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1 Department of Industrial Engineering, Faculty of Engineering, Dokuz Eylül University, Izmir 35397, Turkey
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Abstract: A new multiple attribute decision making (MADM) model was proposed in this paper in
order to cope with the temporal performance of alternatives during different time periods. Although
dynamic MADM problems are enjoying a more visible position in the literature, majority of the
applications deal with combining past and present data by means of aggregation operators. There is
a research gap in developing data-driven methodologies to capture the patterns and trends in the
historical data. In parallel with the fact that style of decision making evolving from intuition-based
to data-driven, the present study proposes a new interval type-2 fuzzy (IT2F) functions model in
order to predict current performance of alternatives based on the historical decision matrices. As the
availability of accurate historical data with desired quality cannot always be obtained and the data
usually involves imprecision and uncertainty, predictions regarding the performance of alternatives
are modeled as IT2F sets. These estimated outputs are transformed into interpretable forms by
utilizing the vocabulary matching procedures. Then the interactive procedures are employed to
allow decision makers to modify the predicted decision matrix based on their perceptions and
subjective judgments. Finally, ranking of alternatives are performed based on past and current
performance scores.

Keywords: dynamic multiple attribute decision making; fuzzy regression; interval type-2 fuzzy sets

1. Introduction

Managers are continuously engaged in a process of making decisions in a rapidly changing business
environment. Making right decisions is crucial in order to attain organizational goals and effective use of
resources. Quality of decisions relies heavily on the information processing capabilities by considering
multiple and conflicting criteria. With the dramatic increase in the availability of information obtained
from diverse set of resources, decision making becomes much more complicated and difficult. Multiple
attribute decision making (MADM) offers a set of sophisticated techniques to help decision makers in
selecting the best alternative by considering multiple, conflicting, and incommensurate criteria.

The field of MADM is rapidly expanding with the continuing proliferation of new techniques
and applications. Many state of the art methods have been proposed such as multi-attribute utility
theory (MAUT) [1–3], analytic hierarchy process (AHP) [4], analytic network process (ANP) [5],
technique for order preference by similarity to ideal solution (TOPSIS) [6], elimination and choice
translating reality (ELECTRE) [7], VlseKriterijumska Optimizacija I Kompromisno Resenje technique
(VIKOR) [8], and decision-making trial and evaluation laboratory (DEMATEL) [9]. Despite many
successful applications of the MADM methods currently available in the literature, the salient deficiency
of these methods is their incapability to handle temporal profiles of alternatives. Unfortunately, static
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MADM methods cannot deal with the temporal profiles of alternatives, that is, past performance
scores are not taken into consideration. In order to overcome this deficiency, data-driven, and dynamic
MADM methods have been developing along with diverse applications.

In the dynamic MADM, at least two-period decision making information is considered. In addition
to the alternative and criteria dimensions, time is considered as a third dimension in the dynamic
MADM. With the recent advances in the information technologies, data is becoming an indispensable
part of the decision making practices, which forces the pace of a paradigm shift towards data-driven
decision making. As ever-more data pour through the networks of organizations, collecting, and storing
performance scores of alternatives with time stamps are not cumbersome procedures anymore. As the
style of decision making evolving from intuition based to data-driven, the decision makers should be
supported with relevant methodologies and tools to fully capitalize the available data. However, it is
evident that the field of dynamic MADM is in its infancy and the current literature is far from meeting
the requirements of a fully-fledged data-driven methodology.

In one of the earliest works on the dynamic MADM, Kornbluth [10] discussed the problem of
time dependence of the criteria weights, and empirical laboratory findings were used for the analysis.
Decision making teams were monitored for 12 sequential decisions and the time-dependent weights
were analyzed based on different scenarios. Dong et al. [11] proposed a dynamic MADM method
based on relative differences between the performance scores of the subsequent time-periods. In the
study, disadvantages of using absolute differences were discussed and a numerical example was
provided. Lou et al. [12] proposed a dynamic MADM model to evaluate and rank country risks based
on historical data. The proposed model was aimed at predicting possible credit crises in advance.
The proposed model was applied to the world economy development indicators data of 32 countries.
The utilités additives discriminantes (UTADIS) method was used to rank country risk scores.

Despite many new developments, the literature of the dynamic MADM field is dominated by
the aggregation-operator based models. Campanella and Ribeiro [13] proposed a framework for
dynamic MADM where the aggregation operators were the main computation tools, and majority of
the studies in the literature employ this framework. Xu and Yager [14] proposed dynamic intuitionistic
fuzzy weighted averaging and uncertain dynamic intuitionistic fuzzy weighted averaging operators.
According to their model, decision matrices of the past periods are aggregated into a decision
matrix, and classical MADM techniques were implemented afterwards. Park et al. [15] proposed
dynamic intuitionistic fuzzy weighted geometric and uncertain dynamic intuitionistic fuzzy weighted
geometric operators for dynamic MADM problems. The past decision matrices were aggregated
and then the VIKOR method was used to rank the alternatives. Zhou et al. [16] hybridized dynamic
triangular fuzzy weighting average operators with fuzzy VIKOR method for quality improvement
pilot program selection. Dynamic feedbacks of the customers were also incorporated into the proposed
model. Bali et al. [17] employed dynamic intuitionistic fuzzy weighted averaging method with
TOPSIS for multi-period third-party logistics provider selection problem. Chen and Li [18] proposed
a new distance measure for triangular intuitionistic fuzzy sets with an application in dynamic
MADM. The weighted arithmetic averaging operator for triangular intuitionistic fuzzy numbers was
used to aggregate the decision matrices of the past periods. The ranking orders were obtained by
using closeness coefficients. An investment decision making was used to illustrate the proposed
method. Liang et al. [19] employed evidential reasoning approach to aggregate decision matrices with
incomplete information. The enterprise evaluation in a technological zone was used to illustrate the
model. Bali et al. [20] proposed an integrated model based on AHP and dynamic intuitionistic fuzzy
weighted averaging operator under an intuitionistic fuzzy environment. The proposed model was
implemented in a personnel promotion problem.

In some of the studies, the aggregation operators were not used to aggregate the decision matrices
of the past periods at the very beginning. Xu [21] proposed dynamic weighted geometric aggregation
operator along with an illustrative three-period investment decision making model. Rather than
aggregating the decision matrices of the past periods, aggregation was conducted based on the
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closeness coefficients of the different periods. Zulueta et al. [22] proposed discrete time variable index
by admitting bipolar values in the aggregation. A five-period supplier selection problem was used to
illustrate the proposed aggregation operator. Lin et al. [23] used grey numbers and Minkowski distance
in dealing with dynamic subcontractor selection problem. The proposed method calculated the period
weighted distances to the ideal and anti-ideal solutions. Similar aggregation operator-based studies in
the literature, which utilize intuitionistic fuzzy numbers [24,25], 2-tuple linguistic representation [26–30],
grey numbers [31,32], etc. can be found. For more information about dynamic aggregation operators,
we refer to a review paper [33]. On the other hand, non-aggregation operator based studies can
be summarized as follows: Saaty [34] studied time-dependent eigenvectors and approximating
functional forms of relative priorities in dynamic MADM. Hashemkhani Zolfani et al. [35] emphasized
the relevance and necessity of future studies in MADM problems. In the paper, scenario-based MADM
papers were reviewed and analyzed. Possible changes in the experts’ evaluations were expressed
by using probabilities. Orji and Wei [36] integrated fuzzy logic and system dynamics simulation to
sustainable supplier selection problem. Very recently, Baykasoğlu and Gölcük [37] proposed a dynamic
MADM model by learning of fuzzy cognitive maps. In the study, fuzzy cognitive maps were trained
by using a metaheuristic algorithm in order to capture patterns and trends in the past data. Then,
the trained model was used to generate short-, medium-, and long-term future decision matrices.
Finally, past, current and future decision matrices were used to rank the alternatives. The proposed
model was realized in a real-life supplier selection problem.

Although a wide range of applications have been provided in the context of dynamic MADM,
the literature still lacks the following considerations:

• Decision makers are expected to fill out tedious questionnaires to articulate their preferences over
alternatives at each period. This is especially very time consuming and demanding when the
number of criteria and alternatives are high, and the decision points are frequent, i.e., performance
evaluation, risk assessment, etc.

• The models do not provide any mechanism to help decision makers making use of past decision
making matrices when articulating their preferences at the current period. An interactive
mechanism is needed to facilitate preference elicitation in the light of historical performance
of alternatives.

Due to the availability of accurate historical data with high quality and quantity cannot always
be assured and the data is usually affected by imprecision and noise, the predictions regarding the
performance of alternatives should handle uncertainty properly. Interval type-2 fuzzy (IT2F) sets
are very suitable tools for manipulating and reasoning with uncertain information. For that reason,
the present study makes use of IT2F regression [38] to predict the current decision matrix. In order to
enhance the prediction capability of the IT2F regression, a new hybrid IT2F model is proposed on the
basis of highly practical method of so called “fuzzy functions” [39]. The proposed model is able to
capture nonlinearities more successfully than the traditional fuzzy regression models, due to its unique
and intelligent way of integrating membership grades of data points into the prediction problem.

The proposed dynamic MADM model contributes to the literature with its following features:

• A dynamic MADM model is proposed based on a new IT2F functions approach.
• An interactive procedure is provided that the current decision making matrix is predicted in

forms of IT2F sets. Moreover, vocabulary matching procedure is developed so that the predicted
performance scores of alternatives are recommended to the decision makers through linguistic
terms such as low, medium, high, etc.

• The proposed model interacts with decision makers whose subjective judgments are combined
with the notion of “let the data speak for itself”. By providing decision makers with data-driven
suggestions regarding the performance of alternatives, preference elicitation effort at each period
is considerably reduced.
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• The proposed model does not require any technical knowledge such as fuzzy sets, t-norms,
t-conorms, implication functions, etc. The proposed model can be easily integrated into the legacy
systems of the firms, since the crisp values are processed when providing IT2F outputs.

• A real-life personnel promotion problem is used to demonstrate the applicability of the proposed
model. Rankings of employees are calculated based on past and current performance matrices
with appropriate time series weights.

This paper is organized as follows: Theoretical background on the methodologies used within the
scope of this paper is given in Section 2. The proposed model is provided in Section 3. The real life
application of the proposed dynamic MADM model is illustrated in Section 4. Discussions are given in
Section 5. Concluding remarks are given in Section 6.

2. Theoretical Background

2.1. Traditional Dynamic Multiple Attribute Decision Making

A dynamic MADM problem under study can be described as follows. Let A = {A1, A2, . . . , AM} be
a discrete set of M feasible alternatives and C = {C1, C2, . . . , CN} be a finite set of all attributes. The set
of all periods is denoted by t = {t1, t2, . . . , tH}. Each alternative is evaluated in terms of N attributes
and H periods. Each period is associated with weights that these time series weights are denoted by
ξ(t) = [ξ(t1), ξ(t2), . . . , ξ(tH)]

T where ξ(tH) ≥ 0 and
∑H

k=1 ξ(tk) = 1. The weight vector of attributes
are given by [w1(tk), w2(tk), . . .wN(tk)]

T where wi(tk) ≥ 0 and
∑N

i=1 wi(tk) = 1. The decision matrix at
the period tk is denoted by A(tk) =

(
ai j(tk)

)
N×M

where ai j(tk) is the value of alternative A j with respect
to attribute Ci at period tk. Let Ωb and Ωc be the set of benefit and cost attributes, respectively. Due to
the immensurability of the different attributes, decision matrix A(tk) is normalized to corresponding
dimensionless decision matrix R(tk) =

(
ri j(tk)

)
N×M

by using the following formulas:

ri j(tk) =
ai j(tk)

max j
{
ai j(tk)

} , j = 1, 2, . . . , M; k = 1, 2, . . . , H; i ∈ Ωb, (1)

ri j(tk) =
min j

{
ai j(tk)

}
ai j(tk)

, j = 1, 2, . . . , M; k = 1, 2, . . . , H; i ∈ Ωc, (2)

Hence, the normalized decision matrix is obtained as:

R(tk) =


r11(tk) r12(tk) · · · r1M(tk)

r21(tk) r22(tk) · · · r2M(tk)
...

...
. . .

...
rN1(tk) rN2(tk) · · · rNM(tk)

. (3)

The overall assessment value of the jth alternative is calculated by:

y j =
H∑

k=1

N∑
i=1

ξ(tk)wi(tk)ri j(tk), j = 1, 2, . . . , M. (4)

Therefore, alternatives are ranked based on y j in which the best alternative is with the highest
overall assessment value.

2.2. Possibilistic Fuzzy Regression

In this section, possibilistic fuzzy regression analysis with asymmetric fuzzy numbers is
overviewed based on [38]. Although there are a variety of fuzzy regression approaches developed
during the last two decades, regression models relying on possibility and necessity concepts have
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pivotal role in the current literature. Possibilistic models strive to minimize sum of spreads in such
a way that the estimated outputs must include the given targets. It is indeed advantageous to have
asymmetric fuzzy numbers in possibilistic models as the lower and upper bounds of the estimated
model are not necessarily equidistant from the center, which implies superior capability to capture
central tendency. A fuzzy regression model can be formalized as:

Y(x) = β̃0 + β̃1x1 + · · ·+ β̃nvxnv = β̃x, (5)

where the input vector is represented by x = (1, x1, . . . , xnv)
t and β̃ =

(
β̃0, β̃1, . . . , β̃nv

)
is a vector of fuzzy

coefficients, and Y(x) is the estimated fuzzy output. The coefficients β̃i are denoted as β̃i = (ai, ci, di)

can be defined by:

µAi(x) =


1− (ai − x)/ci, if ai − ci ≤ x ≤ ai

1− (x− ai)/di, if ai ≤ x ≤ ai + di

0, otherwise

, (6)

where ai represents center, and ci and di left- and right-spreads, respectively.
Given the input-output data as

(
x j, y j

)
=

(
1, x j,1, . . . , x j,nv; y j

)
, j = 1, 2, . . . , nd, where x j,nv being

value of the variable nv of the j-th data-point among the total of nd data-points, the estimated output
Y(x j) can be calculated by using fuzzy arithmetic. Representing regression coefficients as β̃i = (ai, ci, di),
(i = 0, 1, . . . , nv), fuzzy regression model can be expressed as:

Y(x j) = (a0, c0, d0) + (a1, c1, d1)x j,1 + · · ·+ (an, cn, dn)x j,nv. (7)

Equation (7) can be written in a more compact form as given in Equation (8).

Y(x j) =
(
θC

(
x j

)
,θL

(
x j

)
,θR

(
x j

))
, (8)

where the terms θC
(
x j

)
,θL

(
x j

)
,θR

(
x j

)
, are calculated as given in Equation (9).

θC
(
x j

)
=

n∑
i=0

aix ji

θL
(
x j

)
=

n∑
x ji≥0

cix ji−
n∑

x ji<0
dix ji

θR
(
x j

)
=

n∑
x ji≥0

dix ji−
n∑

x ji<0
cix ji

. (9)

Finally, the possibilistic fuzzy regression model can be written as:

J =
nd∑
j=1

(
y j − atx j

)2
+ (1− h)

nd∑
j=1

(
ct
∣∣∣x j

∣∣∣+ dt
∣∣∣x j

∣∣∣)+ ξ
(
ctc + dtd

)
subject to θC(x j) + (1− h)θR(x j) ≥ y j

θC(x j) − (1− h)θL(x j) ≤ y j
ci ≥ 0, di ≥ 0, i = 0, 1, . . . , nv

, (10)

where ξ is a small positive number. The term ξ
(
ctc + dtd

)
is added to objective function so that

the objective function becomes a quadratic function with respect to decision variables a, c, and d.
The resulting optimization problem is a quadratic optimization problem, which involves minimizing a
quadratic objective function subject to linear constrains. The possibilistic fuzzy regression analysis will
be detailed in the subsequent sections.
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2.3. Turksen’s Fuzzy Functions Approach

Turksen [39] proposed a new fuzzy modeling technique as an alternative to classical fuzzy rule
bases (FRB). Fuzzy rule bases (FRB) have been effectively used as a facilitator to decision makers’
problem solving activities. FRBs are the one of the best currently available means to codify human
knowledge. This knowledge is represented by “IF . . . THEN” rule structures. The “IF” part represents
the antecedents and “THEN” part represents consequents. In the literature, there are different FRB
system modeling strategies with unique antecedent and consequent parameter formation approaches.
In these systems, membership values have also different interpretations such as “degree of fire”, “degree
of compatibility”, “degree of belongingness”, or “weight or strength of local functions”. The fuzzy
functions approach adds a new means of membership degrees to the list by exploiting the predictor
power of membership grades [40].

The representation of each unique rule of an FRB system by means of fuzzy functions is the
governing idea of the fuzzy functions approach. In the fuzzy functions approach, the membership
degree of each sample vector directly affects the local fuzzy functions. One of the advantages of the
fuzzy functions approach is that even non-experts can build fuzzy models as there are lower steps and
parameters. It is quite practical to identify and reason with the fuzzy functions approach that some
technical information regarding constructing fuzzy system models is not required such as fuzzification,
t-norms and t-conorms, modus ponens, etc.

A vast array of fuzzy modeling approaches has been developed in the literature where the
expert knowledge is encoded to define linguistic variables characterized by fuzzy sets. However,
majority of the approaches suffers from a major drawback of being subjective and not generalizable.
In order to reduce expert intervention into fuzzy system modeling, more objective methods have
been developed [41–45]. In these systems, membership grades are not defined by decision makers,
on the contrary, they are extracted from the dataset. There are also some approaches where some
sophisticated techniques are integrated into fuzzy models so that the hybrid fuzzy system models
are built. The prominent examples of these methods are neuro-fuzzy systems [46] and genetic-fuzzy
systems [47].

There are still enduring challenges in the mentioned fuzzy system modeling approaches. Main
disadvantages of the classical fuzzy system modeling approaches can be listed as follows:

• Membership functions pertaining to antecedent and consequent parts of the fuzzy rules should
be identified.

• Aggregation of antecedents requires selection of suitable conjunction and disjunction operators
(t-norms, t-conorms).

• Proper implication operators should be identified for representation of the rules, which can be a
challenging issue.

• A suitable defuzzification method should be identified.

The fuzzy functions approach mainly reduces the number of fuzzy operators by taking advantage
of data-driven modeling. For instance, fuzzy operators in determination of the membership functions in
antecedents and consequents, fuzzification, aggregation of antecedents, implication, and in aggregation
of consequents. It can be said that the fuzzy functions are more practical than their counterpart FRB
models. Fuzzy function can be simply described as follows:

The training dataset is partitioned into c overlapping clusters where each cluster center is
represented by vi, i = 1, 2, . . . , c.

For each one of the clusters, a local fuzzy model fi : vi →< is built and one output is produced
for each cluster. Here, memberships and their several transformations are added into the input space
and the augmented input matrix is generated. Membership grades and their transformations are
considered as new variables in the regression matrix. Practically, least square estimation is used to
derive regression coefficients. Then, degree of belongingness of each given input vector is used to
aggregate the local model outputs and the estimated values are produced.
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General steps of the fuzzy functions approach can be given as:
Step 1: Matrix Z comprises of inputs and output of the system. Inputs and output of the system

are clustered by using the fuzzy c-means clustering algorithm. Fuzzy c-means clustering method can
be applied by using the formulas given as:

vi =

nd∑
j=1

µm
ij z j

nd∑
j=1

µm
ij

, i = 1, 2, . . . , c, (11)

µi j =
1

c∑
h=1

(
‖vi−z j‖

‖vh−z j‖

) 2
m−1

, i = 1, 2, . . . , c; j = 1, 2, . . . , nd, (12)

where ‖.‖ represents the Euclidean distance between data point z j to cluster center vi.
Step 2: In the second step, membership values of the input space are calculated. Here, the cluster

centers identified in the previous step are used to calculate membership grades of the input data.
Membership construction from the identified cluster centers is performed based on Equation (13).

µi j =
1

c∑
h=1

(
‖vi−x j‖

‖vh−x j‖

) 2
m−1

, i = 1, 2, . . . , c; j = 1, 2, . . . , nd. (13)

Step 3: For each cluster i, membership values of each input data sample, µi j and original inputs
are gathered together, and i-th local fuzzy function is obtained by predicting Y(i) = X(i)β(i) + ε(i) based
on least squares estimation. When the number of inputs is nv, X(i), and Y(i) matrices are as follows:

X(i) =


µi,1 x1,1 · · · xnv,1

µi,2 x1,2 · · · xnv,2
...

...
. . .

...
µi,nd x1,nd · · · xnv,nd

, Y(i) =


y1

y2
...

ynd

. (14)

Step 4: Output values are calculated by aggregating the results of the local fuzzy functions
as follows:

ŷ j =

∑c
i=1 ŷi jµi j∑c

i=1 µi j
, j = 1, 2, . . . , nd. (15)

3. Developed IT2F Model

In this section, the developed IT2F model for dynamic MADM problems is given. First, the basics
of the IT2F sets and necessary equations are overviewed. Afterwards, the IT2F regression model is
revisited based on [38]. Then, the procedural steps of the proposed dynamic MADM model are given.

3.1. Interval Type-2 Fuzzy Sets

Definition 1 ([48,49]). A type-2 fuzzy set ˜̃A in the universe of discourse X can be represented by a type-2
membership function µ ˜̃A as:

˜̃A =
{
((x, u), µ ˜̃A(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1], 0 ≤ µ ˜̃A(x, u) ≤ 1

}
, (16)
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where Jx denotes an interval in [0,1]. Moreover, type-2 fuzzy set ˜̃A can also be represented as:

˜̃A =

∫
x∈X

∫
u∈Jx

µ ˜̃A(x, u)/(x, u), (17)

where Jx ⊆ [0, 1] and
∫ ∫

denotes union over all admissible x and u.

Definition 2 ([48,49]). Let ˜̃A be a type-2 fuzzy set in the universe of discourse X represented by the type-2
membership function µ ˜̃A. If all µ ˜̃A(x, u) = 1, then ˜̃A is called an IT2F set. An IT2F set ˜̃A, which can be regarded
as a special case of a type-2 fuzzy set, is represented as follows:

˜̃A =

∫
x∈X

∫
u∈Jx

1/(x, u), (18)

where Jx ⊆ [0, 1].
The footprint of uncertainty (FOU) is represented by the lower and upper membership functions:

FOU( ˜̃A) =

∫
x∈X

[
µ

Ã
(x),µÃ(x)

]
, (19)

where µ
Ã
(x) and µÃ(x) represent lower and upper membership functions, respectively.

Definition 3 ([50]). An IT2F set ˜̃A is said to be normal if supµÃ(x) = 1 and supµ
Ã
(x) = h < 1, where

h represents the height of the lower membership function. An IT2F set ˜̃A is said to be perfectly normal if
supµÃ(x) = supµ

Ã
(x) = 1.

In this study, perfectly normal IT2F sets were employed so that the basic definitions and operational
laws regarding perfectly normal triangular IT2F sets were overviewed.

Considering perfectly normal triangular IT2F numbers ˜̃A =
(
A, A

)
=

(
(a1, a2, a3; 1)

(
a1, a2, a3; 1

))
and ˜̃B =

(
b, b

)
=

((
b1, b2, b3; 1

)(
b1, b2, b3; 1

))
, their operational laws are as follows [51]:

˜̃A⊕ ˜̃B =


(
a1 + b1, a2 + b2, a3 + b3; 1

)
,(

a1 + b1, a2 + b2, a3 + b3; 1
) , (20)

˜̃A	 ˜̃B =


(
a1 − b3, a2 − b2, a3 − b1; 1

)
,(

a1 − b3, a2 − b2, a3 − b1; 1
) , (21)

˜̃A⊗ ˜̃B =


(
a1 × b1, a2 × b2, a3 × b3; 1

)
,(

a1 × b1, a2 × b2, a3 × b3; 1
) , (22)

˜̃A� ˜̃B =


(
a1/b3, a2/b2, a3/b1; 1

)
,(

a1/b3, a2/b2, a3/b1; 1
) , (23)

k× ˜̃A =


(
(k× a1, k× a2, k× a3; 1)

(
k× a1, k× a2, k× a3; 1

))
, k ≥ 0(

(k× a3, k× a2, k× a1; 1)
(
k× a3, k× a2, k× a1; 1

))
, k ≤ 0

. (24)
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Definition 4. The ranking value Rank( ˜̃A) of a IT2F set ˜̃A =
(
A, A

)
can be defined via the concept of centroid

as [52]:

CL
˜̃A
= min

ξ∈[a,b]

∫ ξ
a xµA(x)dx +

∫ b
ξ

xµ
A
(x)dx∫ ξ

a µA(x)dx +
∫ b
ξ
µ

A
(x)dx

, (25)

CR
˜̃A
= max

ξ∈[a,b]

∫ ξ
a xµ

A
(x)dx +

∫ b
ξ

xµA(x)dx∫ ξ
a µA

(x)dx +
∫ b
ξ
µA(x)dx

, (26)

where CL
˜̃A

and CR
˜̃A

are the endpoints of the centroid. The ranking value of the IT2F set ˜̃A is calculated as:

Rank( ˜̃A) =
CL

˜̃A
+ CR

˜̃A
2

, (27)

where Rank( ˜̃A) is the centroid-based ranking value of ˜̃A.

Definition 5 ([53]). The Jaccard similarity measure for fuzzy sets ˜̃A and ˜̃B is defined by

SM
( ˜̃A, ˜̃B

)
=

∫
X min

(
µA(x),µB(x)

)
dx +

∫
X min

(
µ

A
(x),µ

B
(x)

)
dx∫

X max
(
µA(x),µB(x)

)
dx +

∫
X max

(
µ

A
(x),µ

B
(x)

)
dx

, (28)

where SM represent similarity degree of fuzzy sets with respect to Jaccard measure.

3.2. IT2F Regression Model

In this section, IT2F regression model is revisited based on [38]. IT2F regression model will be
utilized within the fuzzy functions approach [39] in order to increase its performance in the next section.
In this section, the necessary equations are derived for IT2F regression in a step-by-step approach.
IT2F regression models can be constructed based on the concepts of possibility and necessity. Here,
possibility and necessity concepts are used to build an upper approximation model (UAM) and lower
approximation model (LAM), respectively [54]. Building an integrated model, UAM and LAM are
used to form upper and lower membership functions of the IT2F coefficients, respectively.

In mathematical terms, LAM and UAM models can be written as:

LAM : Ỹ∗(x j) = β̃∗0 + β̃∗1x j1 + · · ·+ β̃∗nx j,nv = β̃∗x j, j = 1, . . . , nd
UAM : Ỹ∗(x j) = β̃∗0 + β̃∗1x j1 + · · ·+ β̃∗nx j,nv = β̃∗x j, j = 1, . . . , nd

, (29)

where coefficients β̃∗ j and β̃∗j are non-symmetric triangular fuzzy numbers. The regression coefficients

β̃∗ j and β̃∗j are shown in Figure 1.

As shown in Figure 1, β̃∗i and β̃∗i can be defined as:

β̃∗i = (bi − fi, bi, bi + gi; 1)

β̃∗i = (bi − fi − pi, bi, bi + gi + qi; 1)
, (30)

where the condition β̃∗i ⊇ β̃∗i, is satisfied for i = 0, . . . , nv.
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In order to increase readability of the formulations, conventional representation of the literature is
adopted here, where (center, left_spread, right_spread) is used to show the LAM and UAM as given
by β̃∗i = (bi, fi, gi) and β̃∗i = (bi, fi + pi, gi + qi), respectively.

The inclusion relation between β̃∗i and β̃∗i can be extended to Ỹ∗(x j) and Ỹ∗(x j), that is:

Ỹ∗(x) ⊇ Ỹ∗(x) for any x = (1, x1, . . . , xnv)
t if β̃∗i ⊇ β̃∗i. (31)

Using the coefficients of the LAM model Ã∗i = (bi, fi, gi), Ỹ∗(x j) can be expressed as:

Ỹ∗(x j) = (b0, f0, g0) + (b1, f1, g1)x j1 + · · ·+ (bnv, fnv, gnv)x j,nv

=

 n∑
i=0

bix ji,
∑

x ji≥0
fix ji −

∑
x ji≤0

gix ji,
∑

x ji≥0
gix ji −

∑
x ji≤0

fix ji,


=

(
btx j,θ∗L(x j),θ∗R(x j)

) , (32)

where b = (b0, b1, . . . , bnv)
t.

Similarly, Ỹ∗(x j) can be expressed as:

Ỹ∗(x j) = (b0, f0, g0) + (b1, f1 + p1, g1 + q1)x j1 + · · ·+ (bnv, fnv + pnv, gnv + qnv)x jnv

=

 nv∑
i=0

bix ji,
∑

x ji≥0
fix ji +

∑
x ji≥0

pix ji −
∑

x ji≤0
gix ji −

∑
x ji≤0

qix ji,
∑

x ji≥0
gix ji +

∑
x ji≥0

qix ji −
∑

x ji≤0
fix ji −

∑
x ji≤0

pix ji,


=

(
btx j,θ∗L(x j),θ∗R(x j)

) . (33)

As the possibility and necessity concepts were employed, observed outputs were transformed
into granular constructs by admitting a tolerance level for the left- and right-spreads. A user-defined
tolerance_level was set, thereby possibilistic relationships between observed and estimated outputs
could be defined. Generally, tolerance_level is a percentage type, i.e., assigning 20% of each output y j
as the corresponding spread. In this study, left- and right-spreads of the observed outputs were called
tolerance levels. The tolerance level for the jth data-point is denoted by e j.

The possibilistic model states that the resulting output from the UAM should cover all of the
observed data-points within the given tolerance- and h-level. In other words,

[
Ỹ∗(x j)

]
h

should approach
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to
[
Y j

]
h

from the upper side; i.e.,
[
Ỹ∗(x j)

]
h

should be the least interval among all feasible solutions.
This brings up the following constraints:

[
Ỹ∗(x j)

]
h
⊇

[
Y j

]
h
⇔

{
btx j + (1− h)θ∗R(x j) ≥ y j + (1− h)e j
btx j − (1− h)θ∗L(x j) ≤ y j − (1− h)e j

}
, j = 1, . . . , nd

f ≥ 0, g ≥ 0, p ≥ 0, q ≥ 0,
, (34)

where x j =
(
1, x j,1, x j,2, . . . , x j,nv

)
, j = 1, . . . , nd and the term x j,nv denotes the value of the variable nv of

the jth data point.
On the other hand, according to necessity model, the h-level set of the Ỹ∗(x j) should be included

in the h-level set of the given output Y j. In other words,
[
Ỹ∗(x j)

]
should approach to

[
Y j

]
h

from the

lower side, i.e.,
[
Ỹ∗(x j)

]
should be the greatest interval among all feasible solutions. This can be written

in a constraint form as:[
Ỹ∗(x j)

]
h
⊆

[
Y j

]
h
⇔

{
btx j + (1− h)θ

∗R(x j) ≤ y j + (1− h)e j
btx j − (1− h)θ

∗L(x j) ≥ y j − (1− h)e j

}
, j = 1, . . . , nd

f ≥ 0, g ≥ 0, i = 0, . . . , n
. (35)

Integrating the possibility and necessity models by taking into account the inclusion relation[
Ỹ∗(x j)

]
h
⊆

[
Ỹ∗(x j)

]
h

a quadratic programming formulation of the IT2F regression model is
formulated as:

min
b,f,g,p, q

J =
nd∑
j=1

(
y j − btx j

)2
+ (1− h)

nd∑
j=1

(
pt
|x j|+ qt

|x j|
)
+ ξ

(
ftf + gtg + ptp + qtq

)

Subject to


btx j + (1− h)θ∗R(x j) ≥ y j + (1− h)e j
btx j − (1− h)θ∗L(x j) ≤ y j − (1− h)e j
btx j + (1− h)θ

∗R(x j) ≤ y j + (1− h)e j
btx j − (1− h)θ

∗L(x j) ≥ y j − (1− h)e j


f ≥ 0, g ≥ 0, p ≥ 0, q ≥ 0

, j = 1, . . . , nd
, (36)

where ξ is a small positive number. The term ξ
(
ftf + gtg + ptp + qtq

)
is inserted into the objective

function so that the objective function becomes a quadratic function with respect to decision variables
b, f, g, p, and q. The obtained UAM and LAM by solving the above integrated quadratic programming
model always satisfy inclusion relation Y∗(x) ⊆ Y∗(x) at the h-level.

3.3. Dynamic MADM Model via Proposed IT2F Functions

In this section, the proposed IT2F functions approach was given in a step-by-step manner.
The flowchart of the proposed model is illustrated in Figure 2.
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3.3.1. Phase-I: Problem Structuring

Step 1: Problem-framing: In this step, a group of experts decided on the objective of the study,
and the attributes and alternatives were identified. Here, expert opinions and the literature surveys
helped to arrive at problem-framing.

Step 2: Obtaining historical data: Historical records were identified and the past data were fetched
from the databases. Past data contained performance values of alternatives with respect to attributes
at different periods as given in Equation (37).

A(t1) =


a11(t1) a12(t1) · · · a1M(t1)

a21(t1) a22(t1) · · · a2M(t1)
...

...
. . .

...
aN1(t1) aN2(t1) · · · aNM(t1)

, . . . , A(tH) =


a11(tH) a12(tH) · · · a1M(tH)

a21(tH) a22(tH) · · · a2M(tH)
...

...
. . .

...
aN1(tH) aN2(tH) · · · aNM(tH)

, (37)

where A(t1) and A(tH) are the decision matrices at the first and last period of the historical
data, respectively.

This data can be unstructured so that the preprocessing is required.
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Step 3: Preprocessing of historical data: In order to ensure accurate and meaningful analysis,
data cleaning and preprocessing techniques are implemented in this step. Bad or missing data are
eliminated by removing or replacing. Abrupt changes and local optima values are also identified.
Smoothing or de-trending methods can be applied to remove noise.

Moreover, the historical decision making matrices are arranged as time series data. Here, for each
alternative and attribute pair, time series data are formed. Mathematically speaking, the performance
scores for a particular alternative and attribute

(
ai j(t1), ai j(t2), . . . , ai j(tH)

)
are collected from each period

and the time series y = (y1, y2, . . . , yH)
t is formed, where the number of points is equal to number of

periods H.
Then, the lagged matrices are constructed where number of lagged periods is denoted by p.

Note that jth data point in the input matrix x j =
(
xt−1, j, xt−2, j, . . . , xt−p, j

)t
will be used to estimate y j,

j = 1, 2, . . . , nd, where nd is equal to H − p. The inputs and the outputs of the system are given as:

X =


xt−1,1 xt−2,1 · · · xt−p,1

xt−1,2 xt−2,2 · · · xt−p,2
...

...
. . .

...
xt−1,nd xt−2,nd · · · xt−p,nd

, Y =


y1

y2
...

ynd

, (38)

where xt−p,nd represents the value of variable t− p of the data point nd.
Let the number of past decision matrices are four, and the lagged periods are determined as

two. Suppose that decision makers are concerned with the past performance of the second alternative
with respect to the first attribute. The corresponding time series data, input and output matrices are
illustrated in Table 1.

Table 1. Illustration of the four-period example.

Period Past Decision Matrices Corresponding
Time Series Input Matrix Output Matrix

t1
A1 A2 A3

C1
[
· · · a12(t1) = 5 · · ·

]


y1 = 5
y2 = 3
y3 = 6
y4 = 8


X =

[
y1 y2
y2 y3

]
=

[
5 3
3 6

] Y =

[
y3
y4

]
=

[
6
8

]t2
A1 A2 A3

C1
[
· · · a12(t2) = 3 · · ·

]
t3

A1 A2 A3

C1
[
· · · a12(t3) = 6 · · ·

]
t4

A1 A2 A3

C1
[
· · · a12(t4) = 8 · · ·

]
Note that because the lagged periods are two, number of data points is H − p = 4− 2 = 2.

3.3.2. Phase-II: Training of Fuzzy Functions Approach

Step 4: Determining parameters of the IT2F functions model: In this step, parameters of the fuzzy
c-means clustering algorithm were determined. The number of clusters c, fuzzification coefficient m,
lagged_periods, and tolerance_level for calculating possibility- and necessity-based constraints in IT2F
regression were defined.

Step 5: Performing fuzzy c-means clustering to input-output model: In this step, inputs and
outputs of the system were used to carry out fuzzy c-means clustering. Having the inputs of the system
in the form of lagged variables, the next step was to form the input–output matrix Z. The matrix
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Z = (X, Y) is composed of the input matrix X and output matrix Y. Then, elements of the Z matrix z j
were clustered by using the FCM algorithm. FCM was applied by using the following formulas:

vi =

nd∑
k=1

µm
ij z j

nd∑
j=1

µm
ij

, i = 1, 2, . . . , c, (39)

µi j =
1

c∑
h=1

(
‖vi−z j‖

‖vh−z j‖

) 2
m−1

, i = 1, 2, . . . , c; j = 1, 2, . . . , nd, (40)

where ‖.‖ represents the Euclidian distance.
Step 6: Generating augmented input matrices: The augmented input matrix is obtained by adding

memberships and their transformations into the original input matrix. Based on the cluster centers
found in the Step 5, membership values of the input space are calculated as:

µi j =
1

c∑
h=1

(
‖vi−x j‖

‖vh−x j‖

) 2
m−1

, i = 1, 2, . . . , c; j = 1, 2, . . . , nd, (41)

where x denotes the input matrix.
Membership values of each input data sample,µi j and their transformations are augmented to the

original input matrix for the ith cluster as:

φi =



1 µi,1 exp(µi,1) (µi,1)
p xt−1,1 · · · xt−p,1

1
...
1

µi,2
...
µi, j

exp(µi,2)
...

exp(µi, j)

(µi,2)
p

...
(µi, j)

p

xt−1,2
...

xt−1, j

· · ·

...
· · ·

xt−p,2
...

xt−p, j
...

...
...

...
...

. . .
...

1 µi,nd exp(µi,nd) (µi,nd)
p xt−1,nd · · · xt−p,nd


, (42)

where j-th data point is represented by φi, j =
(
1,µi, j, exp(µi, j),µ2

i, j, xt−1, j, . . . , xt−p, j

)t
.

The schematic representation of the proposed IT2F functions is given in Figure 3.Mathematics 2019, 7, 584 14 of 31 
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Step 9: Aggregating local IT2F functions: Finally, outputs of the local fuzzy functions i

y  are 
weighted by the corresponding membership values and predicted IT2F output is calculated: 
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Step 7: Solving quadratic programming model for each cluster: Fuzzy regression coefficients are
calculated for each cluster by solving a quadratic programming model:

min
b,f,g,p, q

J =
nd∑
j=1

(
y j − btφi, j

)2
+ (1− h)

nd∑
j=1

(
pt
|φi, j|+ qt

|φi, j|
)
+ ξ

(
ftf + gtg + ptp + qtq

)

Subject to


btφi, j + (1− h)θ∗R(φi, j) ≥ y j + (1− h)e j
btφi, j − (1− h)θ∗L(φi, j) ≤ y j − (1− h)e j
btφi, j + (1− h)θ

∗R(φi, j) ≤ y j + (1− h)e j
btφi, j − (1− h)θ

∗L(φi, j) ≥ y j − (1− h)e j


f ≥ 0, g ≥ 0, p ≥ 0, q ≥ 0

, j = 1, . . . , nd
, (43)

where regression coefficients are IT2F numbers represented by ˜̃β = ((b, f + p, g + q), (b, f, g)),
Step 8: Collecting predictions of local fuzzy functions: Predicted output values are calculated as:

˜̃yi = φi ⊗
˜̃βi, (44)

where ˜̃yi =
(

˜̃yi,1, ˜̃yi,2, . . . , ˜̃yi, j, . . . , ˜̃yi,nd

)t
, ˜̃βi is the regression coefficients of the ith local fuzzy function

and ⊗ denotes the fuzzy matrix multiplication.
Step 9: Aggregating local IT2F functions: Finally, outputs of the local fuzzy functions ˜̃yi are

weighted by the corresponding membership values and predicted IT2F output is calculated:

˜̃Y j =

∑c
i

˜̃yi, jµi, j∑c
i=1 µi, j

, j = 1, 2, . . . , nd, (45)

where ˜̃Y j is the predicted value of the jth data point.

3.3.3. Phase-III: Ranking of Alternatives

Step 10: Performing vocabulary matching: The resulting values of the IT2F functions were
inherently IT2F sets. Since experts often linguistically evaluate the objects in the decision making
applications and it is difficult to analytically interpret the obtained numerical values, there was a
need for transforming IT2F functions results into the linguistic terms. For that aim, similarity-based
vocabulary matching was implemented in this step.

Let V ∈ {V1, V2, . . . , VU} represents the vocabulary of the linguistic terms, i.e., VU denotes the
linguistic term very good, VU−1 denotes the term good, etc. The linguistic outputs of the IT2F functions
approach can be given as:

˜̃A
′

(tC) =


˜̃a′11(tC) ˜̃a′12(tC) · · · ˜̃a′1M(tC)
˜̃a′21(tC) ˜̃a′22(tC) · · · ˜̃a′2M(tC)

...
...

. . .
...

˜̃a′N1(tC) ˜̃a′N2(tC) · · · ˜̃a′NM(tC)

. (46)

The ˜̃a′i j values are calculated as:

˜̃a′i j = argmax
l∈{1,2,...,U}

SM
(
˜̃a′i j, Vl

)
, (47)

where SM represents the Jaccard similarity measure given earlier, and Vl is the lth linguistic term in
the vocabulary.

Step 11: Modifying solutions if necessary: In this step, the results of IT2F functions in the form of
linguistic variables were presented to the decision makers. In other words, the current decision matrix
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was automatically generated based on the past data. The decision makers evaluated the results and
made necessary modifications if needed. The illustration of this process is given in Figure 4. Here,
the decision makers’ perceptions had a pivotal role. For example, decision makers might decide on the
fact that the performance of the first alternative with respect to the first and second attributes needs to
be modified. Then the decision matrix takes the form as given in Equation (48).

˜̃A
′′

(tC) =


˜̃a′′11(tC) ˜̃a′12(tC) · · · ˜̃a′1M(tC)
˜̃a′′21(tC) ˜̃a′22(tC) · · · ˜̃a′2M(tC)

...
...

. . .
...

˜̃a′N1(tC) ˜̃a′N2(tC) · · · ˜̃a′NM(tC)

, (48)

where ˜̃a′′i j(tC) represents the subjective judgments of the decision makers and ˜̃a′i j(tC) denotes the IT2F
function result.
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Step 12: Generating time series weights: In this step, time series weights were generated.
A basic unit-interval monotonic (BUM) function was used to generate weights. Yager [55] defined the
BUM function as Q : [0, 1]→ [0, 1] , where the weights are considered as quantifiers underlying the
information fusion process.

• Q(0) = 0,
• Q(1) = 1,
• Q(x) ≥ Q(y), if x > y, where Q(x) is a monotonically non-decreasing function defined in the unit

interval [0, 1].

Based on the BUM function, the time series weights are generated as:

ξ(tk) = Q
(

k
p

)
−Q

(
k− 1

p

)
, k = 1, 2, . . . , p, (49)

where Q(x) = eαx
−1

eα−1 , α > 0.
According to the BUM function, the more the period is closer to the current period, the higher the

weight of that period, which is a desired behavior for real-world applications.
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Step 13: Evaluating performance of alternatives at each period: Performance of each alternative is
calculated for different periods separately. In this step, variety of MADM methods can be employed to
obtain a performance indicator. For the sake of simplicity, well-known closeness coefficient measures
are used to evaluate performance of alternatives at each period. As the current decision matrix
comprises of IT2F evaluations, computational steps for the IT2FSs are given in this section in order
to avoid repetition. Note that the required computations for the past data are the same, except the
fact that numerical values are crisp. First, the decision matrices related to past periods are normalized
as given earlier in Equations (1) and (2). As the current decision matrix consists of IT2F evaluations,
normalization is conducted based on the Equations (50) and (51).

˜̃ri j(tk) =



 ai j1(tk)

max
j

{
ai j3(tk)

} ,
ai j2(tk)

max
j

{
ai j3(tk)

} ,
ai j3(tk)

max
j

{
ai j3(tk)

} ; 1

, ai j1(tk)

max
j

{
ai j3(tk)

} ,
ai j2(tk)

max
j

{
ai j3(tk)

} ,
ai j3(tk)

max
j

{
ai j3(tk)

} ; 1



, if i ∈ Ωb, (50)

˜̃ri j(tk) =



min
j

{
ai j1(tk)

}
ai j3(tk)

,
min

j

{
ai j1(tk)

}
ai j2(tk)

,
min

j

{
ai j1(tk)

}
ai j1(tk)

; 1

,min
j

{
ai j1(tk)

}
ai j3(tk)

,
min

j

{
ai j1(tk)

}
ai j2(tk)

,
min

j

{
ai j1(tk)

}
ai j1(tk)

; 1



, if i ∈ Ωc. (51)

Then, the weighted normalized decision matrices are calculated as:

˜̃νi j(tk) = ˜̃ri j(tk) ×wi, i = 1, 2, . . . , N, j = 1, 2, . . . , M, k = 1, 2, . . . , H. (52)

When the weighted normalized decision matrices are constructed, the next step is to calculate the
positive ideal solutions (PIS) and negative ideal solutions (NIS) as:

PIS =
(
ν+1 , ν+2 , . . . , ν+N

)
=

{(
max j

{
Rank

(
˜̃νi j(tk)

)})∣∣∣∣i ∈ Ωb,
(
min j

{
Rank

(
˜̃νi j(tk)

)})∣∣∣∣i ∈ Ωc

}
, k = 1, 2, . . . , H

(53)

NIS =
(
ν−1 , ν−2 , . . . , ν−N

)
=

{(
min j

{
Rank

(
˜̃νi j(tk)

)})∣∣∣∣i ∈ Ωb,
(
max j

{
Rank

(
˜̃νi j(tk)

)})∣∣∣∣i ∈ Ωc

}
, k = 1, 2, . . . , H

(54)

Then, separation measures are calculated by using the Euclidean distance as:

D+
j (tk) =

√√√ N∑
i=1

(
Rank

(
˜̃νi j(tk)

)
− ν+i (tk)

)2
, (55)

D−j (tk) =

√√√ N∑
i=1

(
Rank

(
˜̃νi j(tk)

)
− ν−i (tk)

)2
. (56)

Finally, closeness coefficients are calculated as:

CC j(tk) =
D−j (tk)(

D+
j (tk) + D−j (tk)

) , (57)

where CC j(tk) represents the closeness coefficient of the jth alternative at period tk.
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Step 14: Aggregating past and current performance of alternatives: Finally, a dynamic weighted
averaging (DWA) operator was utilized to obtain final ranking values of alternatives.

DWAξ(t)
(
CC j(t1), CC j(t2), . . . , CC j(tH)

)
=

H∑
k=1

ξ(tk)CC j(tk). (58)

Step 15: Rank the alternatives: When the past and current performance scores of alternatives were
aggregated, alternatives were ranked based on their ranking values. Higher ranking value implies
superiority of an alternative.

4. Case Study

One of the most important assets of a company is undoubtedly the human resources (HRs).
Regardless of how the other resources are managed in an organization, inadequacies in the management
of HRs result in poor performance of many operations. Therefore, firms have steadily recognized the
importance of HRs and have been taking necessary actions to increase overall performance.

Personnel promotion is a significant task in HR management that aims to select the right person for
the right job. Despite its similarity with the personnel selection problem, personnel promotion problem
deals with selecting appropriate personnel for higher positions within the firms’ current personnel
rather than evaluating the applicants from outside the firm. Personnel promotion problem can be
defined as selecting the most qualified employee among the available candidates for a vacant position
by considering their performance during their employment at the firm. Hence, the personnel promotion
problem is an inherently dynamic MADM problem as the temporal performance of employees are taken
into consideration with respect to predetermined attributes. Unfortunately, many enterprises are not
aware of the methodologies and tools to utilize historical records in their HR practices. As evaluating
personnel with respect to their performance on a diverse set of criteria during their employment is
cognitively demanding, firms should be supported with relevant data-driven tools.

In this study, a real-life personnel promotion problem is considered and the proposed model is
implemented. The company, which was contacted within the scope of this study, was a medium sized
firm involved in automobile subsidiary industry. Due to the firm policy, it was named as company
A. Company A had hired three students as a part-time employee for their continuous improvement
project. Upon graduation, at most two students with qualified skills will be offered to full-time job
so that the supervisors have been evaluating students’ performance in a monthly basis. Therefore,
performance data was used to demonstrate the procedural steps of the proposed model.

4.1. Structering Personnel Promotion Problem

Step 1: In this step, the experts were identified based on their professional backgrounds.
The heterogeneity of the experts was assured and three experts were identified. The experts were the
directors of HR and production and quality control departments. After identification of the experts,
participants were elucidated about the scope and details of the study. The evaluation criteria determined
by the experts were employed within the scope of this study. The evaluation criteria consisted of
content-specific knowledge (C1), communication skills (C2), job involvement (C3), organizational
commitment (C4), and problem solving skills (C5). The decision hierarchy is given in Figure 5.

Step 2: Historical performance data of the employees with respect to predefined attributes were
obtained. The company had a performance evaluation system that assigned performance scores
between 0–10, 0 and 10 represented the worst and the best values, respectively. In the scope of this
study, performance values of the past 1.5 years (18 months) were directly used. The historical data
of the performance scores of the employee 1 with respect to decision attributes is given in Table 2.
Similarly, the historical records for the employee 2 and employee 3 were obtained.

Step 3: Historical data was organized in tables, and missing values were sought for. No missing
values were identified within the 18-month data period. On the other hand, it was decided not to
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implement normalization techniques as the proposed model could handle numeric values in the range
0–10. The historical decision matrices were also transformed into time series vectors so that the IT2F
functions method could be implemented.

Afterwards, the data set was divided into training and test sets. The training set consisted of the
first 80% part of the historical data and the rest of the data points were allocated to the test set.
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Table 2. Historical data of employee 1.

Period C1 C2 C3 C4 C5

1 6 7 3 3 7
2 6 7 2 2 6
3 7 8 3 3 5
4 6 9 4 5 5
5 6 8 3 6 5
6 6 9 4 8 4
7 7 8 4 8 4
8 6 7 5 7 4
9 6 6 6 8 5
10 6 5 6 8 5
11 7 4 7 9 6
12 6 3 6 10 6
13 5 4 6 10 6
14 5 4 8 8 6
15 4 4 6 7 8
16 4 3 6 7 7
17 4 3 6 7 8
18 4 2 6 9 8

4.2. Estimating the Current Decision Matrix

Having obtained the historical data, the next step was to employ the proposed IT2F functions
approach to estimate the current decision matrix based on past data.

Step 4: In this step, parameters of the model were identified. The model parameters were
the number of lagged_periods, tolerance_levels, number of cluster, and the degree of fuzzification.
Instead of using cluster validity indices in order to select the optimum c and m parameters, the model
parameters were selected by using a grid search for each parameter based on Root Mean Square
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Error (RMSE) performance metric. The tolerance_levels were set to 30% for being able to find feasible
solutions for every combination of parameters when solving quadratic programming models.

The identified parameters are given in Table 3.

Table 3. Parameters of the model.

Alternative Criteria
Parameters

c m Lagged_Periods

1

1 2 1.6 5
2 5 1.6 5
3 4 2.1 4
4 5 2.1 5
5 4 1.6 4

2

1 4 1.6 5
2 5 2.1 5
3 2 1.1 5
4 5 2.1 5
5 5 1.6 5

3

1 2 2.1 5
2 2 1.6 5
3 3 1.6 5
4 5 2.1 5
5 5 1.6 5

Step 5: In this step, the input and output matrices were combined and the FCM clustering
algorithm was performed based on the parameters identified in the previous step. By utilizing FCM
clustering algorithm, cluster centers were identified. These cluster centers had a key role in the
Turksen’s fuzzy system model in which the clusters were used as a fuzzification engine of the classical
FRB systems.

Step 6: Having identified cluster centers, the next step was to find membership grades of the
input data and to form the augmented input matrices by integrating membership transformations
as explanatory variables. In this study, integration of membership degrees, exponentials of the
memberships, and the square of the memberships were found to exhibit good performance so that
these transformations were used to augment the input space.

Step 7: When the input and output matrices were formed by means of membership grades,
quadratic programming model was solved in order to obtain fuzzy regression coefficients. The models
were written in MATLAB 9.5.0 and quadratic programming models were solved via quadratic
programming solver function cplexqp of the Cplex Optimization Studio 12.8. As the regression
coefficients were defined as the distance to the center (b) earlier, their corresponding IT2F number
representations are given in Tables 4 and 5 for the case of first alternative and first criteria.

Similarly, the same computations were performed for all of the alternative and criteria pairs. Note
that number of clusters was based on the Table 3.

Step 8: When all of the IT2F regression coefficients were calculated, the output was predicted by
using the obtained regression coefficients for each cluster. For the time series data of the alternative 1
and criteria 1, 2 local fuzzy functions were calculated. Since there were five clusters in the time series
data of the alternative 1 and criteria 2, the total of five local fuzzy function results were obtained.

Step 9: In this step, the local fuzzy functions were aggregated and the estimated outputs were
calculated. Performance of the proposed IT2F functions approach was compared with the IT2F
regression model by means of RMSE and Mean Absolute Percentage Error (MAPE) metrics. Table 6
shows the performance comparison of the proposed IT2F functions approach.
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Table 4. Cluster 1 results for the 1st alternative and 1st criteria.

Variable
IT2F Regression Coefficients

IT2F Coefficients
b f g p q

1 10.572 8.65 × 10−9 0.031 9.30 × 10−11 9.13 × 10−11 ((10.572, 10.572, 10.603;1),
(10.572, 10.572, 10.603;1))

µ −8.524 3.39 × 10−9 0.070 6.45 × 10−11 6.44 × 10−11 ((−8.524, −8.524, −8.454;1),
(−8.524, −8.524, −8.454;1))

exp(µ) −4.550 2.04 × 10−9 0.016 2.79 × 10−11 2.78 × 10−11 ((−4.55, −4.55, −4.534;1),
(−4.55, −4.55, −4.534;1))

µ2 13.466 7.27 × 10−9 0.085 7.34 × 10−11 7.34 × 10−11 ((13.466, 13.466, 13.551;1),
(13.466, 13.466, 13.551;1))

xt−1 0.017 0.146043 0.010 2.67 × 10−11 2.59 × 10−11 ((−0.129, 0.017, 0.027;1),
(−0.129, 0.017, 0.027;1))

xt−2 −0.613 1.24 × 10−9 0.005 0.1 0.185714 ((−0.713, −0.613, −0.423;1),
(−0.613, −0.613, −0.609;1))

xt−3 −0.211 1.44 × 10−9 0.004 1.67 × 10−11 1.63 × 10−11 ((−0.211, −0.211, −0.207;1),
(−0.211, −0.211, −0.207;1))

xt−4 0.822 0.078111 0.126 1.48 × 10−11 1.42 × 10−11 ((0.744, 0.822, 0.948;1),
(0.744, 0.822, 0.948;1))

xt−5 0.038 1.44 × 10−9 0.006 1.36 × 10−11 1.34 × 10−11 ((0.038, 0.038, 0.044;1),
(0.038, 0.038, 0.044;1))

Table 5. Cluster-2 results for the 1st alternative and 1st criteria.

Variable
IT2F Regression Coefficients

IT2F Coefficients
b f g p q

1 −10.907 1.28 1.018 4.25 × 10−9 4.59 × 10−9 ((−12.184, −10.907, −9.889;1),
(−12.184, −10.907, −9.889;1))

µ −18.964 3.03 × 10−9 0.000 1.44 × 10−8 1.44 × 10−8 ((−18.964, −18.964, −18.964;1),
(−18.964, −18.964, −18.964;1))

exp(µ) 15.077 1.79 × 10−9 0.000 3.39 × 10−9 3.61 × 10−9 ((15.077, 15.077, 15.077;1),
(15.077, 15.077, 15.077;1))

µ2 −3.447 3.12 × 10−9 0.000 7.20 × 10−1 1.16 ((−4.167, −3.447, −2.289;1),
(−3.447, −3.447, −3.447;1))

xt−1 −0.107 1.50 × 10−9 0.000 8.08 × 10−10 8.56 × 10−10 ((−0.107, −0.107, −0.107;1),
(−0.107, −0.107, −0.107;1))

xt−2 −0.725 9.06 × 10−10 0.000 3.64 × 10−7 0.024974 ((−0.725, −0.725, −0.7;1),
(−0.725, −0.725, −0.725;1))

xt−3 −0.262 3.18 × 10−9 0.000 6.04 × 10−10 6.37 × 10−10 ((−0.262, −0.262, −0.262;1),
(−0.262, −0.262, −0.262;1))

xt−4 0.735 3.18 × 10−9 0.000 5.26 × 10−10 5.27 × 10−10 ((0.735, 0.735, 0.735;1),
(0.735, 0.735, 0.735;1))

xt−5 0.150 1.16 × 10−5 0.001 5.74 × 10−10 6.10 × 10−10 ((0.15, 0.15, 0.151;1),
(0.15, 0.15, 0.151;1))

Despite its practicality, IT2F regression, which does not make use of FCM clustering and augmented
input matrix as in the case of the proposed IT2F functions, cannot capture the trends and patterns in
the historical dataset to the desired extent. Hence, both of the performance metrics were quite high.
On the other hand, the proposed IT2F functions approach had successfully captured the patterns in the
data thanks to its membership processing mechanisms. Figure 6 shows the estimated performance
scores of the alternative 1 with respect to five criteria by means of the IT2F functions approach.
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Table 6. Performance comparison of the proposed method and IT2F regression.

Alternative Criteria
Proposed IT2F Functions IT2F Regression

RMSE MAPE RMSE MAPE

1

1 0.2307 2.3883 0.6974 11.4445
2 0.1948 3.3149 0.7844 15.1122
3 0.2519 4.0679 0.9828 14.0217
4 0.375 3.4459 0.6952 7.2826
5 0.3606 5.6463 0.8976 16.7376

2

1 0.2894 6.0687 0.4449 13.6456
2 0.2392 2.4306 0.6793 7.5079
3 0.3733 4.2811 0.9343 11.083
4 0.4283 5.1677 0.5934 7.8132
5 0.3035 4.0027 0.5657 7.9788

3

1 0.1457 1.722 0.7285 8.0463
2 0.1686 3.9912 0.5833 17.4631
3 0.2417 2.6302 0.6196 6.6876
4 0.2142 2.135 0.3221 3.4379
5 0.2205 2.7494 0.5567 7.9517

Note that the produced results were IT2F numbers. Another critical point is about whether the
produced results satisfy the imposed constraints by possibility and necessity relationships. Figure 7
digs into the first data points of the predictions, which are illustrated in Figure 6. Note that the lower
and upper tolerances covered the lower membership function, which was the property of the necessity
constraints in the mathematical model. Furthermore, the lower and upper tolerances were covered by
the upper membership function, which was due to the possibility constraints. It can be seen that both
of the lower and upper tolerances lied within the FOU of the IT2F outputs. The estimated outputs
were also inside the FOU and the centers of the IT2F outputs were quite close to the target values,
which indicates the predictive power of the IT2F functions.

Based on the trained IT2F functions model, the current decision matrix was predicted. The resulting
decision matrix is shown in Table 7.

As it is difficult for experts to interpret the produced results, they were transformed into linguistic
terms in the next section.

Table 7. Resulting decision matrix of the IT2F functions.

Criteria
Alternatives

A1 A2 A3

C1
((1.694, 2.99, 4.515;1), ((2.163, 3.73, 5.516;1), ((5.223, 7.902, 11.27;1),
(2.064, 2.99, 3.822;1)) (2.864, 3.73, 4.204;1)) (5.601, 7.902, 10.396;1))

C2
((1.354, 2.255, 3.33;1), ((4.992, 8.419, 12.522;1), ((2.662, 3.919, 5.449;1),
(1.891, 2.255, 2.623;1)) (5.964, 8.419, 10.802;1)) (3.204, 3.919, 4.596;1))

C3
((2.986, 5.358, 8.46;1), ((2.194, 4.143, 5.991;1), ((6.016, 9.229, 12.788;1),
(4.13, 5.358, 6.362;1)) (3.144, 4.143, 5.238;1)) (6.68, 9.229, 11.589;1))

C4
((7.187, 10.353, 14.08;1), ((0.469, 1.617, 3.242;1), ((5.678, 8.415, 11.417;1),
(8.084, 10.353, 12.123;1)) (0.933, 1.617, 2.178;1)) (6.071, 8.415, 10.508;1))

C5
((2.409, 5.252, 9.04;1), ((4.427, 6.446, 9.052;1), ((3.715, 6.246, 8.94;1),
(3.372, 5.252, 7.208;1)) (5.168, 6.446, 7.487;1)) (4.566, 6.246, 7.472;1))
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Figure 6. Estimations for the 1st alternative. (a) 1st criterion; (b) 2nd criterion; (c) 3rd criterion; (d) 4th
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4.3. Ranking of Employees

Step 10: In this step, a similarity-based vocabulary matching was performed. First, the linguistic
terms and their corresponding IT2F number were determined. Table 8 shows the linguistic terms of
the vocabulary.

Based on the linguistic terms given in Table 8, similarity-based vocabulary matching was carried
out. As a result, the linguistic decision matrix is given in Table 9.

Step 11: When the linguistic decision matrix was formed, the results were presented to the decision
makers. Then, the decision makers were asked to change the performance values of the alternatives
based on their perceptions. The decision makers might accept the decision matrix as it is or alter the
whole performance values depending on their judgments. In this study, decision makers decided
to change the performance values of the second and third alternatives with respect to first, fourth,
and fifth criteria. The modified decision matrix is represented in Table 10. The modified linguistic
terms are highlighted by gray shading.

Table 8. Vocabulary of linguistic terms.

Linguistic Terms
IT2F Number

Symbol Explanation

VL Very Low ((0, 0, 1;1), (0, 0, 0.5;1))
L Low ((0, 1, 3;1), (0.5, 1, 2;1))

ML Medium Low ((1, 3, 5;1), (2, 3, 4;1))
M Medium ((3, 5, 7;1), (4, 5, 6;1))

MH Medium High ((5, 7, 9;1), (6, 7, 8;1))
H High ((7, 9, 10;1), (8, 9, 9.5;1))

VH Very High ((9, 10, 10;1), (9.5, 10, 10;1))



Mathematics 2019, 7, 584 25 of 31

Table 9. Linguistic decision matrix.

Criteria
Alternatives

A1 A2 A3

C1 ML ML MH
C2 ML H ML
C3 M M H
C4 H L H
C5 M MH MH

Table 10. Modified decision matrix.

Criteria
Alternatives

A1 A2 A3
C1 ML MH MH
C2 ML H ML
C3 M M H
C4 H L MH
C5 M H MH

The decision makers accepted the linguistic terms produced by the IT2F functions model for
the rest of the evaluations. By this way, required expert judgments were decreased by 80%, which
dramatically increased the speed of decision making.

Step 12: In this step, time series weights were generated based on the BUM function. The only
parameter required by BUM function was α. Figure 8 illustrates the time series weights for different
α values. In this study, α was selected as 0.5. Furthermore, results for the different α values were
examined as well.
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Step 13: In this step, performance of each employee was evaluated at each period. Here, past
and current decision matrices were evaluated one-by-one separately. As mentioned earlier, closeness
coefficient is very practical to use so that for each period distance to positive and negative ideal
solutions were calculated. The weights of criteria were assumed to be fixed throughout the periods
and given as 0.10, 0.10, 0.15, 0.25, and 0.35, respectively. The separation measures are given in Tables 11
and 12.
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Table 11. Distances between the performance of employees and the positive ideal solution.

Periods
Distance to Positive Ideal Solution

Employee 1 Employee 2 Employee 3

t1 0.1458 0.1101 0.1111
t2 0.2259 0.1569 0.1084
t3 0.2155 0.1546 0.1161
t4 0.1604 0.1203 0.0850
t5 0.1730 0.1313 0.0938
t6 0.1700 0.0919 0.0833
t7 0.1700 0.0977 0.0750
t8 0.1714 0.0709 0.0643
t9 0.1256 0.0872 0.0750
t10 0.1303 0.0874 0.0750
t11 0.0960 0.0797 0.1086
t12 0.1146 0.0901 0.1397
t13 0.1204 0.0961 0.1393
t14 0.1004 0.0914 0.1050
t15 0.1226 0.1401 0.0797
t16 0.1264 0.1330 0.0972
t17 0.1422 0.1873 0.1001
t18 0.1404 0.2335 0.0981
tC 0.1725 0.1955 0.1143

Table 12. Distances between the performance of employees and the negative ideal solution.

Periods
Distance to Negative Ideal Solution

Employee 1 Employee 2 Employee 3

t1 0.1409 0.1556 0.1541
t2 0.1169 0.1524 0.2462
t3 0.1161 0.1334 0.2155
t4 0.0898 0.0698 0.1613
t5 0.0995 0.0805 0.1762
t6 0.1011 0.1636 0.1836
t7 0.0983 0.1278 0.1857
t8 0.0744 0.1697 0.1807
t9 0.0684 0.1259 0.1385
t10 0.0563 0.0950 0.1336
t11 0.0811 0.1102 0.0717
t12 0.0997 0.1397 0.0750
t13 0.0817 0.1311 0.0750
t14 0.0680 0.1050 0.0914
t15 0.0927 0.0850 0.1247
t16 0.0810 0.1000 0.1244
t17 0.1218 0.1050 0.1719
t18 0.2143 0.1173 0.1966
tC 0.1873 0.1631 0.1751

Based on the distances from positive and negative ideal solutions, closeness coefficients were
calculated as given in Table 13.

Step 14: In this step, closeness coefficients pertaining to the past and current performance scores
of employees were aggregated by taking into account the time series weights. As there were numerous
aggregation operators, the most practical one, namely the DWA operator, was used in this study.
As a result of the DWA operator, rankings of employees were obtained. Moreover, for the purpose
of comparison, different model components were activated and the results were examined. Table 14
summarizes the computational setting with different model components.
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The proposed model integrates all of the model components. Different from the proposed model,
the predicted decision matrix was not modified in model 1. In model 2, neither the linguistic decision
matrix was generated nor the decision makers were allowed to change the decision matrix. Finally,
model 3 made use of the IT2F functions, vocabulary matching, and modified preferences, but only the
decision matrix of the current period was considered for ranking of alternatives, which corresponded
to the conventional MADM approach.

Step 15: The employees were ranked and the results were interpreted in this step. As can be seen
from the Table 15, employee 3 dominated the other candidates regardless of the model configurations.
However, the performance of employee 1 needed more attention here as the ranking order differed by
the static or dynamic MADM aspects. The performance of employee 1 has been visualized in Figure 9.

It was observed that the performance of employee 2 was better than employee 1 for all of the
dynamic MADM models. However, considering only the current decision matrix in model 3, static
MADM ranked employee 1 as second and employee 2 as third.

Although the performance of the employee 1 was higher than the employee 2 in the current period,
considering historical performance values changed the overall rankings. Therefore, the present study
provided policy makers with a broader view regarding performance of employees by considering
different modeling aspects.

Table 13. Closeness coefficients of employees.

Periods
Closeness Coefficients

Employee 1 Employee 2 Employee 3

t1 0.4915 0.5856 0.5811
t2 0.3411 0.4928 0.6942
t3 0.3501 0.4633 0.6499
t4 0.3588 0.3671 0.6549
t5 0.3652 0.3801 0.6527
t6 0.3729 0.6405 0.6878
t7 0.3664 0.5666 0.7123
t8 0.3028 0.7053 0.7376
t9 0.3525 0.5907 0.6487
t10 0.3016 0.5208 0.6404
t11 0.4580 0.5802 0.3978
t12 0.4652 0.6078 0.3493
t13 0.4043 0.5769 0.3500
t14 0.4039 0.5347 0.4653
t15 0.4304 0.3776 0.6099
t16 0.3906 0.4291 0.5614
t17 0.4613 0.3593 0.6321
t18 0.6041 0.3345 0.6671
tC 0.5206 0.4547 0.6051

Table 14. Different model configurations.

Model Components Models

Proposed Model Model 1 Model 2 Model 3

IT2F Functions Yes Yes Yes Yes
Vocabulary Matching Yes Yes No Yes
Modified preferences

(interactive) Yes No No Yes

DWA Operator Yes Yes Yes No
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Table 15. Overall results.

Model
Overall Assessment

Employee 1 Employee 2 Employee 3

CC Rank CC Rank CC Rank

Proposed Model 0.4138 3 0.4984 2 0.5895 1
Model 1 0.4176 3 0.4926 2 0.5967 1
Model 2 0.4185 3 0.4905 2 0.5951 1
Model 3 0.5206 2 0.4547 3 0.6051 1
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5. Discussion

According to proposed dynamic MADM model, past performance values of employees were
used to form current decision matrix. Hence, the current decision matrix was automatically generated
based on the proposed IT2F functions model and the decision makers modified three performance
scores out of 15. Therefore, preference elicitation procedures were dramatically improved.

The results of the case study had also shown that employee 3 had ranked first according to all
of the dynamic MADM models. Although employee 1 had better performance than employee 2
in terms of current period performance, consideration of the past data made employee 1 the worst
candidate for the full-time position among other employees. Although employee 2 had the worst
performance without considering the past performance, with the dynamic character of the proposed
model, employee 2 had become the second ranked alternative. As a result, taking into account the past
and current decision matrices together provides more information to the decision makers and leads to
more accurate rankings.



Mathematics 2019, 7, 584 29 of 31

6. Conclusions

In this study, a new interactive dynamic MADM model, which combines IT2F regression and
fuzzy functions approaches, was proposed. The proposed model exhibited desirable properties that
helped overcome the drawbacks of the traditional dynamic MADM approaches. The proposed model
was realized in a real-life personnel promotion problem. The proposed IT2F functions approach had
improved the performance of IT2F regression by successfully capturing the trends and patterns in the
historical records.

The advantage of the proposed model lies in its data-driven character, that is to say, the past data is
used to guide preference elicitation processes. In classical MADM approaches, the decision makers are
asked to fill out the entire decision matrix, which can be time consuming and cognitively demanding.
On the other hand, the proposed model generates an IT2F decision matrix based on past data and
allows decision makers to alter automatically generated decision matrix by using linguistic terms.
Fuzziness in both the linguistic expressions and the past data were modeled by the proposed approach.

The main limitation of the presented study was that the results produced by the proposed model
were highly dependent on the data obtained from the case company. Accordingly, results were difficult
to be generalized. Secondly, prediction performance highly depends on available data. Nevertheless,
the presented study can be improved in terms of many aspects. Hyper-parameter optimization can
be used to tune the parameters of the model automatically. Different strategies can also be imposed
to generate time series weights, and results can be compared. Last but not least, different MADM
approaches can be used to rank the alternatives. In future studies, these considerations will be at the
top of our agenda.
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writing and original draft preparation, İ.G.; software, İ.G.; investigation, A.B.; supervision, A.B.; resources, A.B.;
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