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Abstract: In this paper, we establish sufficient conditions for the existence of solutions for a nonlinear
Langevin equation based on Liouville-Caputo-type generalized fractional differential operators
of different orders, supplemented with nonlocal boundary conditions involving a generalized
integral operator. The modern techniques of functional analysis are employed to obtain the desired
results. The paper concludes with illustrative examples.
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1. Introduction

The topic of fractional calculus has emerged as an interesting area of investigation in view of its
widespread applications in social sciences, engineering and technical sciences. Mathematical models
based on fractional order differential and integral operators are considered to be more realistic and
practical than their integer-order counterparts as such models can reveal the history of the ongoing
phenomena in systems and processes. This branch of mathematical analysis is now very developed
and covers a wide range of interesting results, for instance [1–7].

The Langevin equation is an effective tool of mathematical physics, which can describe processes
like anomalous diffusion in a descent manner. Examples of such processes include price index
fluctuations [8], harmonic oscillators [9], etc. A generic Langevin equation for noise sources with
correlations also plays a central role in the theory of critical dynamics [10]. The nature of the quantum
noise can be understood better by means of a generalized Langevin equation [11]. The role of the
Langevin equation in fractional systems, such as fractional reaction-diffusion systems [12,13], is very
rich and beautiful. The fractional analogue (also known as the stochastic differential equation) of the
usual Langevin equation is suggested for systems in which the separation between microscopic and
macroscopic time scales is not observed; for example, see [8]. In [14], the author investigated moments,
variances, position and velocity correlation for a Riemann-Liouville-type fractional Langevin equation
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in time and compared the results obtained with the ones derived for the same generalized Langevin
equation involving the Liouville-Caputo fractional derivative. Some recent results on the Langevin
equation with different boundary conditions can be found in the papers [15–20] and the references
cited therein.

Motivated by the aforementioned work on the Langevin equation and its variants, in this paper,
we introduce and study a new form of Langevin equation involving generalized Liouville-Caputo
derivatives of different orders and solve it with nonlocal generalized fractional integral boundary
conditions. In precise terms, we investigate the problem:

ρ
c Dα

a+(
ρ
c Dβ

a+ + λ)x(t) = f (t, x(t)), t ∈ J := [a, T], λ ∈ R,

x(a) = 0, x(η) = 0, x(T) = µ ρ Iγ
a+x(ξ), a < η < ξ < T,

(1)

where ρ
c Dα

a+, ρ
c Dβ

a+ denote the Liouville–Caputo-type generalized fractional differential operators of
order 1 < α ≤ 2, 0 < β < 1, ρ > 0, respectively, ρ Iγ

a+ is the generalized fractional integral operator of
order γ > 0 and ρ > 0, and f : [a, T]×R→ R is a given continuous function.

Here, we emphasize that the present work may have useful applications in fractional quantum
mechanics and fractional statistical mechanics, in relation to further generalization of the Feynman
and Weiner path integrals [21].

We compose the rest of the article as follows. Section 2 contains the basic concepts of generalized
fractional calculus and an auxiliary lemma dealing with the linear variant of the given problem.
In Section 3, we present the main results and illustrative examples.

2. Preliminaries

Definition 1 ([22]). The generalized left-sided fractional integral of order β > 0 and ρ > 0 of g ∈ Xp
c (a, b) for

−∞ < a < t < b < ∞, is defined by:

(ρ Iβ
a+g)(t) =

ρ1−β

Γ(β)

∫ t

a

sρ−1

(tρ − sρ)1−β
g(s)ds, (2)

where Xp
c (a, b) denotes the space of all complex-valued Lebesgue measurable functions φ on (a, b) equipped with

the norm:

‖φ‖Xp
c
=
( ∫ b

a
|xcφ(x)|p dx

x

)1/p
< ∞, c ∈ R, 1 ≤ p ≤ ∞.

Similarly, the right-sided fractional integral ρ Iβ
b−g is defined by:

(ρ Iβ
b−g)(t) =

ρ1−α

Γ(β)

∫ b

t

sρ−1

(sρ − tρ)1−β
g(s)ds. (3)

Definition 2 ([23]). For β > 0, n = [β] + 1, ρ > 0 and 0 ≤ a < x < b < ∞, we define the generalized
fractional derivatives in terms of the generalized fractional integrals (2) and (3) as:

(ρDβ
a+g)(t) =

(
t1−ρ d

dt

)n
(ρ In−β

a+ g)(t)

=
ρβ−n+1

Γ(n− β)

(
t1−ρ d

dt

)n ∫ t

a

sρ−1

(tρ − sρ)β−n+1 g(s)ds, (4)

and:

(ρDβ
b−g)(t) =

(
− t1−ρ d

dt

)n
(ρ In−β

b− g)(t)
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=
ρβ−n+1

Γ(n− β)

(
− t1−ρ d

dt

)n ∫ b

t

sρ−1

(sρ − tρ)β−n+1 g(s)ds, (5)

if the integrals in the above expressions exist.

Definition 3 ([24]). For β > 0, n = [β] + 1 and g ∈ ACn
δ [a, b], the Liouville–Caputo-type generalized

fractional derivatives ρ
c Dβ

a+g and ρ
c Dβ

b−g are respectively defined via (4) and (5) as follows:

ρ
c Dβ

a+g(x) = ρDβ
a+

[
g(t)−

n−1

∑
k=0

δkg(a)
k!

( tρ − aρ

ρ

)k]
(x), δ = x1−ρ d

dx
, (6)

ρ
c Dβ

b−g(x) = ρDβ
b−

[
g(t)−

n−1

∑
k=0

(−1)kδkg(b)
k!

( bρ − tρ

ρ

)k]
(x), δ = x1−ρ d

dx
, (7)

where ACn
δ [a, b] denotes the class of all absolutely-continuous functions g possessing δn−1-derivative (δn−1g ∈

AC([a, b],R)), equipped with the norm ‖g‖ACn
δ
= ∑n−1

k=0 ‖δ
kg‖C.

Remark 1 ([24]). For α ≥ 0 and g ∈ ACn
δ [a, b], the left and right generalized Liouville–Caputo derivatives of

g are respectively defined by the expressions:

ρ
c Dβ

a+g(t) =
1

Γ(n− β)

∫ t

a

( tρ − sρ

ρ

)n−β−1 (δng)(s)ds
s1−ρ

, (8)

ρ
c Dβ

b−g(t) =
1

Γ(n− β)

∫ b

t

( sρ − tρ

ρ

)n−α−1 (−1)n(δng)(s)ds
s1−ρ

. (9)

Lemma 1 ([24]). Let g ∈ ACn
δ [a, b] or Cn

δ [a, b] and β ∈ R. Then:

ρ Iβ
a+

ρ
c Dβ

a+g(x) = g(x)−
n−1

∑
k=0

(δkg)(a)
k!

( xρ − aρ

ρ

)k
,

ρ Iβ
b−

ρ
c Dβ

b−g(x) = g(x)−
n−1

∑
k=0

(−1)k(δkg)(a)
k!

( bρ − xρ

ρ

)k
.

In particular, for 0 < β ≤ 1, we have:

ρ Iβ
a+

ρ
c Dβ

a+g(x) = g(x)− g(a), ρ Iβ
b−

ρ
c Dβ

b−g(x) = g(x)− g(b).

Definition 4. A function x ∈ C([a, T],R) is called a solution of (1) if x satisfies the equation ρ
c Dα

a+(
ρ
c Dβ

a+ +

λ)x(t) = f (t, x(t)) on [a, T], and the conditions x(a) = 0, x(η) = 0, x(T) = µρ Iγ
a+x(ξ).

In the next lemma, we solve the linear variant of Problem (1).

Lemma 2. Let h ∈ C([a, T],R), x ∈ AC3
δ(J) and:

Ω =
[ (Tρ − aρ)β(Tρ − ηρ)

ρβ+1Γ(β + 2)
− µ(ξρ − aρ)β+γ[(β + 1)(ξρ − ηρ)− γ(ηρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]
6= 0. (10)

Then, the unique solution of linear problem:
ρ
c Dα

a+(
ρ
c Dβ

a+ + λ)x(t) = h(t), t ∈ J := [a, T],

x(a) = 0, x(η) = 0, x(T) = µρ Iγ
a+x(ξ), a < η < ξ < T,

(11)
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is given by:

x(t) = ρ Iα+β
a+ h(t)− λρ Iβ

a+x(t) +
(tρ − aρ)β(ηρ − tρ)

ρβ+1Γ(β + 2)Ω

{
ρ Iα+β

a+ h(T)− λρ Iβ
a+x(T)

−µρ Iα+β+γ
a+ h(ξ) + µλρ Iβ+γ

a+ x(ξ)
}
− (tρ − aρ)β

Ω(ηρ − aρ)β

( (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)

−µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

){
ρ Iα+β

a+ h(η)− λρ Iβ
a+x(η)

}
. (12)

Proof. Applying ρ Iα
a+ on the fractional differential equation in (11) and using Lemma 1 yield:

(
ρ
c Dβ

a+ + λ)x(t) = ρ Iα
a+h(t) + c1 + c2

(tρ − aρ)

ρ
, (13)

for some c1, c2 ∈ R.
Applying ρ Iβ

a+ to both sides of Equation (13), the general solution of the Langevin equation in (11)
is found to be:

x(t) = ρ Iα+β
a+ h(t)− λρ Iβ

a+x(t) + c1
(tρ − aρ)β

ρβΓ(β + 1)
+ c2

(tρ − aρ)β+1

ρβ+1Γ(β + 2)
+ c3, (14)

where c3 ∈ R.
Using the condition x(a) = 0 in (14), we find that c3 = 0. Inserting the value of c3 in (14) and then

applying the operator ρ Iγ
a+ on the resulting equation, we get:

ρ Iγ
a x(t) = ρ Iα+β+γ

a+ h(t)− λρ Iβ+γ
a+ x(t) + c1

(tρ − aρ)β+γ

ρβ+γΓ(β + γ + 1)
+ c2

(tρ − aρ)β+γ+1

ρβ+γ+1Γ(β + γ + 2)
. (15)

Using the boundary conditions x(η) = 0 and x(T) = µρ Iγ
a+x(ξ) together with (14) and (15) leads

to a system of algebraic equations in c1 and c2, which, upon solving, yields:

c1 =
ρβΓ(β + 1)

Ω(ηρ − aρ)β

{ (ηρ − aρ)β+1

ρβ+1Γ(β + 2)

(
ρ Iα+β

a+ h(T)− λρ Iβ
a+x(T)− µρ Iα+β+γh(ξ) + µλρ Iβ+γx(ξ)

)
−
( (Tρ − aρ)β+1

ρβ+1Γ(β + 2)
− µ(ξρ − aρ)β+γ+1

ρβ+γ+1Γ(β + γ + 2)

)(
ρ Iα+β

a+ h(η)− λρ Iβ
a+x(η)

)}
,

c2 = − ρβΓ(β + 1)
Ω(ηρ − aρ)β

{ (ηρ − aρ)β

ρβΓ(β + 1)

(
ρ Iα+β

a+ h(T)− λρ Iβ
a+x(T)− µρ Iα+β+γh(ξ) + µλρ Iβ+γx(ξ)

)
−
( (Tρ − aρ)β

ρβΓ(β + 1)
− µ(ξρ − aρ)β+γ

ρβ+γΓ(β + γ + 1)

)(
ρ Iα+β

a+ h(η)− λρ Iβ
a+x(η)

)}
.

Inserting the values of c1, c2 and c3 in (13) yields the solution (12). The converse of the Lemma 2,
can be obtained by direct computation. This finishes the proof.

3. Existence and Uniqueness Results

In view of Lemma 2, we introduce an operator F : C → C by:

F (x)(t) = ρ Iα+β
a+ f (t, x(t))− λρ Iβ

a+x(t) +
(tρ − aρ)β(ηρ − tρ)

ρβ+1Γ(β + 2)Ω

{
ρ Iα+β

a+ f (T, x(T))− λρ Iβ
a+x(T)

− µρ Iα+β+γ
a+ f (ξ, x(ξ)) + µλρ Iβ+γ

a+ x(ξ)
}
− (tρ − aρ)β

Ω(ηρ − aρ)β

[ (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)

− µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]{
ρ Iα+β

a+ f (η, x(η))− λρ Iβ
a+x(η)

}
. (16)
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Here, C denotes the Banach space of all continuous functions from [a, T] to R equipped with the
norm ‖x‖ = supt∈[a,T] |x(t)|.

For the sake of computational convenience, we set:

Λ1 =
(Tρ − aρ)α+β

ρα+βΓ(α + β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ|(ξρ − aρ)α+β+γζ1

ρα+2β+γ+1Γ(α + β + γ + 1)Γ(β + 2)|Ω|

+
(ηρ − aρ)αζ2

ρα+βΓ(α + β + 1)|Ω|
, (17)

Λ2 =
|λ|(Tρ − aρ)β

ρβΓ(β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ||λ|(ξρ − aρ)β+γζ1

ρ2β+γ+1Γ(β + γ + 1)Γ(β + 2)|Ω|

+
|λ|ζ2

ρβΓ(β + 1)|Ω|
, (18)

where:
ζ1 := max

t∈[a,T]

∣∣∣(tρ − aρ)β(ηρ − tρ)
∣∣∣, (19)

ζ2 := max
t∈[a,T]

∣∣∣(tρ − aρ)β
[ (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)
− µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]∣∣∣. (20)

Now, we are in a position to present our main results. Our first existence result for the problem (1)
is based on Krasnoselskii’s fixed point theorem [25], which is stated below.

Lemma 3. (Krasnoselskii’s fixed point theorem) Let S be a closed convex and non-empty subset of a Banach
space E. Let G1,G2 be the operators from S to E such that (a) G1x + G2y ∈ S whenever u, v ∈ S ; (b) G1 is
compact and continuous; and (c) G2 is a contraction mapping. Then, there exists a fixed point ω ∈ S such that
ω = G1ω + G2ω.

Theorem 1. Let f : J ×R→ R be a continuous function such that the following condition holds:

(A1) There exists a continuous function φ ∈ C([a, T],R+) such that:

| f (t, u)| ≤ φ(t), ∀(t, u) ∈ J ×R.

Then, the problem (1) has at least one solution on J, provided that:

Λ2 < 1. (21)

Proof. Introduce a closed ball Br = {x ∈ C : ‖x‖ ≤ r}, with r > ‖φ‖Λ1
1−Λ2

, ‖φ‖ = supt∈[a,T] |φ(t)|, where
Λ2 is given by (18). Then, we define operators F1 and F2 from Br to C by:

F1(x)(t) = ρ Iα+β
a+ f (t, x(t)) +

(tρ − aρ)β(ηρ − tρ)

ρβ+1Γ(β + 2)Ω

{
ρ Iα+β

a+ f (T, x(T))− µρ Iα+β+γ
a+ f (ξ, x(ξ))

}
− (tρ − aρ)β

Ω(ηρ − aρ)β

[ (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)
− µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]
×ρ Iα+β

a+ f (η, x(η)),

F2(x)(t) = −λρ Iβ
a+x(t)− (tρ − aρ)β(ηρ − tρ)

ρβ+1Γ(β + 2)Ω

{
λρ Iβ

a+x(T)− µλρ Iβ+γ
a+ x(ξ)

}
+

λ(tρ − aρ)β

Ω(ηρ − aρ)β
×

×
[ (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)
− µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]
ρ Iβ

a+x(η).
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Note that F = F1 +F2 on Br. For x, y ∈ Br, we find that:

‖F1x +F2y‖

≤ sup
t∈J

{
ρ Iα+β

a+ | f (t, x(t))|+ |λ|ρ Iβ
a+|y(t)|

+
(tρ − aρ)β|(ηρ − tρ)|

ρβ+1Γ(β + 2)|Ω|

{
ρ Iα+β

a+ | f (T, x(T))|+ |λ|ρ Iβ
a+|y(T)|

+|µ|ρ Iα+β+γ
a+ | f (ξ, x(ξ))|+ |µ||λ|ρ Iβ+γ

a+ |x(ξ)|
}
+

(tρ − aρ)β

|Ω|(ηρ − aρ)β

∣∣∣ (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)

−µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

∣∣∣{ρ Iα+β
a+ | f (η, x(η))|+ |λ|ρ Iβ

a+|y(η)|
}

≤ ‖φ‖
{

(Tρ − aρ)α+β

ρα+βΓ(α + β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ|(ξρ − aρ)α+β+γζ1

ρα+2β+γ+1Γ(α + β + γ + 1)Γ(β + 2)|Ω|

+
(ηρ − aρ)αζ2

ρα+βΓ(α + β + 1)|Ω|

}
+ ‖x‖

{ |λ|(Tρ − aρ)β

ρβΓ(β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ||λ|(ξρ − aρ)β+γζ1

ρ2β+γ+1Γ(β + γ + 1)Γ(β + 2)|Ω|
+

|λ|ζ2

ρβΓ(β + 1)|Ω|

}
≤ ‖φ‖Λ1 + rΛ2 < r.

Thus, F1x +F2y ∈ Br.
Next, it will be shown that F2 is a contraction. For that, let x, y ∈ C. Then:

‖F2x−F2y‖

≤ sup
t∈J

{
|λ|ρ Iβ

a+|x(t)− y(t)|+ |(t
ρ − aρ)β(ηρ − tρ)|

ρβ+1Γ(β + 2)|Ω|
×

×
{
|λ|ρ Iβ

a+|x(T)− y(T)|+ |µ||λ|ρ Iβ+γ
a+ |x(ξ)− y(ξ)|

}
+
|λ||(tρ − aρ)β|
|Ω|(ηρ − aρ)β

∣∣∣ (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)
− µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

∣∣∣×
×ρ Iβ

a+|x(η)− y(η)|
}

≤
{ |λ|(Tρ − aρ)β

ρβΓ(β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ||λ|(ξρ − aρ)β+γζ1

ρ2β+γ+1Γ(β + γ + 1)Γ(β + 2)|Ω|

+
|λ|ζ2

ρβΓ(β + 1)|Ω|

}
‖x− y‖

= Λ2‖x− y‖,

which, by the condition (21), implies that F2 is a contraction. The continuity of the operator F1 follows
from that of f . Furthermore, F1 is uniformly bounded on Br as:

‖F1x‖ ≤ ‖φ‖Λ1.

Finally, we establish the compactness of the operator F1. Let us set sup(t,x)∈J×Br
| f (t, x)| = f̄ < ∞.

Then, for t1, t2 ∈ J, t1 < t2, we have:

|(F1x)(t2)− (F1x)(t1)|
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=
∣∣∣ ρ1−(α+β)

Γ(α + β)

[ ∫ t1

0
sρ−1[(tρ

2 − sρ)α+β−1 − (tρ
1 − sρ)α+β−1] f (s, x(s))ds

+
∫ t2

t1

sρ−1(tρ
2 − sρ)α+β−1 f (s, x(s))ds

]
+
[ (tρ

2 − aρ)β(ηρ − tρ
2)

ρβ+1Γ(β + 2)Ω
−

(tρ
1 − aρ)β(ηρ − tρ

1)

ρβ+1Γ(β + 2)Ω

]{
ρ Iα+β

a+ f (T, x(T))− µρ Iα+β+γ
a+ f (ξ, x(ξ))

}
−
[ (tρ

2 − aρ)β

Ω(ηρ − aρ)β

[ (Tρ − aρ)β(Tρ − tρ
2)

ρβ+1Γ(β + 2)
−

µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ
2)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]
−

(tρ
1 − aρ)β

Ω(ηρ − aρ)β

[ (Tρ − aρ)β(Tρ − tρ
1)

ρβ+1Γ(β + 2)
−

µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ
1)− γ(tρ

1 − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]]
×

×ρ Iα+β
a+ f (η, x(η))

∣∣∣
≤ f̄

ρα+βΓ(α + β + 1)

{
|tρ(α+β)

2 − tρ(α+β)
1 |+ 2(tρ

2 − tρ
1)

α+β
}

+
∣∣∣ (tρ

2 − aρ)β(ηρ − tρ
2)

ρβ+1Γ(β + 2)Ω
−

(tρ
1 − aρ)β(ηρ − tρ

1)

ρβ+1Γ(β + 2)Ω

∣∣∣{ρ Iα+β
a+ | f (T, x(T))|+ µρ Iα+β+γ

a+ | f (ξ, x(ξ))|
}

+
∣∣∣ (tρ

2 − aρ)β

Ω(ηρ − aρ)β

[ (Tρ − aρ)β(Tρ − tρ
2)

ρβ+1Γ(β + 2)
−

µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ
2)− γ(tρ

2 − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]
−

(tρ
1 − aρ)β

Ω(ηρ − aρ)β

[ (Tρ − aρ)β(Tρ − tρ
1)

ρβ+1Γ(β + 2)
−

µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ
1)− γ(tρ

1 − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

]∣∣∣×
×ρ Iα+β

a+ | f (η, x(η))|,

which tends to zero as t2 → t1, independently of x ∈ Br. Thus, F1 is equicontinuous. Therefore, F1 is
relatively compact on Br. As a consequence, we deduce by the the Arzelá–Ascoli theorem that F1 is
compact on Br. Thus, the hypothesis of Lemma 3 is satisfied. Therefore, the conclusion of Lemma 3
applies, and hence, there exists at least one solution for the problem (1) on J.

In the next result, the uniqueness of solutions for the problem (1) is shown by means of the Banach
contraction mapping principle.

Theorem 2. Let f : J ×R→ R be a continuous function satisfying the Lipschitz condition:

(A2)

| f (t, u)− f (t, v)| ≤ L|u− v|, L > 0, /, for t ∈ J and every u, v ∈ R.

Then, there exists a unique solution for the problem (1) on [a, T], provided that:

LΛ1 + Λ2 < 1, (22)

where Λ1 and Λ2 are respectively given by (17) and (18).

Proof. In the first step, we show that FBr̄ ⊂ Br̄, where Br̄ = {x ∈ C([a, T],R) : ‖x‖ ≤ r̄}, M =

supt∈[a,T] | f (t, 0)|, r̄ ≥ Λ1 M
1−LΛ1−Λ2

, and the operator F : C → C is given by (16). For x ∈ Br̄, using (A2),
we get:

|F (x)(t)|

≤ ρ Iα+β
a+ [| f (t, x(t))− f (t, 0)|+ | f (t, 0)|] + |λ|ρ Iβ

a+|x(t)|

+
(tρ − aρ)β|(ηρ − tρ)|

ρβ+1Γ(β + 2)|Ω|

{
ρ Iα+β

a+ [| f (T, x(T))− f (T, 0)|+ | f (T, 0)|] + |λ|ρ Iβ
a+|x(T)|

+|µ|ρ Iα+β+γ
a+ [| f (ξ, x(ξ))− f (ξ, 0)|+ | f (ξ, 0)|] + |µ||λ|ρ Iβ+γ

a+ |x(ξ)|
}
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+
(tρ − aρ)β

|Ω|(ηρ − aρ)β

∣∣∣ (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)
− µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

∣∣∣
×
{

ρ Iα+β
a+ [| f (η, x(η))− f (η, 0)|+ | f (η, 0)|] + |λ|ρ Iβ

a+|x(η)|
}

≤ (Lr̄ + M)
( (Tρ − aρ)α+β

ρα+βΓ(α + β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ|(ξρ − aρ)α+β+γζ1

ρα+2β+γ+1Γ(α + β + γ + 1)Γ(β + 2)|Ω|

+
(ηρ − aρ)αζ2

ρα+βΓ(α + β + 1)|Ω|

)
+r̄
( |λ|(Tρ − aρ)β

ρβΓ(β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ||λ|(ξρ − aρ)β+γζ1

ρ2β+γ+1Γ(β + γ + 1)Γ(β + 2)|Ω|
+

|λ|ζ2

ρβΓ(β + 1)|Ω|

)
= (Lr̄ + M)Λ1 + Λ2r̄ ≤ r̄,

which, on taking the norm for t ∈ [a, T], implies that ‖F (x)‖ ≤ r̄. Thus, the operator F maps Br̄

into itself. Now, we proceed to prove that the operator F is a contraction. For x, y ∈ C([a, T],R) and
t ∈ [a, T], we have:

|F (x)(t)−F (y)(t)|
≤ ρ Iα+β

a+ | f (t, x(t))− f (t, y(t))|+ |λ|ρ Iβ
a+|x(t)− y(t)|

+
(tρ − aρ)β|(ηρ − tρ)|

ρβ+1Γ(β + 2)|Ω|

{
ρ Iα+β

a+ | f (T, x(T))− f (T, y(T))|+ |λ|ρ Iβ
a+|x(T)− y(T)|

+|µ|ρ Iα+β+γ
a+ | f (ξ, x(ξ))− f (ξ, y(ξ))|+ |µ||λ|ρ Iβ+γ

a+ |x(ξ)− y(ξ)|
}

+
(tρ − aρ)β

|Ω|(ηρ − aρ)β

∣∣∣ (Tρ − aρ)β(Tρ − tρ)

ρβ+1Γ(β + 2)
− µ(ξρ − aρ)β+γ[(β + 1)(ξρ − tρ)− γ(tρ − aρ)]

ρβ+γ+1Γ(β + γ + 2)(β + 1)

∣∣∣×
×
{

ρ Iα+β
a+ | f (η, x(η))− f (η, y(η))|+ |λ|ρ Iβ

a+|x(η)− y(η)|
}

≤ L‖x− y‖
( (Tρ − aρ)α+β

ρα+βΓ(α + β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ|(ξρ − aρ)α+β+γζ1

ρα+2β+γ+1Γ(α + β + γ + 1)Γ(β + 2)|Ω|

+
(ηρ − aρ)αζ2

ρα+βΓ(α + β + 1)|Ω|

)
+ ‖x− y‖

( |λ|(Tρ − aρ)β

ρβΓ(β + 1)

[
1 +

ζ1

ρβ+1Γ(β + 2)|Ω|

]
+

|µ||λ|(ξρ − aρ)β+γζ1

ρ2β+γ+1Γ(β + γ + 1)Γ(β + 2)|Ω|
+

|λ|ζ2

ρβΓ(β + 1)|Ω|

)
= (LΛ1 + Λ2)‖x− y‖.

Taking the norm of the above inequality for t ∈ [a, T], we get:

‖F (x)−F (y)‖ ≤ (LΛ1 + Λ2)‖x− y‖,

which implies that the operator F is a contraction on account of the condition (22). Thus, we deduce
by the Banach contraction mapping principle that the operator F has a unique fixed point. Hence,
there exists a unique solution for the problem (1). The proof is complete.

Example 1. Let us consider the following boundary value problem:
1/3

c D5/4
(

1/3
c D1/4 + 1/5

)
x(t) =

1√
400 + t

( |x(t)|+ 2
|x(t)|+ 1

+ e−t
)

, t ∈ J := [1, 2],

x(1) = 0, x(3/2) = 0, x(2) = 2/7 1/3 I3/4x(7/4).
(23)
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Here, ρ = 1/3, α = 5/4, β = 1/4, γ = 3/4, λ = 1/5, µ = 2/7, a = 1, η = 3/2, ξ = 7/4, T = 2

and f (t, x) = 1√
400+t

(
|x|+2
|x|+1 + e−t

)
. Using the given data, we find that |Ω| ≈ 0.293634, Λ1 ≈

1.336009, Λ2 ≈ 0.673563, ζ1 ≈ 0.082260, ζ2 ≈ 0.232036, where Ω, Λ1, Λ2, ζ1, and ζ2 are given by (10),
(17), (18), (19) and (20) respectively.

For illustrating Theorem 1, we show that all the conditions of Theorem 1 are satisfied. Clearly,
f (t, x) is continuous and satisfies the condition (A1) with φ(t) = 2+e−t

√
400+t

. Furthermore, Λ2 ≈
0.673563 < 1. Thus, all the conditions of Theorem 1 are satisfied, and consequently, the problem (23)
has at least one solution on [1, 2].

Furthermore, Theorem 2 is applicable to the problem (23) with L = 1/20 as LΛ1 + Λ2 ≈
0.740363 < 1. Thus, all the assumptions of Theorem 2 are satisfied. Therefore, the conclusion of
Theorem 2 applies to the problem (23) on [1, 2].

4. Conclusions

We have introduced a new type of nonlinear Langevin equation in terms of Liouville-Caputo-type
generalized fractional differential operators of different orders and solved it with nonlocal generalized
integral boundary conditions. The existence result was obtained by applying the Krasnoselskii fixed
point theorem without requiring the nonlinear function to be of the Lipschitz type, while the uniqueness
of solutions for the given problem was based on a celebrated fixed point theorem due to Banach. Here,
we remark that many known existence results, obtained by means of the Krasnoselskii fixed point
theorem, demand the associated nonlinear function to satisfy the Lipschitz condition. Moreover, by
fixing the parameters involved in the given problem, we can obtain some new results as special cases
of the ones presented in this paper. For example, letting ρ = 1, µ = 0, a = 0 and T = 1 in the results of
Section 3, we get the ones derived in [15].
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