a, b))

)}
for a ∈ A, (17)

where U and V are Banach spaces such that A ⊆ U and B ⊆ V and

η : A× B→ A,

G : A× B→ R,

g1, g2 : A× B×R→ R.

Assume that the decision space and state space are A and B respectively. Our aim is to show
that the Equations (16) and (17) have at most one common solution. Suppose W(A) represents the
collection of all real-valued bounded mappings on A. Suppose that h is an arbitrary element of W(A)

and define ‖h‖ = supa∈A |h(a)|. Then (W(A), || · ||) is a Banach space along with the metric d given by

d(h, k) = sup
a∈A
|h(a)− k(a)|. (18)

Assume the following conditions hold true:

(C1) G, g1 and g2 are bounded.
(C2) For a ∈ A and h ∈W(A), define S, T : W(A)→W(A) by

Sh(a) = sup
b∈B
{G(a, b) + g1

(
a, b, h(η(a, b))

)
} for a ∈ A, (19)

Th(a) = sup
b∈B
{G(a, b) + g2

(
a, b, h(η(a, b))

)
} for a ∈ A. (20)

Clearly, if the functions G, g1 and g2 are bounded then S and T are well-defined.
(C3) For τ : R+ → R+, (a, b) ∈ A× B, h, k ∈W(A) and t ∈ A, we have

|g1
(
a, b, h(t)

)
−g2

(
a, b, k(t)

)
| ≤ e−τ M(h, k), (21)

where
M(h, k) = αd(h, k) + βd(h, Sh) + γd(k, Tk)

for α, β, γ ∈ [0, ∞) such that α + β + γ < 1, where min{d(Sh, Tk), M(h, k)} > 0.
Now we prove the following theorem.

Theorem 6. Suppose the conditions (C1)-(C3) hold, then the Equations (16) and (17) have at most one common
bounded solution.

Proof. By [6], we know that (W(A), d) is an F -complete F -metric space, where d is given by (18).
By (C1), S and T are self-mappings on W(A). Suppose λ is an arbitrary positive number and
h1, h2 ∈W(A). Take a ∈ A and b1, b2 ∈ B such that

Shj < G(a, bj) + g1
(
a, bj, hj(η(a, bj))

)
+ λ (22)

Thj < G(a, bj) + g2
(
a, bj, hj(η(a, bj))

)
+ λ (23)
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and

Sh1 ≥ G(a, b2) + g1
(
a, b2, h1(η(a, b2))

)
(24)

Th2 ≥ G(a, b1) + g2
(
a, b1, h2(η(a, b1))

)
. (25)

Then using (22) and (25), we get

Sh1(a)− Th2(a) < g1
(
a, b1, h1(η(a, b1))

)
− g2

(
a, b1, h2(η(a, b1))

)
+ λ

≤ |g1
(
a, b1, h1(η(a, b1))

)
− g2

(
a, b1, h2(η(a, b1))

)
|+ λ

≤ e−τ M
(
h1(a), h2(a)

)
+ λ.

Similarly, by (23) and (24), we get

Th2(a)− Sh1(a) < e−τ M
(
h1(a), h2(a)

)
+ λ.

Combining the above two inequalities, we get

|Sh1(a)− Th2(a)| < e−τ M
(
h1(a), h2(a)

)
+ λ

for all λ > 0. Hence
d(Sh1(a), Th2(a)) ≤ e−τ M(h1(a), h2(a))

that is,
d(Sh1, Th2) ≤ e−τ M(h1, h2)

for each a ∈ A. Taking logarithms, we have

ln d(Sh1, Th2) ≤ ln e−τ M(h1, h2)

This implies that the mapping F : R+ → R defined by F(a) = ln a is an element of B, and

τ + F(d(Sh1, Th2)) ≤ F(M(h1, h2)).

Now it is clear that all the conditions of Theorem 3 are fulfilled, so by applying Theorem 3, S and T
have at most one common and bounded solution of the Equations (16) and (17).

7. Conclusions

Our results extend and generalize the existence of fixed points of Reich-type F-contractions
in F -metric spaces and F -closed balls with relaxed conditions. We get fixed-point results of
set-valued Reich-type F-contractions. Finally, we applied the results to obtain a fixed-point theorem in
dynamic programming.

Author Contributions: The authors contributed equally to this work.

Funding: S.O. Kim was supported by Hallym University Research Fund, 2019 (HRF-201901-010).

Acknowledgments: The authors are very grateful to the anonymous reviewers for their valuable suggestions
which helped improving this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2019, 7, 586 13 of 13

References
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