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Abstract: The basic concepts of exterior calculus for space–time multivectors are presented: Interior
and exterior products, interior and exterior derivatives, oriented integrals over hypersurfaces,
circulation and flux of multivector fields. Two Stokes theorems relating the exterior and interior
derivatives with circulation and flux, respectively, are derived. As an application, it is shown how
the exterior-calculus space–time formulation of the electromagnetic Maxwell equations and Lorentz
force recovers the standard vector-calculus formulations, in both differential and integral forms.

Keywords: exterior calculus, exterior algebra, electromagnetism, Maxwell equations, differential
forms, tensor calculus

1. Introduction

Vector calculus has, since its introduction by J. W. Gibbs [1] and Heaviside, been the tool of
choice to represent many physical phenomena. In mechanics, hydrodynamics and electromagnetism,
quantities such as forces, velocities and currents are modeled as vector fields in space, while flux,
circulation, divergence or curl describe operations on the vector fields themselves.

With relativity theory, it was observed that space and time are not independent but just coordinates
in space–time [2] (pp. 111–120). Tensors like the Faraday tensor in electromagnetism were quickly
adopted as a natural representation of fields in space–time [3] (pp. 135–144). In parallel, mathematicians
such as Cartan generalized the fundamental theorems of vector calculus, i.e., Gauss, Green, and Stokes,
by means of differential forms [4]. Later on, differential forms were used in Hamiltonian mechanics,
e. g. to calculate trajectories as vector field integrals [5] (pp. 194–198).

A third extension of vector calculus is given by geometric and Clifford algebras [6], where vectors
are replaced by multivectors and operations such as the cross and the dot products subsumed in the
geometric product. However, the absence of an explicit formula for the geometric product hinders
its widespread use. An alternative would have been the exterior algebra developed by Grassmann
which nevertheless has received little attention in the literature [7]. An early work in this direction was
Sommerfeld’s presentation of electromagnetism in terms of six-vectors [8].

We present a generalization of vector calculus to exterior algebra and calculus. The basic notions
of space–time exterior algebra, introduced in Section 2, are extended to exterior calculus in Section 3
and applied to rederive the equations of electromagnetism in Section 4. In contrast to geometric
algebra, our interior and exterior products admit explicit formulations, thereby merging the simplicity
and intuitiveness of standard vector calculus with the power of tensors and differential forms.

2. Exterior Algebra

Vector calculus is constructed around the vector space R3, where every point is represented by
three spatial coordinates. In relativity theory the underlying vector space is R1`3 and time is treated as
a coordinate in the same footing as the three spatial dimensions. We build our theory in space–time
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with k time dimensions and n space dimensions. The number of space–time dimensions is thus k` n
and we may refer to a pk, nq- or pk ` nq-space–time, Rk`n. We adopt the convention that the first
k indices, i.e., i “ 0, . . . , k ´ 1, correspond to time components and the indices i “ k, . . . , k ` n´ 1
represent space components and both k and n are non-negative integers. A point or position in this
space–time is denoted by x, with components txiu

k`n´1
i“0 in the canonical basis teiu

k`n´1
i“0 , that is

x “
k`n´1
ÿ

i“0

xiei. (1)

Given two arbitrary canonical basis vectors ei and ej, then their dot product in space–time is

ei ¨ ej “

$

’

’

&

’

’

%

´1, i “ j, 0 ď i ď k´ 1,

`1, i “ j, k ď i ď k` n´ 1,

0, i ‰ j.

(2)

For convenience, we define the symbol ∆ij “ ei ¨ ej as the metric diagonal tensor in Minkowski
space–time [2] (pp. 118–120), such that time unit vectors ei have negative norm ∆ii “ ´1, whereas
space unit vectors ei have positive norm ∆ii “ `1. The dot product of two vectors x and y is the
extension by linearity of the product in Equation (2), namely

x ¨ y “
k`n´1
ÿ

i“0

xiyi∆ii “ ´

k´1
ÿ

i“0

xiyi `

k`n´1
ÿ

i“k

xiyi. (3)

2.1. Grade, Multivectors, and Exterior Product

In addition to the pk` nq-dimensional vector space Rk`n with canonical basis vectors ei, there
exist other natural vector spaces indexed by ordered lists I “ pi1, . . . , imq of m non-identical space and
time indices for every m “ 0, . . . , k` n. As there are

`k`n
m
˘

such lists, the dimension of this vector space
is
`k`n

m
˘

. We shall refer to m as grade and to these vectors as multivectors or grade-m vectors if we
wish to be more specific. A general multivector can be written as

v “
ÿ

I

vIeI , (4)

where the summation extends to all possible ordered lists with m indices. If m “ 0, the list is empty
and the corresponding vector space is R. The direct sum of these vector spaces for all m is a larger
vector space of dimension

řk`n
m“0

`k`n
m
˘

“ 2k`n, the exterior algebra. In tensor algebra, multivectors
correspond to antisymmetric tensors of rank m. In this paper, we study vector fields vpxq, namely
multivector-valued functions v varying over the space–time position x.

The basis vectors for any grade m may be constructed from the canonical basis vectors ei by
means of the exterior product (also known as wedge product), an operation denoted by^ [9] (p. 2). We
identify the vector eI for the ordered list I “ pi1, i2, . . . , imq with the exterior product of ei1 , ei2 , . . . , eim :

eI “ ei1 ^ ei2 ^ ¨ ¨ ¨ ^ eim . (5)

In general, we may compute the exterior product as follows. Let two basis vectors eI and eJ have
grades m “ |I| and m1 “ |J|, where |I| and |J| are the lengths of the respective index lists. Let
pI, Jq “ ti1, . . . , im, j1, . . . , jm1u denote the concatenation of I and J, let σpI, Jq denote the signature of
the permutation sorting the elements of this concatenated list of m`m1 indices, and let εpI, Jq denote
the resulting sorted list, which we also denote by I ` J. Then, the exterior product eI of eJ is defined as

eI ^ eJ “ σpI, JqeεpI,Jq. (6)
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The exterior product of vectors v and w is the bilinear extension of the product in Equation (6),

v^w “
ÿ

I,J

vIwJ eI ^ eJ . (7)

Since permutations with repeated indices have zero signature, the exterior product is zero if
m`m1 ą k` n or more generally if both vectors have at least one index in common. Therefore,
the exterior product is either zero or a vector of grade m ` m1. Further, the exterior product is a
skew-commutative operation, as we can also write Equation (6) as eI ^ eJ “ p´1q|I||J|eJ ^ eI .

At this point, we define the dot product ¨ for arbitrary grade-m basis vectors eI and eJ as

eI ¨ eJ “ ∆I,J “ ∆i1,j1 ∆i2,j2 ¨ ¨ ¨∆im ,jm , (8)

where I and J are the ordered lists I “ pi1, i2, . . . , imq and J “ pj1, j2, . . . , jmq. As before, we extend this
operation to arbitrary grade-m vectors by linearity.

Finally, we define the complement of a multivector. For a unit vector eI with grade m, its
Grassmann or Hodge complement [10] (pp. 361–364), denoted by eH

I , is the unit pk` n´mq-vector

eH
I “ ∆I,IσpI, IcqeIc , (9)

where Ic is the complement of the list I, namely the ordered sequence of indices not included in I. As
before, σpI, Icq is the signature of the permutation sorting the elements of the concatenated list pI, Icq

containing all space–time indices. In other words eIc is the basis vector of grade k` n´m whose
indices are in the complement of I. In addition, we define the inverse complement transformation as

eH´1
I “ ∆Ic ,Ic σpIc, IqeIc . (10)

We extend the complement and its inverse to general vectors in the space–time algebra by linearity.

2.2. Interior Products

While the exterior product of two multivectors is an operation that outputs a multivector whose
grade is the addition of the input grades, the dot product takes two multivectors of identical grade
and subtracts their grades, yielding a zero-grade multivector, i.e., a scalar. We say that the exterior
product raises the grade while the dot product lowers the grade. In this section, we define the left and
right interior products of two multivectors as operations that lower the grade and output a multivector
whose grade is the difference of the input multivector grades.

As always, we start by defining the operation for the canonical basis vectors. Let eI and eJ be two
basis vectors of respective grades |I| and |J|. The left interior product, denoted by , is defined as

eI eJ “ ∆I,Iσ
`

εpI, Jcqc, I
˘

eεpI,Jcqc . (11)

If I is not a subset of J, that is when there are elements in I not present in J, e. g. for |I| ą |J|, the
signature of the permutation sorting the concatenated list

`

εpI, Jcqc, I
˘

is zero as there are repeated
indices in the list to be sorted, and the left interior product is zero. Otherwise, if I is a subset of J, the
permutation rearranges the indices in J in such a way that the last |I| positions coincide with I and
εpI, Jcqc represents the first |J|´ |I| elements in the rearranged sequence, that is εpI, Jcqc “ JzI.

The right interior product, denoted by , of two basis vectors eI and eJ is defined as

eI eJ “ ∆J,Jσ
`

J, εpIc, Jqc
˘

eεpIc ,Jqc . (12)

As with the left interior product, if J is a subset of I, εpIc, Jqc “ IzJ then the permutation rearranges the
indices in I so that the first |J| positions coincide with J, otherwise the right interior product is zero.



Mathematics 2019, 7, 564 4 of 20

In general, we have that eI eJ “ eJ eIp´1q|I|p|J|´|I|q, as verified in Appendix A.1. We note that
these interior products are not commutative, unless either |J|´ |I| or |I| is an even number, e. g. when
|I| “ |J|, in which case both interior products coincide with the dot product of the two vectors. The
interior products may therefore be seen as generalizations of the dot product.

As with the dot and the exterior products, the value of the interior products does not depend on
the choice of basis and we may thus compute the left interior product of two vectors v and w as

v w “
ÿ

I,J

vIwJ eI eJ , (13)

and a similar expression holds for the right interior product v w. Both are grade-lowering operations,
as the left (resp. right) interior product is either zero or a multivector of grade m1 ´m (resp. m´m1).

The interior products are not independent operations from the exterior product, as they can be
expressed in terms of the latter, the Hodge complement and its inverse (proved in Appendix A.2):

eI eJ “
`

eI ^ eH
J
˘H´1

, (14)

eI eJ “
`

eH´1
I ^ eJ

˘H. (15)

If u and v are 1-vectors and w is an r-vector, then we have the following expression

u pv^wq “ p´1qrpu ¨ vqw` v^ pu wq, (16)

as proved in Appendix A.3. This expression can be seen as a generalization of the vectorial expression

aˆ pbˆ cq “ pa ¨ cqb´ pa ¨ bqc (17)

in the vector space R3, i.e., a k “ 0, n “ 3 space–time. This fact is built of the realization that the cross
product between two vectors v and w can be expressed in the following alternative ways

vˆw “ pv^wqH
´1
“ v wH´1

“ v wH. (18)

Whenever it holds that I Ď J, the interior and exterior products are related by the following:

peI eJq ^ eI “ ∆I,IeJ , (19)

eI ^ peJ eIq “ ∆I,IeJ . (20)

Having introduced the basic notions of space–time exterior algebra, the next section focuses on
operations with elements in the exterior algebra, namely integrals and derivatives of vector fields.

3. Integrals and Derivatives of Vector Fields: Circulation and Flux

3.1. Oriented Integrals

Integrals are, together with derivatives, the fundamental mathematical objects of calculus. For
example, operations on vectors fields lying in exterior algebra such as the flux and the circulation are
expressed in terms of integrals over high-dimensional geometric objects. The integral of an m-graded
vector field v over a hypersurface Vm of the same dimension, denoted as

ż

Vm
dmx ¨ v, (21)

is the limit of the Riemann sums for the dot product dmx ¨ v over points in the hypersurface, where
dmx is an m-dimensional infinitesimal vector element. For any ` “ 0, . . . , k` n, the infinitesimal vector
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element d`x is given by the sum of all possible differentials for `-dimensional hypersurfaces in a pk, nq
space–time, and is represented in the canonical basis as

d`x “
ÿ

I“pi1,...,i`q

dxIeI , (22)

where for a given list I “ pi1, . . . , i`q each differential is given by dxI “ dxi1 ¨ ¨ ¨ dxi` .
As in traditional calculus, the integral in Equation (21) exhibits coordinate invariance, while the

integrand dmx ¨ v is regarded as an oriented object. Orientation is well defined for integrals along a
curve from one point to another, or integrals over a surface oriented at the direction of the normal to
the surface. Switching the extreme points of the curve, or taking the opposite direction of the normal
would induce a change of sign in the line and surface integrals. In our generalization of vector calculus,
a positive orientation is implicit in the ordering of the canonical basis. The skew-symmetry property
of the exterior product Equation (6) may introduce sign changes to compensate an eventual change of
orientation after changes of coordinates such as permutations of the space–time components.

For a given hypersurface Vm, a convenient transformation for solving the integral in Equation (21)
is one such that, at a given point x in the hypersurface, the infinitesimal vector element dmx has
one component that is tangent to the hypersurface at that point. Let e be a unit m-graded vector
parallel to Vm at point x, and let e10, . . . , e1k`n´1 form an orthonormal basis of Rk`n such that e “

e1k`n´m ^ ¨ ¨ ¨ ^ e1k`n´1 for the given point x in Vm. This change of coordinates from the canonical basis
to the new basis is described by a unitary matrix U, dependent on x, and that satisfies

e0 ^ ¨ ¨ ¨ ^ ek`n´1 “ detpUq e10 ^ ¨ ¨ ¨ ^ e1k`n´1. (23)

Being a unitary matrix, the determinant of U is ˘1. Assuming an orientation-preserving change of
coordinates, that is detpUq “ 1, the infinitesimal vector element in Equation (22) for ` “ m can be
expressed as

dmx “ dx e `
ÿ

I“pi1,...,imq : IXK‰H

dxIe1I , (24)

where K“ t0, . . . , k` n´m´ 1u is the set of indices for the unit vectors in the new basis orthogonal to
Vm. Since all elements in the summation in Equation (24) have at least one differential element lying
outside the integration hypersurface, their integrals vanish and therefore

ż

Vm
dmx “

ż

Vm
dx e . (25)

In analogy to e , a multivector of grade m, we define a unit pk` n´mq-grade vector eK normal to
Vm at point x such that eK ^ e “ e0 ^ ¨ ¨ ¨ ^ ek`n´1. From Equation (10), we see that one such normal
multivector with the correct orientation is

eK “
eH´1

eH´1
¨ eH´1 . (26)

For the common spaces considered in vector calculus, R2 and R3, and according to Equation (23),
orientation-preserving changes of coordinates must respectively satisfy eK ^ e “ e0 ^ e1 and eK ^
e “ e0^ e1^ e2, where eK is the basis element normal to Vm. These two equalities turn out to describe
the counterclockwise (resp. right-hand rule) orientation when eK conventionally points outside an
integration path for R2 (resp. a surface for R3) [5] (pp. 184–185).

Building on the concepts and operations of circulation and flux in vector calculus, the right and
left interior products lead to general definitions of circulation and flux of multivector fields in exterior
algebra along and across hypersurfaces of arbitrary number of dimensions.



Mathematics 2019, 7, 564 6 of 20

3.2. Circulation and Flux of Multivector Fields

Definition 1. The circulation of a vector field vpxq of grade m along an `-dimensional hypersurface V `, denoted
by Cpv,V `q, is given by

Cpv,V `q “

ż

V `
d`x v. (27)

Expressing the vector field in the canonical basis and using the definition of d`x in Equation (22),
the circulation can be specified in some cases of interest. For ` “ m, the circulation reads

ż

Vm
dmx ¨ v “

ÿ

I“pi1,...,imq

∆I,I

ż

Vm
dxIvI . (28)

For instance, for ` “ m “ 1 and Rn, this formula recovers the definition the circulation of a vector field
along a closed path with the appropriate orientation.

Alternatively, using Equation (25), we note that v is integrated along the direction of e , tangential
to the hypersurface, in an orientation-preserving change of coordinates, that is

ż

Vm
dmx v “

ż

Vm
dx e v. (29)

Intuitively, the circulation Equation (27) measures the alignment of an m-vector field v with respect to
V ` for any ` and m, with the circulation being an p`´mq-vector if ` ě m and zero otherwise.

Definition 2. The flux of a vector field vpxq of grade m across an `-dimensional hypersurface V `, denoted by
Fpv,V `q, is given by

Fpv,V `q “

ż

V `
d`xH´1

v. (30)

Expressing both v and d`x in the canonical basis, and using the inverse Hodge operation
in Equation (10), the flux in the special case of ` “ k` n´m can be written as

ż

V `
d`xH´1

¨ v “
ÿ

I“pi1,...,imq

σpI, Icq

ż

V `
dxIc vI . (31)

As an example in R3, the flux of a vector field v through a surface V2 reads
ż

V2
d2xH´1

¨ v “
ż

V2

ÿ

I,iRI

dxIσpi, Iqei ¨ v. (32)

The right-hand side of Equation (32) is a conventional surface integral, upon the identification of
ř

I,iRI dxIσpi, Iqei as an infinitesimal surface element dS.

Alternatively, using the analogous of Equation (25) for the differential vector element d`xH´1 , the
equivalent to Equation (29) for the flux is

ż

V `
d`xH´1

v “
ż

V `
dx eH´1

v. (33)

This equation implies that v is integrated along a normal component to the hypersurface since eH´1

is a multivector of grade k` n´ ` orthogonal to V `. Intuitively, the flux Equation (30) measures the
magnitude of the multivector field crossing the hypersurface. In general, the flux is a vector of grade
pm` `´ n´ kq if ` ě k` n´m and zero otherwise. For instance, if ` “ k` n, the flux of v over an
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pk` nq-dimensional hypersurface V k`n gives the integral of v over V k`n, an extension of the volume
integral to Rk`n,

ż

V k`n
dk`nxH´1

v “
ż

V k`n
dxi1,¨¨¨ ,ik`n v, (34)

where we used the relation 1H “ ei1,...,ik`n , implying that dk`nxH´1
“ dxi1,¨¨¨ ,ik`n , and that 1 v “ v.

3.3. Exterior and Interior Derivatives

In vector calculus, extensive use is made of the nabla operator ∇, a vector operator that takes
partial space derivatives. For instance, operations such as gradient, divergence or curl are expressed in
terms of this operator. In our case, we need the generalization to pk, nq space–time to the differential
vector operator BBB, defined as p´B0,´B2, . . . ,´Bk´1, Bk, . . . , Bk`n´1q, that is

BBB “

k`n´1
ÿ

i“0

∆iieiBi. (35)

For a given vector field v of grade m, we define the exterior derivative of v as BBB ^ v, namely

BBB ^ v “
k`n´1
ÿ

i“0

ÿ

I

∆iiBivIσpi, Iq eεpi,Iq. (36)

The grade of the exterior derivative of v is m` 1, unless m “ k` n, in which case the exterior derivative
is zero, as can be deduced from the fact that all signatures are zero.

In addition, we define the interior derivative of v as BBB v, namely

BBB v “
ÿ

i,I: iPI

BivIσpIzi, iqeIzi. (37)

The grade of the interior derivative of v is m´ 1, unless m “ 0, in which case the interior derivative is
zero, as implied by the fact that the grade of BBB is larger than the grade of v. Using Equation (16) with
u “ BBB and assuming that v and w are 1-vectors, we obtain a generalization of Leibniz’s product rule

BBB pv^wq “ vpBBB ¨wq ´ pBBB ¨ vqw. (38)

The formulas for the exterior and interior derivatives allow us express some common expressions
in vector calculus. For a scalar function φ, its gradient is given by its exterior derivative ∇φ “ BBB ^ φ,
while for a vector field v, its divergence ∇ ¨ v is given by its interior derivative ∇ ¨ v “ BBB v.
From Equation (16) we further observe that for a scalar function φ we recover the relation

∇ ¨ p∇φq “ p∇ ¨∇qφ. (39)

In addition, for a vector fields v in R3, taking into account Equation (18) then the curl can be variously
expressed as

∇ˆ v “ p∇^ vqH
´1
“ ∇ vH´1

“ ∇ vH. (40)

This formula allows us to write the curl of a vector field ∇ˆ v in terms of the exterior and interior
products and the Hodge complement, while generalizing both the cross product and the curl to
grade-m vector fields in space–time algebras with different dimensions. Moreover, from Equation (16)
we can recover for r “ 1 the well-known formula for the curl of the curl of a vector,

∇ˆ p∇ˆ vq “ ∇p∇ ¨ vq ´∇2v. (41)
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It is easy to verify that the exterior derivative of an exterior derivative is zero, as is the interior
derivative of an interior derivative, that is for any vector field v, we have that

BBB ^ pBBB ^ vq “ 0 (42)

BBB pBBB vq “ 0. (43)

In regard to the vector space R3, and using Equation (18), these expressions imply the well-known
facts that the curl of the gradient and the divergence of the curl are zero:

∇ˆ p∇φq “ p∇^ p∇^ φqqH
´1
“ 0 (44)

∇ ¨ p∇ˆ vq “ ∇ p∇ vHq “ 0. (45)

3.4. Stokes Theorem for the Circulation

In vector calculus in R3, the Kelvin-Stokes theorem for the circulation of a vector field v of grade 1
along the boundary BV2 of a bidimensional surface V2 relates its value to that of the surface integral
of the curl of the vector field over the surface itself. In the notation used in the previous section, the
surface integral is the flux of the curl of the vector field across the surface and this theorem reads

ż

BV2
dx ¨ v “

ż

V2
d2xH´1

¨ p∇ˆ vq. (46)

Taking into account the identity ∇ˆ v “ p∇^ vqH´1 in Equation (40), we rewrite the right-hand side
in Equation (46) as

ş

V2 d2xH´1
¨ p∇ˆ vq “

ş

V2 d2xH´1
¨ p∇^ vqH´1

“
ş

V2 d2x ¨ p∇^ vq,
(47)

where we used that u ¨w “ uH´1
¨wH´1

“ uH ¨wH for vectors u, w. The flux of the curl of the vector
field across a surface is also the circulation of the exterior derivative of the vector field along that surface.

The generalized Stokes theorem for differential forms [4] (p. 80) allows us to extend the
Kelvin-Stokes theorem to multivectors of any grade m as we do in the following theorem.

Theorem 1. The circulation of a grade-m vector field v along the boundary BV ` of an `-dimensional hypersurface
V ` is equal to the circulation of the exterior derivative of v along V `:

Cpv, BV `q “ CpBBB ^ v,V `q. (48)

As hinted at above, the role of the vector curl in the right-hand side of Equation (46) is played by
the exterior derivative in this generalized theorem.

Proof. We start by stating the generalized Stokes Theorem for differential forms [4] (p. 80)
ż

BV `
ω “

ż

V `
dω, (49)

where ω is a differential form and dω its exterior derivative, represented by the operator

d “
ÿ

j

dxjBj. (50)

Expressing the circulations in Equation (48) by means of the integrals in Equation (27), we obtain
ż

BV `
d`´1x v “

ż

V `
d`x pBBB ^ vq. (51)
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In the integral in the left-hand side of Equation (51), the integrand is a differential form ω “ d`´1x v.
After expanding the interior product using the definitions of d`´1x and v we obtain

ω “

˜

ÿ

J`´1

dxJ eJ

¸ ˜

ÿ

Im

vI eI

¸

“
ÿ

J`´1,Im : IĎJ

∆I,IσpI, εpI, JcqcqvI dxJ eεpI,Jcqc . (52)

Then, computing the exterior derivative of this form with Equation (50) gives

dω “
ÿ

J`´1,Im : IĎJ

ÿ

jRJ

∆I,IσpI, εpI, JcqcqBjvIσpj, Jqdxεpj,Jq eεpI,Jcqc . (53)

We next write down the integrand in the right-hand side of Equation (51), d`x pBBB ^ vq, that is

d`x pBBB ^ vq “

˜

ř

K``1
dxK eK

¸ ˜

ř

Im

ř

jRI ∆j,jBjvI σpj, Iq eεpj,Iq

¸

“
ř

K` ,Im : εpj,IqĎK`

ř

jRI ∆j,jBjvI dxK σpj, Iq∆εpj,Iq,εpj,Iq σpεpj, Iq, εpKc, εpj, Iqqcq eεpKc ,εpj,Iqqc

“
ř

K` ,Im : εpj,IqĎK``1

ř

jRI ∆I,IBjvI dxK σpj, Iqσpεpj, Iq, εpKc, εpj, Iqqcq eεpKc ,εpj,Iqqc ,

(54)

and verify that it coincides with exterior derivative in Equation (53). As the set of m indices Im is
included in the sets J`´1 or K` in Equation (53) or (54), we may write K` “ εpJ`´1, jq for some j R J`´1.
Then, we obtain the following chain of equalities for the basis elements in Equations (53) and (54):

eεpKc ,εpj,Iqqc “ eεpKcYtjuYIqc “ eεpJcztjuYtjuYIqc “ eεpJcYIqc “ eεpI,Jcqc . (55)

Therefore, and using that εpJcztju, εpj, Iqqc “ JzI, we can write Equation (54) as

d`x pBBB ^ vq “
ÿ

J`´1,Im ,jRI : εpj,IqĎJYtju

∆I,IBjvI dxεpJ,jq σpj, Iqσpεpj, Iq, JzIq eεpI,Jcqc . (56)

Comparing Equation (56) with Equation (53), the expressions coincide if this identity holds:

σpj, JqσpI, JzIq “ σpj, Iqσpj` I, JzIq. (57)

To prove Equation (57) we exploit that the σ are permutation signatures and that the signature of
the composition of permutations is the product of the respective signatures. We proceed with the
help of a visual aid in Figure 1, which depicts the identity between two different ways of sorting
the concatenated list pj, I, JzIq. On the left column we first sort the list pI, JzIq to obtain J and then
sort the list pj, Jq. On the right column, we first sort the list pj, Iq and then the list pj` I, JzIq. This
proves Equation (57) and the theorem.

| |
I

| |
j

|
JzI

| |
J

| |
j

| |
εpj, Jq

| |
I

| |
j

|
JzI

| |
j` I

|
JzI

| |
εpj, Jq

Figure 1. Visual aid for the identity among permutations in Equation (57).

Finally, we note that, had we defined the circulation with the left interior product, we would have
got an incompatible relation in Equation (57), which could not be solved.
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3.5. Stokes Theorem for the Flux

In vector calculus in R3, the Gauss theorem relates the volume integral of the divergence of a
vector field v over a region V3 to the surface integral of the vector field over the region boundary BV3.
In the notation used in previous sections, and taking into account that both the surface integral and
the volume integral can be expressed as fluxes for R3, this theorem reads

ż

BV3
d2xH´1

¨ v “
ż

V3
d3xH´1

p∇ ¨ vq. (58)

Making use of the identity ∇ ¨ v “ ∇ v, we can rewrite the right-hand side in Equation (58) as
ż

V3
d3xH´1

p∇ ¨ vq “
ż

V3
d3xH´1

p∇ vq. (59)

In other words, the Gauss theorem relates the flux of the interior derivative of a vector field v across a
region V3 to the flux of the vector field itself across the region boundary BV3.

The generalized Stokes theorem for differential forms allows us to extend the Gauss theorem to
multivectors of any grade m as we do in the following theorem.

Theorem 2. The flux of a grade-m vector field v across the boundary BV ` of an `-dimensional hypersurface V `

is equal to the flux of the interior derivative of v across V `:

Fpv, BV `q “ FpBBB v,V `q. (60)

Proof. Expressing the fluxes in Equation (60) by means of the integrals in Equation (30), we obtain
ż

BV `
d`´1xH´1

v “
ż

V `
d`xH´1

pBBB vq. (61)

As in the proof of Theorem 1, we apply the Stokes theorem for differential forms in Equation (49)
upon the identifications ω with d`´1xH´1 v and dω with d`xH´1

pBBB vq. First, for ω, we get

˜

ř

J`´1
dxJ∆Jc ,Jc σpJc, JqeJc

¸ ˜

ř

Im
vI eI

¸

“
ř

J`´1,Im : JcĎI vI dxJσpJc, JqσpεpJc, Icqc, Jcq eεpJc, Icqc

“
ř

J`´1,Im : JcĎI vI dxJσpJc, JqσpIzJc, Jcq eIzJc .
(62)

Now, taking the exterior derivative of Equation (62), we obtain

dω “
ÿ

J`´1,Im : JcĎI

ÿ

jRJ

BjvI dxεpj,Jqσpj, JqσpJc, JqσpIzJc, Jcq eIzJc . (63)

This quantity should be equal to d`xH´1
pBBB vq in the right-hand side of Equation (61), which we

expand as

d`xH´1
pBBB vq “

˜

ř

K`
dxK∆Kc ,Kc σpKc, KqeKc

¸ ˜

ř

I:jPI BjvIσpIzj, jqeIzj

¸

“
ř

K`,Im : KcĎIzj
ř

jPI BjvI dxKσpKc, KqσpIzj, jqσpIzjzKc, Kcq eIzjzKc .

(64)

We first consider the sets in the summations in the alternative expressions for dω, Equations (63)
and (64). Since Jc contains j and is a subset of I, but Kc does not contain j and is also a subset of I (with
j P I), then we can assert that K “ J Y tju so that the conditions in the summations are equivalent.
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The basis elements coincide and so do the differentials and derivatives, and it remains to verify
the identity

σpj, JqσpJc, JqσpIzJc, Jcq “ σpKc, KqσpIzj, jqσpIzjzKc, Kcq. (65)

With the definition L “ IzJc, and expressed in terms of j, J, and L, this condition gives

σpj, JqσpJc, JqσpL, Jcq “ σpJczj, J ` jqσpJczj` L, jqσpL, Jczjq. (66)

Multiplying both sides of the equation by σpJc, Jq, σpJczj, J ` jq and σpJczj, jq, and taking into account
that the square of a signature is `1, we obtain

σpJczj, jqσpL, Jcqσpj, JqσpJczj, J ` jq “ σpL, JczjqσpJczj` L, jqσpJczj, jqσpJc, Jq. (67)

We start by simplifying Equation (67) by noting that

σpJczj, jqσpL, Jcq “ σpL, JczjqσpJczj` L, jq, (68)

with help of the visual aid in Figure 2. The permutations on the left column first merge pJczjqwith j
and then the resulting Jc with L. Similarly, on the right column, we start with L, pJczjq and tju, then
concatenate pL, Jczjq and then add j, getting the same result as the left column.

| |
L

|
Jczj

| |
j

| |
L

|
Jc

| |
εpL, Jcq

| |
L

|
Jczj

| |
j

| |
L` Jczj

| |
j

| |
εpL, Jcq

Figure 2. Visual aid for the identity σpJczj, jqσpL, Jcq “ σpL, JczjqσpJczj` L, jq.

Therefore, we have reduced Equation (67) to the simpler form

σpj, JqσpJczj, J ` jq “ σpJczj, jqσpJc, Jq, (69)

which we prove with the aid depicted in Figure 3. On the left column, j and J are first merged and
then the concatenation pJczj, J ` jq gives the sorted εpJc, Jq. On the right column, after sorting pJczjq
with j, merging it with J leads to the same final sequence.

| |
Jczj

| |
j

|
J

| |
Jczj

|
J ` j

| |
εpJc, Jq

| |
Jczj

| |
j

|
J

| |
Jc

|
J

| |
εpJc, Jq

Figure 3. Visual aid for the identity σpj, JqσpJczj, J ` jq “ σpJczj, jqσpJc, Jq.

4. An Application to Electromagnetism in 1+3 Dimensions

In this section, we show how to recover the standard form of Maxwell equations and Lorentz force
in 1` 3 dimensions from a formulation with exterior calculus involving an electromagnetic bivector
field F and a 4-dimensional current density vector J. In the appropriate units, the bivector field F can
be decomposed as F “ FE ` FB, where FE contains the electric-field E time-space components and FB
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contains the space-space components for the magnetic field B. Similarly, the current density depends
on the charge density ρ and the spatial current density j. More specifically,

J “ ρe0 ` j (70)

F “ FE ` FB “ e0 ^ E`BH. (71)

Here the Hodge complement acts only on the space components, and BH “ BH´1 . The bivector field F
is closely related to the Faraday tensor, a rank-2 antisymmetric tensor.

Maxwell equations, in their differential form, constrain the divergence of the electric and the
magnetic field, Equations (72) and (73), respectively, and the curl of E and B, namely Equations (74)
and (75) [11] (p. 4-1).

∇ ¨ E “ ρ (72)

∇ ¨B “ 0 (73)

∇ˆ E “ ´B0B (74)

∇ˆB “ B0E` j. (75)

We refer to Equations (73) and (74) as homogeneous Maxwell equations and to Equations (72) and (75)
as inhomogeneous Maxwell equations, as they include the fields and the sources given by charge and
current densities. In exterior-calculus notation, both pairs of equations can be combined into simple
multivector equations,

BBB ^ F “ 0 (76)

BBB F “ J, (77)

where BBB is the differential operator BBB “ ´B0e0 `∇ for k “ 1 and n “ 3. As a consistency check, note
that the wedge product raises the grade of F, and the zero in Equation (76) is the zero trivector; also, as
the left interior product lowers the grade of F, both sides of Equation (77) relate space–time vectors.

Next to Maxwell equations, the Lorentz force density fff characterizes, after integrating over the
appropriate region, the force exerted by the electromagnetic field upon a system of charges described
by the charge and current densities ρ and j [11] (pp. 13-1–13-3),

fff “ ρE` jˆB. (78)

In relativistic form, the Lorentz force density becomes a four-dimensional vector f [2] (pp. 153–157). The
time component of this vector is j ¨E, the power dissipated per unit of volume, or after integrating over
the appropriate region, the rate of work being done on the charges by the fields. In exterior-calculus
notation, the Lorentz force density vector can be computed as a left interior product, namely

f “ J F. (79)

4.1. Equivalence of the Lorentz Force Density

In this section, we prove that Equation (79) indeed recovers the relativistic Lorentz force density
by verifying that its components in both vector-calculus and exterior-calculus coincide. From the
definitions of J and F, and using the distributive property of the interior product, we get

f “ pρe0 ` jq pFE ` FBq

“ ρe0 FE ` ρe0 FB ` j FE ` j FB

“ ρe0 pe0 ^ Eq ` ρe0 BH ` j pe0 ^ Eq ` j BH´1 .
(80)
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Some straightforward calculations give e0 pe0 ^ Eq “ E, e0 BH “ 0, and j pe0 ^ Eq “ e0j ¨ E.
In addition, the formula for the left interior product in Equation (18) gives j BH´1

“ pj^BqH´1
“ jˆB,

where the cross product is only valid for three dimensions. With these calculations, we obtain

f “ ρE` e0j ¨ E` jˆB, (81)

namely, a time-component j ¨ E and a spatial component equal to the Lorentz force density ρE` jˆB.

4.2. Equivalence of the Differential Form of Maxwell Equations

In this section, we prove that Equation (76) indeed recovers the homogeneous Maxwell equations
and that Equation (77) recovers the inhomogeneous Maxwell equations.

First, we observe that the exterior derivative BBB ^ F gives a trivector with 4 components, while
the homogeneous Maxwell equations are a scalar, Equation (73), and a vector, Equation (74). We shall
verify that the scalar equation turns out to be given by the trivector component e123 of BBB ^ F, while the
vector equation is given by the trivector components e012, e013, and e023 of the exterior derivative.

We evaluate the exterior derivative BBB ^ F using the decomposition of F in Equation (71),

BBB ^ F “ ´B0e0 ^ e0 ^ E´ B0e0 ^BH `∇^ e0 ^ E`∇^BH

“ ´B0e0 ^BH ´ e0 ^ p∇^ Eq `∇^BH

“ ´e0 ^ pB0BH `∇^ Eq `∇^BH,
(82)

where we used that e0 ^ e0 “ 0 and that ∇^ e0 “ ´e0 ^∇ in the second step of Equation (82). Taking
advantage of Equation (40) we have the equality ∇^ E “ p∇ˆ EqH, while ∇^BH “ p∇ ¨BqH, and

BBB ^ F “ ´e0 ^ pB0BH ` p∇ˆ EqHq ` p∇ ¨BqH. (83)

Indeed, the first summand vanishes when B0BH ` p∇ˆ EqH “ 0 or, taking the inverse Hodge
complement, when Equation (74) holds. In terms of components, the spatial Hodge complement
in this equation transforms a spatial vector into a bivector with components e12, e13, and e23 only
and this equation recovers the homogeneous Maxwell equation in Equation (74). After taking the
exterior product with e0, we obtain the trivector components e012, e013, and e023. Similarly, the second
term vanishes for p∇ ¨BqH “ 0, recovering Equation (73). In terms of components, the spatial Hodge
complement directly transforms a scalar into a trivector with a unique component e123, recovering the
homogeneous Maxwell equation in Equation (73).

We move on to the inhomogeneous Maxwell equations. We compute the interior derivative BBB F,

BBB F “ p´B0e0 `∇q pFE ` FBq

“ ´B0E´ B0e0 BH ` e0∇ ¨ E`∇ BH

“ ´B0E` e0∇ ¨ E`∇ BH,
(84)

since e0 BH “ 0. The interior derivative BBB F gives a space–time vector with 4 components, while
the inhomogeneous Maxwell equations are a scalar, Equation (72), and a spatial vector, Equation (75).

We can verify that the scalar equation turns out to be given by the vector component e0 of BBB F,
while the spatial vector equation is given by the spatial vector components e1, e2, and e3 of BBB F.
Indeed, if we match this expression with the current density vector J, then the time component e0 of
BBB F gives Equation (72). Selecting the space components of BBB F, the differential equation is

´ B0E`∇ BH “ j, (85)

which, using the relation ∇ BH “ ∇ˆB can be written as Equation (75).
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4.3. Equivalence of the Integral Form of Maxwell Equations

After studying the exterior-calculus differential formulation of Maxwell equations, we recover
the standard integral formulation. Applying the Stokes Theorem 1 to Equation (76), we find that the
circulation of the bivector field F along the boundary of any three-dimensional space–time volume V3 is zero:

ż

BV3
d2x ¨ F “

ż

V3
d3x ¨ pBBB ^ Fq “ 0. (86)

At this point, Equation (86) is a scalar equation and we obtain the pair of homogeneous Maxwell
equations by considering two different hypersurfaces V3.

First, let the domain V3 “ V contain only spatial coordinates. There are no tangential components
to V with time indices and the contribution of FE to the circulation of F over BV3 in Equation (86) is
zero, i.e.,

ż

BV
d2x ¨ F “

ż

BV
d2x ¨ FB. (87)

Using that u ¨w “ uH´1
¨wH´1 for any vectors u, w, and therefore d2x ¨ F “ d2xH´1

¨ FH´1
B and the

definition FB “ BH, the integral in the right-hand side of Equation (87) becomes

ş

BV d2x ¨ FB “
ş

BV d2xH´1
¨B

“
ş

BV dS ¨B,
(88)

where we used Equation (32) to write the last surface integral. Substituting Equation (88) back
into Equation (86) gives the Gauss law for the magnetic field [11] (pp. 1-5–1-9).

Let now V3 be a time-space domain pt0, t1q ˆ S, where S is a two-dimensional spatial surface.
With no real loss of generality we assume that S lies on the e1^ e2 plane. Its boundary BV3 is the union
of the sets pt0, t1q ˆ BS, t0 ˆ S and t1 ˆ S. For the first set, we choose eK as the vector normal to BS
pointing outwards on the plane defined by S and e “ e0 ^ eBS, where eBS is a vector tangent to BS
with a counterclockwise orientation, so that eK ^ e “ ´e012. Further, since e is a time-space bivector,
the contribution of FB to the circulation of F over this first set in Equation (86) is zero, and

ż

pt0,t1qˆBS
d2x ¨ F “ ´

ż

pt0,t1qˆBS
d2x ¨ FE. (89)

Writing the differential vector as d2x “ dt dxe0x, parameterizing the line integral over the boundary
BS by the variable x with unit vector e0x, and using that e0x ¨ FE “ ´ex ¨ E and therefore dx e0x ¨ FE “

´dx ¨ E, the integral of the right-hand side of Equation (89) becomes

ż t1

t0

dt
ż

BS
dx ¨ E. (90)

For the second and third sets the normal vector to the integration surface pointing outwards
are eK “ ´e0 and eK “ e0 respectively. Since e is a space-space bivector in both cases, then the
contribution of FE to the circulation is zero. We express the circulations of FB as fluxes of B and surface
integrals as done in Equation (88).Using these observations the integral for the circulation of F over
these two sets in Equation (86) is given by

ż

t0ˆS
d2x ¨ F`

ż

t1ˆS
d2x ¨ F “ ´

ż

S
dS ¨Bpt0q `

ż

S
dS ¨Bpt1q. (91)



Mathematics 2019, 7, 564 15 of 20

Combining Equations (90) and (91) in Equation (86) we recover the integral over time of the so
called Faraday law [11] (pp. 17-1–17-2). Equivalently, taking the time derivative recovers the usual
Faraday law, namely

ż

BS
dx ¨ E` Bt

ż

S
dS ¨B “ 0. (92)

In regard to the inhomogeneous Maxwell equations, applying the Stokes Theorem 2 to
Equation (77), we find that the flux of the bivector field F across the boundary of any three-dimensional
space–time volume is equal to the flux of the current density J across the three-dimensional space–time volume:

ż

BV3
d2xH´1

¨ F “
ż

V3
d3xH´1

¨ pBBB Fq “
ż

V3
d3xH´1

¨ J. (93)

As with the homogeneous Maxwell equations, the scalar Equation (93) yields the inhomogeneous
Maxwell equations by considering two different hypersurfaces V3.

First, let the integration domain V3 be a spatial volume V. Since there are no normal components
to V with space indices only, the contribution of FB to the flux is zero so that Equation (93) becomes

ż

BV
d2xH´1

¨ FE “

ż

V
d3xH´1

¨ J. (94)

From the definition of inverse Hodge complement in Equation (10), we write the differential vectors

d2xH´1
“ ´

ÿ

I,iRI

d2xIσp0i, Iqe0i (95)

d3xH´1
“ ´dVe0. (96)

Plugging these expressions in Equation (94), using the definitions of FE and J, and computing the dot
products on both sides of the equality, we obtain that Equation (94) simplifies as

´

ż

BV

˜

ÿ

I,iRI

d2xIσp0i, Iqe0i

¸

¨

˜

ÿ

j

Eje0j

¸

“ ´

ż

V
dVe0 ¨ pρe0 ` jq (97)

ż

BV

ÿ

I,iRI

d2xIσpi, IqEi “

ż

V
dVρ (98)

ż

BV
dS ¨ E “

ż

V
dVρ. (99)

In Equation (98) we used that σp0i, Iq “ σpi, Iq and in Equation (99) we used that
ř

I,iRI d2xIσpi, IqEi “

d2xH´1
¨ E. Since the Hodge complement is over space, the result is a surface integral with positive

orientation as in Equation (32). We recovered in Equation (99) the Gauss law for the electric field [11]
(pp. 4-7–4-9).

For V3 “ pt0, t1qˆ S where S is a two-dimensional surface lying on the e1^ e2 plane, the boundary
BV3 is the union of the sets pt0, t1q ˆ BS, t0 ˆ S and t1 ˆ S. For the first set, since d2xH´1 has no time
components, the contribution of FE to this set is zero, that is

ż

pt0,t1qˆBS
d2xH´1

¨ F “
ż

pt0,t1qˆBS
d2xH´1

¨ FB. (100)

As in the homogeneous case, we choose eK as the vector normal to BS pointing outwards on the
plane defined by S and e “ e0 ^ eBS, where eBS is a vector tangent to BS with a counterclockwise
orientation, such that eK ^ e “ ´e012 introduces a change of sign. Expressing d2xH´1 and FB in the
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canonical basis, defining I “ p0, iq so that Ic contains only space indexes, and using that eIc ¨ eic “ 1
and σpIc, Iq “ σpIc, 0, iq “ σp0, Ic, iq “ σpIc, iq, we obtain that Equation (100) simplifies to

ş

pt0,t1qˆBS d2xH´1
¨ F “

ş

pt0,t1qˆBS p
ř

I dxIσpIc, IqeIcq ¨ p
ř

i Bieic σpic, iqq

“ ´
şt1

t0
dt

ş

BS dxBx

“ ´
şt1

t0
dt

ş

BS dx ¨B.

(101)

For the second and third sets we respectively choose eK “ ´e0 and eK “ e0 pointing outside V3,
implying that the contribution of FB is zero for this set as the inverse Hodge complement of eK is a
space vector. Expressing d2xH´1 in Equation (95) and using similar steps as in Equations (97)–(99), the
left-hand side of Equation (93) over these two sets is given by

ż

t0ˆBS
d2xH´1

¨ F`
ż

t1ˆBS
d2xH´1

¨ F “ ´
ż

S
dS ¨ Ept0q `

ż

S
dS ¨ Ept1q (102)

Finally, for the right-hand side of Equation (93), we choose eK as the vector normal to V3 pointing
outside. Since e “ e012 implies that eK ^ e “ ´e0123, we obtain that

ż

V3
d3xH´1

¨ J “ ´
ż t1

t0

dt
ż

S
dS ¨ j. (103)

We have thusly recovered the integral form of the Ampere-Maxwell equation [11] (p. 18-1–18-4)
integrated over the time interval pt0, t1q by combining Equations (101)–(103) into Equation (93), that is

ż t1

t0

dt
ż

BS
dx ¨B “

ż t1

t0

dt
ż

S
dS ¨ j`

ż

S
dS ¨ Ept1q ´

ż

S
dS ¨ Ept0q. (104)

5. Summary

In this paper, we aimed at showing how exterior calculus provides a tool merging the simplicity
and intuitiveness of standard vector calculus with the power of tensors and differential forms. Set in
the context of a general space–time algebra with multiple space and time components, we provided
the basic concepts of exterior algebra and calculus, such as multivectors, wedge product and interior
products, with a distinction between left and right products, Hodge complement, and exterior and
interior derivatives. While a space–time with multiple time coordinates leads to several issues from
the physical point of view [12], we did not deal with these problems as this paper focuses on the
mathematical constructions. We also defined oriented integrals, with two important examples being
the flux and circulation of grade m-vector fields as integrals of the normal and tangent components of
the field to a hypersurface respectively. These operations extend the standard circulation of a vector
field as a line integral and the flux of a vector field as a surface integral in three dimensions to any
number of dimensions and any vector grade.

Armed with the theory of differential forms, we proved two exterior-calculus Stokes theorems,
one for the circulation and one for the flux, that generalize the Kelvin-Stokes, Gauss and Green
theorems. We saw that the flux of the curl of a vector field in three dimensions across a surface is also
the circulation of the exterior derivative of the vector field along that surface. In exterior calculus, these
Stokes theorems hold for any number of dimensions and any vector grade and are simply expressed in
terms of the exterior and interior derivatives for the circulation and flux respectively.

As an application of our tools, we showed how to recover the classical laws of electromagnetism,
Maxwell equations and Lorentz force, from a exterior-calculus formalism in relativistic space–time
with one temporal and three spatial dimensions. The electromagnetic field is described by a bivector
field with six components, closely related to Faraday’s antisymmetric tensor, containing both electric
and magnetic fields. The differential form of Maxwell equations relates the exterior derivative of the
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bivector field with the zero trivector and the interior derivative of the field with the current density
vector. In the integral form, these equations correspond to the statements that the circulation of the
bivector field along the boundary of any three-dimensional space–time volume is zero, and that the
flux of the bivector field across the boundary of any three-dimensional space–time volume is equal to
the flux of the current density across the same space–time volume.

Appendix A. Proofs of Product Identities

In this appendix, we verify the relations about interior products introduced in Section 2.

Appendix A.1. Relation between Left and Right Interior Products

We now prove the formula

eI eJ “ eJ eIp´1q|I|p|J|´|I|q, (A1)

relating left and right interior products. For two lists I and J, we have

eI eJ “ ∆I,Iσ
`

JzI, I
˘

eJzI , (A2)

eJ eI “ ∆I,Iσ
`

I, JzI
˘

eJzI , (A3)

where we assumed that I Ď J with no loss of generality and used that εpI, Jcqc “ JzI in this case. The
only difference between the expressions lies in the signatures, that are related by setting A “ JzI and
B “ I in the following lemma.

Lemma A1. Given two arbitrary lists A and B, of length |A| and |B| respectively, then the permutations
sorting the concatenated lists pA, Bq and pB, Aq satisfy the formula

σpA, Bq “ σpB, Aqp´1q|A||B|. (A4)

Proof. Given a list A, let sA be the reversed list, namely the list where the order of all the elements is
reversed. Counting the number of position jumps needed to reverse the list, we obtain the signature of
this reversing operation as

σrpAq “ σrp sAq “ p´1q|A|´1`|A|´2`...`1 “ p´1q
|A|p|A|´1q

2 . (A5)

The proof is based on the identity between two different ways of rearranging the concatenated
list pA, Bq into the ordered list εpA, Bq, as depicted in Figure A1.

| |
A

| |
B

A

A

| |
εpA, Bq

| |
A

| |
B

| |
sA

| |
sB

| |
A

| |
B

| |
εpA, Bq

Figure A1. Visual aid for the relation between σpA, Bq and σpB, Aq.

First, in the left column of Figure A1 we depict how a single permutation with signature σpA, Bq
orders the list pA, Bq. In the right column of Figure A1 we depict how a different series of permutations
achieves the same result. We start by reversing the concatenated list pA, Bq, an operation with signature
σrpsB, sAq. Then, we separately partially reverse the lists sB and sA, operations with respective signatures
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σrpsBq and σrp sAq. A final permutation with signature σpB, Aq orders the list pB, Aq into εpA, Bq. Since
the signature of a composition of permutations is the product of the signatures, we obtain that

σpA, Bq “ σrpsB, sAqσrp sAqσrpsBqσpB, Aq. (A6)

Using Equation (A5) in every σr in Equation (A6) and carrying out some simplifications
yields Equation (A4).

Appendix A.2. Relation between Interior and Exterior Products

We start with the expression for the left interior product Equation (14). From Equations (9)
and (10), we compute

`

eI ^ eH
J
˘H´1

“
`

∆J,JσpJ, JcqeI ^ eJc
˘H´1

“ ∆J,J∆εpI,Jcqc ,εpI,Jcqc σpJ, JcqσpI, JcqσpεpI, Jcqc, εpI, Jcqq eεpI,Jcqc ,
(A7)

and since ∆εpI,Jcqc ,εpI,Jcqc “ ∆JzI,JzI , we can conclude that ∆J,J∆εpI,Jcqc ,εpI,Jcqc “ ∆I,I . If we now compare
the result with Equation (11), we need just to verify the identity

σ
`

εpI, Jcqc, I
˘

“ σpJ, JcqσpI, JcqσpεpI, Jcqc, εpI, Jcqq , (A8)

or equivalently
σ
`

εpI, Jcqc, I
˘

σpJ, Jcq “ σpεpI, Jcqc, εpI, JcqqσpI, Jcq . (A9)

The left-hand side of Equation (A9) corresponds to taking the sets εpI, Jcqc “ JzI, I and Jc, in this order,
and then merging and sorting JzI with I and then merging and sorting the resulting set J with Jc, as
shown in the left column of Figure A2. On the right-hand side, we start we the same three lists, but we
first merge and sort I with Jc, and then we get the whole list by merging and sorting the result with
JzI, as represented in the right column of Figure A2. Thus, starting from the three sets and rearranging
them in different ways, we get the same final ordered list, and since the signatures of the left-hand
side and right-hand side are the same, and Equation (A9) is proved. As a consequence, Equation (14)
is verified.

| |
J

|
Jc

| |
εpI, Jcqc

| |
I

|
Jc

| |
εpJ, Jcq

| |
εpI, Jcqc

|
εpI, Jcq

| |
εpI, Jcqc

| |
I

|
Jc

| |
εpJ, Jcq

Figure A2. Visual aid for the permutations in Equation (A9).

Afterwards, we prove the formula for the right interior product Equation (15). Using Equations (9)
and (10), we write

`

eH´1
I ^ eJ

˘H
“
`

∆Ic ,Ic σpIc, IqeIc ^ eJ
˘H

“ ∆Ic ,Ic σpIc, IqσpIc, Jq eH
εpIc ,Jq

“ ∆Ic ,Ic σpIc, IqσpIc, Jq∆εpIc ,Jq,εpIc ,JqσpεpIc, Jq, εpIc, Jqcq eεpIc ,Jqc .

(A10)

Using that ∆εpIc ,Jq,εpIc ,Jq∆Ic ,Ic “ ∆J,J , in order to prove the validity of Equation (15), we need to prove
the relation

σpJ, εpIc, Jqcq “ σpIc, IqσpIc, JqσpεpIc, Jq, εpIc, Jqcq . (A11)
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We can prove it applying Lemma A1 to obtain the expression Equation (A8), or by following the same
procedure as before, paying attention to the difference that now list J is included in I.

Appendix A.3. Triple mixed product

Given two 1-vectors u and v and a r-vector w, we prove the relation

u pv^wq “ p´1qrpu ¨ vqw` v^ pu wq. (A12)

Proof. We start by evaluating u pv^wq explicitly, separating terms i “ j and i ‰ j, namely

u pv^wq “
ÿ

i,j,I
jRI,iPI

∆i,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi `
ÿ

i,I
iPI

∆i,iuiviwIσpi, IqσpI, iqeI , (A13)

then, using σpi, IqσpI, iq “ p´1qr and adding and removing a term p´1qr
ÿ

i,I
iRI

∆i,iuiviwIeI , we get

u pv^wq “
ÿ

i,j,I
iPI,jRIzi

∆i,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi ` p´1qr
ÿ

i,I

∆i,iuiviwIeI . (A14)

More concretely, the left-hand side u pv^wq is given by

ř

i,j,I
jRI,iPI

∆i,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi ´ p´1qr
ř

i,I
iRI

∆i,iuiviwIeI

“
ř

i,j,I
jRI,iPI

∆i,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi ´
ř

i,j,I
j“i,jRIzi,iPI

∆i,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi

“
ř

i,j,I
iPI,jRIzi

∆i,iuivjwIσpj, IqσpI ` jzi, iqeI`jzi.

(A15)

Similarly, we evaluate the right-hand side v^ pu wq as

v^ pu wq “
ÿ

i,j,I
iPI,jRIzi

∆i,iuivjwIσpIzi, iqσpj, IziqeI`jzi. (A16)

Comparing Equations (A15) and (A16), it remains to prove the equality, and now we prove the equality

σpj, IqσpI ` jzi, iq “ σpIzi, iqσpj, Iziq. (A17)

We rewrite Equation (A17) multiplying both sides for σpj, Iqσpj, Iziq so that we obtain

σpj, IziqσpI ` jzi, iq “ σpIzi, iqσpj, Iq (A18)

which we verify with the help of Figure A3. On the left column, we first merge j with Izi and then the
resulting list with i. On the right columns, the permutations first join Izi and i and the resulting I is
then merged with j, getting the same result in both sides of the relation.



Mathematics 2019, 7, 564 20 of 20

| |
j

|
Izi

|
i

| |
I ` jzi

|
i

| |
I ` j

| |
j

|
Izi

|
i

| |
j

|
I

| |
I ` j

Figure A3. Visual aid for the identity σpj, IziqσpI ` jzi, iq “ σpIzi, iqσpj, Iq.

Thus, we can write

u pv^wq “
ÿ

i,j,I
iPI,jRIzi

∆i,iuivjwIσpIzi, iqσpj, IziqeI`jzi ` p´1qr
˜

ÿ

i

∆i,iuivi

¸˜

ÿ

I

wIeI

¸

, (A19)

where we identify the term p´1qrpu ¨ vqw, and finally conclude

u pv^wq ´ v^ pu wq “ p´1qrpu ¨ vqw, (A20)

which proves our initial formula.
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