
mathematics

Article

Reliability Analysis of the Bijective Connection
Networks for Components

Litao Guo 1,*,† and Chia-Wei Lee 2,†

1 Department of Mathematics, Xiamen University of Technology, Xiamen 361024, China
2 Department of Computer Science and Information Engineering, National Taitung University, No. 369, Sec. 2,

University Road, Taitung City 95092, Taiwan; cwlee@gm.nttu.edu.tw
* Correspondence: ltguo2012@126.com
† The authors contributed equally to this work.

Received: 22 April 2019; Accepted: 13 June 2019; Published: 14 June 2019
����������
�������

Abstract: Connectivity is a critical parameter that can measure the reliability of networks.
Let Q ⊆ V(G) be a vertex set. If G − Q is disconnected and every component of G − Q contains
at least k + 1 vertices, then Q is an extra-cut. The number of vertices in the smallest extra-cut is
the extraconnectivity κk(G). Suppose ω(G) is the number of components of G and W ⊆ V(G);
if ω(G−W) ≥ t, then w is a t-component cut of G. The number of vertices in the least t-component
cut is the t-component connectivity cκt(G) of G. The t-component edge connectivity cλt(G) is defined
similarly. In this note, we study the BC networks and obtain the t-component (edge) connectivity of
bijective connection networks for some t.
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1. Introduction

Multiprocessor systems have many advantages over their uniprocessor counterparts, such as
high performance and reliability, better reconfigurability, and scalability. With the development of
VLSItechnology and software technology, multiprocessor systems with hundreds of thousands of
processors have become available. With the continuous increase in the size of multiprocessor systems,
the complexity of a system can adversely affect its fault tolerance and reliability. For the design and
maintenance purpose of multiprocessor systems, appropriate measures of reliability should be found.

A graph G = (V, E) can simulate a network. The edges can represent links between the nodes,
and the vertices can represent nodes that are processors or stations. Reliability is the essential
consideration in network design [1,2]. For a connected graph G, the connectivity κ(G) is defined as the
minimum number k of vertices that can be removed to reduce the graph connectivity or leave only one
vertex. For the reliability of networks, connectivity is worst for most measures. To compensate for this
shortcoming, it seems reasonable to generalize the notion of classical connectivity by imposing some
conditions or restrictions on the components of G− F, where F denotes faulty processors/links. Hence,
many parameters that can measure the reliability of multiprocessor systems have been proposed.
Suppose S1 ⊆ V(G); if ω(G− S1) ≥ t, then S1 is a t-component cut of G. The number of vertices in the
least t-component cut is the t-component connectivity cκt(G) of G. Correspondingly, the t-component
edge connectivity cλt(G) is obtained. The t-component (edge) connectivity was proposed in [3,4]
independently. Fábrega et al. proposed extraconnectivity in [5]. Let F1 ⊆ V(G) be a vertex set. If G− F1

is disconnected and every component of G− F1 contains at least p + 1 vertices, then F1 is an extra-cut.
The number of vertices in the smallest extra-cut is the extraconnectivity κp(G).

Suppose G = (V, E) is a connected graph, NG(w) = {u : wu ∈ E} (simply N(w)), E(w) = {e : e
is an edge, and w is an end of e}.
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Q is a subset of V; G[Q] is the subgraph induced by the vertices in Q, NG(Q) = ∪v∈QN(v)−
Q, NG[Q] = NG(Q)∪Q; G−Q is the subgraph of G that is induced by the vertices of V−Q. If p, q ∈ V,
then d(p, q) is the number of edges of the shortest (p, q)-path. For P, Q ⊂ V, the edge set [P, Q] = {e :
e = wz ∈ E, w ∈ P, z ∈ Q}. We follow [6] for terminology and notation. We only consider simple,
finite, and undirected graphs.

Definition 1. BC networks: The one-dimensional bijective connection network X1 is the complete graph K2.
Let L1 = {X1} and G be an n-dimensional BC graph. Suppose Ln = {G : G is an n-dimensional bijective
connection graph}. An n-dimensional BC graph G can be defined recursively:

(1) For two non-empty subsets V1, V2 ⊂ V(G), V(G) = V1 ∪V2;
(2) An edge set Q ⊂ E(G), Q is a perfect matching between V1 and V2, G[V1], G[V2] ∈ Ln−1.

In the following, we denote Xn an n-dimensional BC network. The n-dimensional BC network
Xn with 2n vertices and n2n−1 edges was introduced by Fan et al. [7]. An n-dimensional BC graph
Xn is n regular Hamilton-connected. BC graphs contain most of the variants of the hypercube:
hypercube, crossed cube, twisted cube, locally-twisted cube, and so on. We can see that L1 = {K2},
L2 = {C4}, L3 = {Q3, CQ3, TQ3, LTQ3}, where C4 is a four-cycle, Q3 is a three-dimensional hypercube,
CQ3 is a three-dimensional crossed cube, TQ3 is a three-dimensional twisted cube, and LTQ3 is
a three-dimensional locally-twisted cube. TQ3 and LTQ3 are isomorphs ofCQ3.

According to the definition, every vertex of X0
n−1 has only one neighbor in X1

n−1, and every vertex
of X1

n−1 also has only one neighbor in X0
n−1. Because Xn can be obtained by putting a perfect matching

W between X0
n−1 and X1

n−1, Xn can be viewed as G(X0
n−1, X1

n−1, W) or X0
n−1 � X1

n−1. Suppose w ∈
V(Xn), eW(w) is the edge incident to w in W.

The BC graphs are an attractive alternative to hypercubes Qn. For more references about BC
networks, see [8–13]. For more references about component connectivity, see [14–16].

In this work, we get that:

(1) Suppose (n ≥ 2); cκ2(Xn) = n.
(2) Suppose (n ≥ 3); cκ3(Xn) = 2n− 2.
(3) Suppose (n ≥ 2); cλ2(Xn) = n.
(4) Suppose (n ≥ 2); cλ3(Xn) = 2n− 1.
(5) Suppose (n ≥ 2); cλ4(Xn) = 3n− 2.

2. Properties of BC Networks

The BC networks Xn has an important property as follows.

Lemma 1 ([11]). Let p, q ∈ V(Xn)(n ≥ 2) be any two vertices. Then, |N(p) ∩ N(q)| ≤ 2.

Corollary 1. Suppose that p, q ∈ V(Xn)(n ≥ 2) are any two vertices. Then,

(1) if d(p, q) is two, then |N(p) ∩ N(q)| ≤ 2;
(2) if d(p, q) 6= 2, then |N(p) ∩ N(q)| = 0.

From Lemma 1, we can see that the girth of Xn is g(Xn) = 4(n > 1). By the definition of Xn,
we obtain:

Lemma 2. Suppose that p, q ∈ V(Xn)(n ≥ 2) are any two vertices such that |N(p) ∩ N(q)| = {w, z}.

(1) If p ∈ V(X0
n−1), q ∈ V(X1

n−1), then w ∈ X0
n−1 and z ∈ X1

n−1.
(2) If p, q ∈ V(X0

n−1) or V(X1
n−1), then {w, z} ⊆ X0

n−1 or {w, z} ⊆ X1
n−1.

Lemma 3 ([7]). If n ≥ 2, then κ(Xn) = λ(Xn) = n.
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Theorem 1. If n ≥ 2, cκ2(Xn) = κ(Xn) = n.

Theorem 2. Suppose (n ≥ 3), cκ3(Xn) = 2n− 2.

Proof. In a cycle C4, take x, y with |N(x) ∩ N(y)| = 2, xy /∈ E. Then, ω(Xn − N({x, y})) ≥ 3
(see Figure 1) and |N({x, y})| = 2n− 2. Hence, cκ3(Xn) ≤ 2n− 2.

Figure 1. Illustration of Xn − N({x, y}).

We will show cκ3(Xn) ≥ 2n− 2 by induction; this is right for n = 3. Hence, let n ≥ 4. Suppose that
the case of n ≤ k− 1 is true. Set n = k.

By contradiction, suppose Q ⊆ V(Xn) and |Q| ≤ 2n− 3. Furthermore, ω(Xn−Q) ≥ 3, say G1, G2

and G3. We have |Q ∩V(X0
n−1)| ≤ n− 2 or |Q ∩V(X1

n−1)| ≤ n− 2. We set |Q ∩V(X0
n−1)| ≤ n− 2 by

symmetry. Hence, X0
n−1 −Q must be connected.

If ω(X1
n−1 − Q) ≥ 3, then |Q ∩ V(X1

n−1)| ≥ 2n − 4 by the inductive hypothesis, and |Q ∩
V(X0

n−1)| ≤ 1. Since every vertex of X1
n−1 has one neighbor in X0

n−1, at most one vertex of X1
n−1 −Q

does not have neighbors in X0
n−1 −Q. Hence, ω(Xn −Q) ≤ 2, a contradiction.

Hence, ω(X1
n−1 − Q) ≤ 2. At most one connected component of X1

n−1 − Q is not connected to
X0

n−1 −Q. Then, ω(Xn −Q) ≤ 2, a contradiction again.

Lemma 4. Let w ∈ V(Xn)(n ≥ 3) be an any vertex. The connectivity κ(Xn − N[w]) is n− 2.

Proof. Since δ(Xn − N[w]) = n− 2, κ(Xn − N[w]) ≤ n− 2. We need to prove κ(Xn − N[w]) ≥ n− 2.
The case of n = 3 is true. Set n ≥ 4 and w ∈ V(X0

n−1).
By contradiction, suppose K ⊆ V(Xn) with |K| ≤ n− 3. Next, it will be proven that Xn−N[w]−K

is connected. Since κ(Xn−1) = n− 1, X1
n−1 − NX1

n−1
(w)− K is connected. By Theorem 4, cκ3(Xn−1) =

2n − 4 > n − 3(n ≥ 4), then ω(X0
n−1 − NX0

n−1
(w)) = 2: one component is the vertex w, and the

other component is G1 = X0
n−1 − NX0

n−1
(w)− w. However, |X0

n−1 − NX0
n−1

[w]| = 2n−1 − n > n− 3 for

(n ≥ 4), and at least one vertex of G1 is connected to X1
n−1 − NX1

n−1
(w)− K. Then, Xn − N[w]− K is

connected, and this contradicts the hypothesis.

Lemma 5. Suppose n ≥ 3, then κ1(Xn) = 2n− 2.

Proof. Pick an edge e = wz. Therefore, Xn − N({w, z}) is disconnected, and at least two vertices are
contained in every connected component. That is κ1(Xn) ≤ 2n− 2.

It suffices to show κ1(Xn) ≥ 2n− 2 by induction. The case of n = 3 is true. Assume that n ≥ 4,
and this is right when n < k. This will be proven for n = k.
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By contradiction, suppose R ⊆ V(Xn) with |R| ≤ 2n− 3. We will show that Xn−R is connected or
Xn − R contains an isolated vertex. We suppose |R ∩V(X0

n−1)| ≤ n− 2 by symmetry. Then, X0
n−1 − R

is connected.
If each connected component of X1

n−1 − R contains more than one vertex, according to the
inductive hypothesis, |R∩V(X1

n−1)| ≥ 2n− 4 and |R∩V(X0
n−1)| ≤ 1. At most one vertex of X1

n−1− R
does not have neighbors in X0

n−1 − R. Hence, Xn − R is connected.
Suppose x′ is the isolated vertex of X1

n−1 − R. Note that |NX1
n−1

(x′)| = n− 1, and by Lemma 4,

κ(X1
n−1 − NX1

n−1
[x′]) = n− 3. If |R ∩V(X1

n−1)| ≥ 2n− 4, then |R ∩V(X0
n−1)| ≤ 1. Then, Xn − R has

an isolated vertex x′, or Xn − R has an isolated vertex y′ whose degree is n− 3 in X1
n−1 − NX1

n−1
[x′],

or X1
n−1 − R is connected to X0

n−1 − R, a contradiction.
Assume |R ∩ V(X1

n−1)| ≤ 2n− 5. Since NX1
n−1

(x′) ⊆ R, κ(X1
n−1 − NX1

n−1
[x′]) = n− 3, and |R ∩

V(X1
n−1)− NX1

n−1
(x′)| ≤ n− 4, X1

n−1 − R− x′ is connected by Lemma 4. However, 2n−1 − (n− 2) >

2n− 3(n ≥ 4), X1
n−1 − R− x′ is connected to X0

n−1 − R or Xn − R has an isolated vertex x′, and this
contradicts the hypothesis.

Theorem 3. Suppose n ≥ 2, cλ2(Xn) = λ(Xn) = n.

Theorem 4. Suppose n ≥ 2, cλ3(Xn) = 2n− 1.

Proof. Pick an edge e = wz, then |E(w) ∪ E(z)| = 2n− 1. ω(Xn − E(w)− E(z)) ≥ 3 (see Figure 2).
That is, cλ3(Xn) ≤ 2n− 1.

Figure 2. Illustration of Xn − E(w)− E(z).

Next, we will show that cλ3(Xn) ≥ 2n− 1 by induction. The cases of n = 2, 3 are true. Therefore,
we set n ≥ 4, and this is right for n < k. Next, for n = k, it will be proven that this is right.

By contradiction, suppose R ⊆ E(Xn), |R| ≤ 2n− 2, and Xn − R has at least three components.
Since Xn = X0

n−1 � X1
n−1, we have |E(X0

n−1) ∩ R| ≤ n− 1 or |E(X1
n−1) ∩ R| ≤ n− 1, say |E(X0

n−1) ∩
R| ≤ n− 1. Note that λ(Xn−1) = n− 1.

Case 1. X0
n−1 − R is disconnected.

We obtain |E(X0
n−1) ∩ R| = n− 1 and ω(X0

n−1 − R) = 2.
If X1

n−1 − R is disconnected, then |E(X1
n−1) ∩ R| = n − 1. That is [X0

n−1, X1
n−1] ∩ R = ∅.

However, every vertex of X1
n−1 − R has a path to one component of X0

n−1 − R. Hence, Xn − R
has at most two components, and this is a contradiction.

Since |[X0
n−1, X1

n−1]| = 2n−1 > n− 1(n ≥ 4), if X1
n−1 − R is connected, then X1

n−1 − R has a path
to one component of X0

n−1 − R. Hence, ω(Xn − R) ≤ 2, and this is a contradiction.
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Case 2. X0
n−1 − R is connected.

If X1
n−1 − R is connected, then it holds. Assume that X1

n−1 − R is not connected. At most one
isolated vertex is in X1

n−1 − R since |R| ≤ 2n− 2.
If ω(X1

n−1 − R) ≥ 3, then |E(X1
n−1) ∩ R| ≥ 2n− 3 by the inductive hypothesis. Then, at most one

of the components of X1
n−1 − R is not connected to X0

n−1 − R, ω(Xn − R) ≤ 2, a contradiction.
Therefore, we suppose that ω(X1

n−1 − R) = 2. However, 2n−1 − (2n− 2) > 0(n ≥ 4), ω(Xn −
R) ≤ 2, a contradiction.

Theorem 5. Suppose n ≥ 2, then cλ4(Xn) = 3n− 2.

Proof. Pick a path P3 = str. Then, |E(s) ∪ E(t) ∪ E(r)| = 3n− 2. Then, ω(Xn − (E(s) ∪ E(t) ∪ E(r))) ≥ 4
(see Figure 3). That is, cλ4(Xn) ≤ 3n− 2.

.

Figure 3. Illustration of Xn − (E(s) ∪ E(t) ∪ E(r)).

Next, we will show that cλ4(Xn) ≥ 3n− 2 by induction. The cases of n = 2, 3 are true. Therefore,
we suppose n ≥ 4 and assume all the cases of n < k are true. We will prove that the case of n = k holds.

By contradiction, assume that U ⊆ E(Xn), |U| ≤ 3n− 3, and ω(Xn −U) ≥ 4. Since Xn = X0
n−1 �

X1
n−1, we have |E(X0

n−1) ∩U| ≤ d3n/2e − 2 or |E(X1
n−1) ∩U| ≤ d3n/2e − 2, say |E(X0

n−1) ∩U| ≤
d3n/2e − 2. Since cλ3(Xn−1) = 2n− 3 > d3n/2e − 2(n ≥ 4), ω(X0

n−1 −U) ≤ 2.

Case 1. X0
n−1 −U is connected.

If ω(X1
n−1 −U) ≥ 4, then cλ4(Xn−1) ≥ 3n− 5 according to the inductive hypothesis. At most

two edges need to be deleted again. Because every vertex of X1
n−1 has a neighbor in X0

n−1 and
|[X0

n−1, X1
n−1]| = 2n−1 > 2(n ≥ 4), ω(Xn −U) ≤ 3, a contradiction.

Suppose ω(X1
n−1 − U) ≤ 3. If n = 4, then |[X0

3 , X1
3 ]| = 8 < (3n − 3) = 9. Assume that

[X0
3 , X1

3 ] ⊂ U. At most one edge needs to be delete again. Note that λ(X3) = 3, and X1
3 −U and

X0
3 −U are connected. Hence, ω(X4 −U) = 2, a contradiction. Then, [X0

3 , X1
3 ] * U. At least one

component of X1
n−1 −U is connected to X0

n−1 −U. Then, ω(Xn −U) ≤ 3, a contradiction again.
Then, let n ≥ 5. Because of |[X0

n−1, X1
n−1]| = 2n−1 > 3n − 3(n ≥ 5), ω(Xn − U) ≤ 3,

a contradiction.

Case 2. ω(X0
n−1 −U) = 2.

Then, |E(X0
n−1) ∩U| ≥ λ(Xn−1) = n− 1 and |E(X1

n−1) ∩U| ≤ 2n− 2. Note that cλ3(Xn−1) =

2n− 3.
If ω(X1

n−1 − U) ≥ 3, then |E(X1
n−1) ∩ U| ≥ 2n − 3 and |E(X0

n−1) ∩ U| ≤ n. However,
|[X0

n−1, X1
n−1] ∩U| ≤ 1 and 2n−1 > 1(n ≥ 4), ω(Xn −U) ≤ 3, a contradiction.
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Hence, ω(X1
n−1−U) ≤ 2. We have |[X0

n−1, X1
n−1]| = 2n−1 > 3n− 3− (n− 1)(n ≥ 4), and ω(Xn−

U) ≤ 3, a contradiction.
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