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The authors are sorry to report that the proof of case III of Theorem 1.2 in their recently published
paper [1] was incorrect. Upon revising the manuscript, they mistakenly thought that u; is in H? and
Auy = 0 holds on some particular subset of the manifold M. Consequently, the authors wish to make
the following corrections to the paper at this time:

We first remark that the proof of case Il is different from the one in [2] because there is a mistake
there. For every k € R, set

{ ko ou>k
Up =

u, u<k.

In what follows, we will follow the arguments in [3] (p. 178) with some modifications. Let
be a symmetric, convex, and bounded smooth function with |f/| < 1 and |s| < B < € + |s|, where
0 < € < 1lissuch that u —e > 0. Define

_u+k Bu—k)
Up = 3 — > .

Then, for any positive integer k, it holds that @, > ”TH‘ - % > 0. Moreover, i is a
superharmonic function in a weak sense. Indeed, by definition, we have dii; = %(1 — B')du, which
yields Vi = %(1 — B')Vu by Legendre transformation. As iy € leoc and thus A#i; = 0 a.e. on M\ M,,
for ¢ defined in Case I, we have

2[ =2 [ ap(Vagdn == [ (1= F)dp(Tu)d

By, (R)

= fo g OB [ B E (T
=" /B"O<R) d[(1 - B)yl(Vu)du = /13x0(R)(1 — ByAudu

<0.
The last step holds because (1 — g')y is differentiable almost everywhere on B (R) with bounded

differential, and u is superharmonic. Moreover, i is smooth on the open subset M, and is also
superharmonic, in the classical sense, on M,.. Notice that ¢ is differentiable almost everywhere on
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B, (R) with bounded differential. Hence, by similar arguments, we can also obtain (4) (see [1], p. 6)

q
for il; on By (R) as in case L. Set vy = ii; for any g € (0,1). Then we have (5) (see [1], p. 7) as follows:

1
1--)? 2F(Voy)2d
(=2 [, g VR0

1

% z
~ g 1
<C / v? 1—72/ 2F(Vog)?d
(- Brg (R)\Bi, (1) ") <( 7 o g LY )

A~ 1 1 %
=C(V,(R) -V, 2 (1=-2)2 2F(VoR)%d )
(Va(R) — Vy(ro)) (( D i i o PFOT0 u)

On the other hand, note that i; < k, and thus

du < Kdu = K1V (R),
Jo < [ K=V (R)

*0 *0

which implies that

© r
/1 Vq(r)dr:oo.

Then by the same discussion in the proof of (2) (see [1], pp. 5-7) and Case I of (1) (see [1],
p. 7), we show that this 7 is constant. Take then a sequence B, (such that each B, satisfies the same
properties as ) uniformly converging to the absolute value function. Every i, is then constant.
These constants are bounded (they are in (0, k)). Thus, up to pass to a subsequence i, converges
uniformly to uy and to a constant at the same time. Hence, 13 must be constant. k being arbitrary, u is
also constant.
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