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Abstract: In the real-world manufacturing system, various uncertain events can occur and disrupt
the normal production activities. This paper addresses the multi-objective job shop scheduling
problem with random machine breakdowns. As the key of our approach, the robustness of a
schedule is considered jointly with the makespan and is defined as expected makespan delay, for
which a meta-model is designed by using a data-driven response surface method. Correspondingly,
a multi-objective evolutionary algorithm (MOEA) is proposed based on the meta-model to solve
the multi-objective optimization problem. Extensive experiments based on the job shop benchmark
problems are conducted. The results demonstrate that the Pareto solution sets of the MOEA are
much better in both convergence and diversity than those of the algorithms based on the existing
slack-based surrogate measures. The MOEA is also compared with the algorithm based on Monte
Carlo approximation, showing that their Pareto solution sets are close to each other while the MOEA
is much more computationally efficient.
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1. Introduction

Production scheduling is of great significance in both scientific study and engineering
applications [1–5]. Generally, the aim of the job shop scheduling problem (JSS) is to find a schedule
that minimizes certain performance objective, given a set of machines and a set of jobs. However,
in practice, the execution of a schedule is usually confronted with disruptions and unforeseen events,
such as random machine breakdowns (RMDs), which make the actual performance of a schedule hard
to predict. Against this background, we will focus on the multi-objective robust JSS under RMDs with
the goal of optimizing the makespan and the robustness simultaneously.

In the last few decades, the JSS problems have been extensively studied, most of which have
addressed the JSS with makespan as the objective [6–8], such as the hybrid genetic algorithm [9],
the genetic algorithm [10] with search area adaptation [11], the global optimization technique which
combines tabu search with the ant colony optimization [12], and the memetic algorithm conditioned
on a limited set of human operators [13]. However, it is often assumed that the problem parameters
about jobs and machines are known and deterministic. This makes it difficult to generate a good
schedule for a real-world job shop which is subjected to various uncertainties [14], such as machine
breakdowns, variable processing times, and due date changes. Mehta et al. [15] had classified the
uncertainties in the practical manufacturing into three main categories: complete unknowns, suspicions
about the future, and known uncertainties. Complete unknowns are those unpredictable events,
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e.g. a sudden strike, about which no a-priori information is available, while suspicions about the
future arise from the intuition and experience of the human scheduler. On the other hand, known
uncertainties are those events about which some information is available in advance, such as machine
breakdowns [16–18] whose frequency and duration may be characterized by probability distributions.
Under these uncertainties, a schedule will be difficult to execute as planned, and finally the actual
performance of the schedule will deteriorate.

Recently, robust optimization has gained intensive interest [19], where most of existing studies
focus on addressing the scheduling problems under known uncertainties. The robustness of a schedule
indicates the ability of the schedule to preserve a specified level of solution quality in the presence of
uncertainties [20], which is generally measured by the expected deviation of the performance from its
initial performance under uncertainties [21]. Liu et al. [22] defined the robust schedule as a schedule
that is insensitive to uncertainties, such as that a schedule may degrade its performance to a very small
degree under disruptions. Thus, in addition to the makespan, the robustness of a schedule will also
be taken as one of the objectives in the robust scheduling. Xiao et al. [23] addressed the stochastic
JSS problem with uncertain processing times, and the robustness took the expected relative deviation
between the realized makespan and the predictive makespan. Zuo et al. [24] considered both the
expectation and standard deviation of the performance of a schedule. Ahmadi et al. [25] defined the
robustness of a schedule as the expected deviation of starting and completion time of each job between
preschedule and realized schedule under RMD.

With simultaneous consideration of the performance and the robustness of a schedule, the JSS
under uncertainties holds a multi-objective nature. Usually, the two objectives are combined by the
weight sum, and then the problem with two objectives will be transferred into a single-objective problem,
such as that described in [26,27]. However, providing a wide range of solutions to decision-makers
might be more useful [20], since decision-makers can make a better trade-off between the performance
and the robustness for their schedules. The multi-objective evolutionary algorithm (MOEA), such as
NSGA II [28–30], has been successfully solved the classic JSS without considering uncertainties [31].
In addition, Hosseinabadi, et al. [32] proposed a TIME_GELS algorithm that uses the gravitational
emulation local search [33] for solving the multiobjective flexible dynamic job-shop scheduling problem.
But, when the robustness is considered, a MOEA should further be able to solve the problems in the
presence of uncertainties [34].

Because of the intractable complexity of JSS with uncertainties, it is difficult to evaluate the effects
of uncertainties on a schedule, and thus the robustness is not available in a closed form. In this case,
approximation methods should be applied for fitness evaluation in the MOEA. The simplest way
is to employ the Monte Carlo method [35,36] to estimate the robustness, by averaging the objective
values over a few randomly sampled uncertainty scenarios. The Monte Carlo method is based on
random sampling and has been proven to be a powerful method for estimation [37–39]. However,
it may cause potentially expensive fitness evaluations and reduce the computing efficiency. For this
reason, the problem approximation that tends to replace the original statement of a problem by one
which is simple but easier to solve, has been applied. Mirabi, et al. [40] simplified the machine
breakdown by assuming the repair time is constant, while Liu et al. [41] assumed that all possible
machine breakdowns during a scheduling horizon are aggregated as one. However, this may lead to
a large mismatch between the model and the actual problem. In contrast, the meta-model which is
an approximate function of the real fitness, also known as the surrogate measure, may be preferred.
However, the design of a meta-model for the robustness is challenging. So far, the available surrogate
measures for the robustness measured by the expected makespan delay (EMD) only include the average
total slack time of operations in [42] and the sum of free slack times of operations in [26]. Since these
surrogate measures ignored uncertainties, their estimation accuracy will be reduced [43].

In comparison with the existing research, the main contributions of our approach are as follows:

• The robustness of a schedule is considered jointly with the makespan and is defined as EMD,
for which a meta-model is designed by using a data-driven response surface method.
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• A MOEA is proposed based on the meta-model, gaining excellent performance and efficiency.

The remainder of this paper is organized as follow. The multi-objective optimization model for
the JSS under RMD is defined in the next section. In Section 3, a meta-model-based MOEA is proposed.
The performance of the proposed algorithm is presented in Section 4, with comparison with the Monte
Carlo method. In Section 5, we conclude the whole study.

2. Problem Definition

We consider the JSS problem with n jobs (J =
{
J j
∣∣∣ j = 1, 2, . . . , n

}
) to be processed on m machines

(M = {Mi|i = 1, 2, . . . , m}). All jobs and machines are available at time zero. The processing of job j
on machine i is called operation Oi j, i ∈ [1, m], j ∈ [1, n], and its processing time pi j is constant and
known. Each job includes m operations (O j =

{
Oi j

∣∣∣i = 1, 2, . . . , m
}
, j ∈ [1, n]) that must be processed

in a specified sequence through each machine. A feasible schedule that specifies the starting and
completion time of all operations should satisfy the constraints: (1) job splitting is not allowed; (2) an
operation is not allowed to be preempted by the others; (3) each operation is performed only once on
one machine; and (4) each machine performs only one operation at a time.

In this study, the operation-based machine breakdown model presented in [21] will be applied.
More specifically, the machine breakdown is modeled by two parameters: the downtime required to
repair the machine after its breakdown, and the breakdown probability during a time interval.
The machine breakdown probability Pri j when processing operation Oi j can be calculated by
Equation (1), where λ0 is the machine failure rate of each machine.

Pri j = min
{
λ0pi j, 1

}
(1)

The downtime Di j of a machine after a breakdown when processing operation Oi j is modeled as
an exponential distribution, as shown in Equation (2), where β0 is the expectation of the downtime.

f (Di j) =

 1
β0

e−
1
β0

Di j Di j > 0
0 Di j ≤ 0

(2)

In the classic JSS problems without considering uncertainties, the aim of scheduling is generally
to find a schedule that minimizes the makespan. The makespan of a schedule is equal to the maximum
completion time of all operations in the schedule, which can be determined by Equation (3), where cti j
is the completion time of operation Oi j.

C0
max = max

i∈M
{max

j∈J
{cti j}} (3)

However, the makespan of a schedule will be affected by RMDs in practice [16–18]. Since RMDs
postpone the completion time of operations, the actual makespan Cr

max of a schedule will be delayed.
As shown in Figure 1a, the makespan C0

max of the schedule before execution is equal to 10. If a machine
breakdown with one unit of downtime occurring on the operation O21, as shown in Figure 1b, its
completion time is directly postponed by one unit of time. Then, all the completion times of its
subsequent operations {O22, O11, O23, O12, O31} are also delayed by one unit of time. Finally, the actual
makespan Cr

max of the schedule is equal to 11, which has been delayed by one unit of time.
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Figure 1. An example for a schedule with 3 machines and 3 jobs under a machine breakdown. (a) The
schedule before a machine breakdown; (b) the schedule after a machine breakdown.

According to the analysis above, the influence of machine breakdowns on the makespan of a
schedule can be given by the makespan delay δc in Equation (4).

δc= max(Cr
max −C0

max, 0) (4)

Since machine breakdowns take place randomly, the makespan delay of a schedule will vary with
the actual scenario of machine breakdowns, which makes the actual makespan very instability. The
stochastic change of the actual makespan will reduce the performance of a schedule, such as that it
may lead to the products cannot be delivered on time and lose the customer good will. Therefore, it
is preferred that the makespan of a schedule is robust under RMDs. To measure the robustness of
makespan, the EMD will further be applied, as the ∆c shown in Equation (5).

∆c = E(δc) =

∫ +∞

0
δc f (δc)dδ (5)

However, a schedule with the minimum makespan is generally very compact, which means that
it may be very sensitive to RMD and with a large EMD. Thus, the makespan C0

max of a schedule will
conflict with the EMD. Since different decision-makers have various preferences for the makespan
and the makespan delay, it is worth providing a wide range of schedules for decision-makers to make
the best trade-off. When consider the makespan and the EMD of a schedule at the same time, the JSS
under RMD can be modeled as a multi-objective optimization problem. Let A be the set of precedence
constraints (Oij, Okj) that require job j to be processed on machine i before it is processed on machine k,
the multi-objective optimization model can be provided as follows:

Minimize:
F = (C0

max, ∆c) (6)

Subject to:
stkj − sti j ≥ pi j , for all (Oi j, Okj) ∈ A (7)

sti j − stil ≥ pil or stil − sti j ≥ pi j, for all Oi j and Oil (8)

sti j ≥ 0, for all Oi j (9)

λi = λ0, for all i ∈M (10)

Di j ∼ Exp(1/β0), for all Oi j (11)

3. The Meta-Model Based MOEA

When solving the multi-objective optimization model in Section 2 by a MOEA, the primary task is
to evaluate the fitness of each individual in a population. However, the EMD in Equation (5) cannot be
analytically calculated for the intractable complexity of JSS under RMD. Although the commonly-used
Monte Carlo simulation can be used to approximate the EMD, it will make the MOEA inefficient for it is
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very time-consuming to evaluate each single individual, especially for the problems with larger scales.
In view of this, a meta-model-based MOEA will be proposed to solve the multi-objective optimization
model for the robust JSS.

3.1. Framework of The Algorithm

The meta-model-based MOEA is designed according to the basic framework of the classic
NSGA-II [28]. As shown in Figure 2, the algorithm begins with an initial population P0 with N
randomly generated individuals. Before executing the following genetic operators, the meta-model
∆a

c of the ∆c will be constructed based on the initial population P0. Then, the selection, crossover,
and mutation operators will be applied on the current population Pk to generate new individuals
and construct a combined population Rk+1. The fitness of individuals in the combined population
Rk+1 will first be evaluated by the makespan C0

max and the proposed meta-model ∆a
c , and then the

individual-based evolution control will be applied to update the fitness of some individuals. Finally,
the next generation population Pk+1 will be generated according to the ranks of individuals. When
the maximum generation number is reached, the algorithm will stop and return the obtained Pareto
solution set.

Figure 2. The flow chart of the meta-model-based multi-objective evolutionary algorithm (MOEA).

3.2. Meta-Model of The EMD

The meta-model for the EMD will be constructed based on the response surface methodology.
As shown in Equation (12), this method applies a quadratic polynomial f̂ (x) to approximate the
function relation between the input x and the output y of a system,

y ≈ f̂ (x) = a0 + Bx + xCxT, (12)

where, x is the input variant vector with v variables as shown in Equation (13), a0 is the constant term,
B is the coefficient vector of the linear term as shown in Equation (14), and C is the coefficient matrix of
the quadratic term as shown in Equation (15).

x = (x1, x2, . . . , xv) (13)
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B = (b1, b2, . . . , bv) (14)

C =


c11 c12 · · · c1v

c22 · · · c2v
. . .

...
cvv

 (15)

However, a schedule cannot be directly taken as an input variant of the EMD, since it cannot
be quantified. Therefore, to construct a meta-model by the response surface method for the EMD,
the primary task is to extract features related to the EMD from the schedule. To this end, we will
further analyze how RMDs affect the makespan of a schedule. As we all know, a feasible job shop
schedule is decided by the process constraints and the resource constraints. As a result, machines may
have some idle time during a schedule period, as shown in Figure 3a. In the classic JSS problems, we
are devoted to reducing the idle time to minimize the makespan for improving the utilities of machines.
However, when RMDs are considered, the idle time may be useful for an operation to control the
influence of machine breakdowns on the makespan of a schedule and then improve the robustness of
the makespan.

The available idle time of operations in a schedule can be classified into two types: the free slack
time and the total slack time. The former is the time that an operation can be delayed without delaying
the starting of its very next operations, while the latter is the difference between the earliest and latest
starting times of an operation without delaying the makespan. Take the schedule in Figure 3a as an
example, the free slack time of operations {O13, O11, O12, O21, O22, O23, O32, O33, O31} are {0, 0, 1, 0,
0, 1, 0, 1, 0}, respectively. The earliest and latest starting time of operations {O13, O11, O12, O21, O22,
O23, O32, O33, O31} without delaying the makespan is {0, 2, 6, 0, 2, 5, 0, 1, 6} and {1, 2, 7, 0, 3, 6, 2, 3, 6},
respectively. Therefore, the total slack time of each operation is {1, 0, 1, 0, 1, 1, 2, 2, 0}, respectively.

It is clear that not all operations have the free/total slack time. For an operation without slack
time, the makespan of a schedule will be directly delayed, when an RMD takes place on it. As shown
in Figure 3b, when a RMD with one unit of downtime takes places on the operation O11, the actual
makespan Cr

max is changed to 11, which is directly delayed by one unit of time. However, when an
RMD takes places on an operation with slack time, the makespan will not be delayed until the slack
time of this operation is used up. As shown in Figure 3c, after a RMD with one unit of downtime takes
place on the operation O33 with two units of free slack time, the makespan is still equal to 10, for the
free slack time of this operation is larger than the downtime of the breakdown. On the other hand,
although the operation O22 has no free slack time, the makespan can also be protected by the total
slack time of the operation, as shown in Figure 3d.

Figure 3. Cont.



Mathematics 2019, 7, 529 7 of 19

Figure 3. The relationship between the makespan delay and the machine breakdowns on different
operations. (a) No machine breakdown; (b) a machine breakdown on operation O11; (c) a machine
breakdown on operation O33; (d) a machine breakdown on operation O22.

According to the analysis above, it can be found that the makespan delay of a schedule depends
on the machine breakdown level, the free slack time and total slack time of each operation. In view of
this, we will extract the mathematical features for the schedule under RMDs from these three aspects:
the RMDs, the set Oy of operations with slack time and the set On of operations without slack time.
For the RMDs, the machine failure rate λ0 and the expected downtime β0 after a breakdown will be
taken. For the operations in the set Oy, all their processing time pi j, free slack time f si j and total slack
time tsi j will be taken. As for the operations in the set On, only their processing time pi j will be taken.

However, it is practically impossible to consider all the processing time, free slack time, and total
slack time of operations as the input variants of the EMD. To reduce the number of input variants,
we will further generalize these basic features into some comprehensive features. Formally, the sum of
processing time py

s and pn
s will be used to represent the processing time of operations in the sets Oy

and On, respectively. For the slack time, the average free slack time f sa and the average total slack
time tsa of operations in the set Oy will be applied.

Finally, the input variants of the EMD can be listed as follows: the machine failure rate λ0, the
expected downtime β0, the sum of processing time pn

s , the sum of processing time py
s , the average free

slack time f sa, and the average total slack time tsa. Then, the input variant vector x of the EMD can
be set as x = (x1, x2, x3, x4, x5, x6) = (λ0, β0, pn

s , py
s , f sa, tsa), and then the meta-model ∆a

c of ∆c can be
defined by Equation (16).

∆c ≈ ∆a
c = a0 +

6∑
i=1

bixi +
5∑

i=1

6∑
j=1

ci jxix j (16)

Then, the coefficients should further be determined to finalize the meta-model ∆a
c . As shown in

Algorithm 1, it takes the initial population P0 and the input variant vector x as the inputs, and outputs
the meta-model ∆a

c with the determined coefficients. First, a training data set Dc which includes N
data instances will first be generated based on the initial population P0. A data instance Ii = (xi, ∆i

c) is
composed of the values of the input variant vector xi and the corresponding ∆i

c. The values of the input
variant vector xi can be determined once a schedule si is generated based on the ith individual in the
initial population P0. Since the EMD cannot be analytically calculated, it will be evaluated by the Monte
Carlo approximation ∆sim

c as shown in Equation (17). After the training data set Dc is constructed,
the Multiple Linear Regression will be used to determine the coefficients of the meta-model ∆a

c for
the EMD,

∆sim
c =

1
Ns

Ns∑
i=1

(Ci
max −C0

max), (17)

where Ns is the simulation times and Ci
max is the makespan of a schedule under the ith simulation.
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Algorithm 1 The pseudo-code to finalize the meta-model.

Inputs: the initial population P0 and the input variant vector x
Outputs: the meta-model ∆a

c with the determined coefficients

1: Set the training data set Dc = ∅;
2: Generate Ns machine breakdown scenarios with the machine failure rate λ0 and the expected downtime β0;
3: for i = 1 to N
4: Generate the schedule si based on the ith individual in P0;
5: Determine the makespan C0

max of the schedule si by Equation (3);
6: Calculate the free slack time f si j and the total slack time tsi j in schedule si;
7: Calculate the sum of processing time pn

s and py
s ;

8: Calculate the average free slack time f sa and the average total slack time tsa;
9: Determine the values xi of the input variant vector x = (λ0, β0, pn

s , py
s , f sa, tsa);

10: Determined the EMD ∆i
c = ∆sim

c by Equation (17);
11: Generate the ith data instance Ii = (xi, ∆i

c);
12: Update the training data set Dc = Dc ∪ Ii;
13: end for
14: Based on the training data set Dc, apply the multiple linear regression to determine the coefficients of the
meta-model ∆a

c in Equation (16);
15: Return the finalized meta-model ∆a

c .

3.3. Fitness Evaluation

To compare the fitness of different individuals, the makespan and the EMD of each individual
in a population should be evaluated. Once a schedule is generated, the makespan can be directly
determined by Equation (3). However, the EMD cannot be analytically calculated for the complexity of
the JSS. Although it can be effectively approximated by the time-consuming Monte Carlo approximation
in Equation (17), the efficiency of the algorithm will be significantly reduced. In view of this, we will
apply the proposed meta-model ∆a

c in Equation (16) to approximate the EMD. The basic motivation for
using the meta-model in the fitness evaluation is to reduce the number of expensive fitness evaluations
without degrading the quality of the obtained optimal solution.

Based on the proposed meta-model ∆a
c , Algorithm 2 can be used to provide the fitness set Fk+1 ={

(C0
max(s0), ∆a

c(s0)), . . . , (C0
max(si), ∆a

c(si)), . . . , (C0
max(si), ∆a

c(si))
}

of the individuals in the combined
population Pk+1, where Fi

k+1 = (C0
max(si), ∆a

c(si)) represents the fitness of the ith individual in the
combined population Pk+1 with the makespan Fi

k+1(1) = C0
max(si) and the EMD Fi

k+1(2) = ∆a
c(si).

Algorithm 2 Fitness evaluation for the combined population

Inputs: the combined population Rk+1
Outputs: the fitness set Fk+1 of the individuals in Rk+1

1: Set the fitness set Fk+1 = ∅;
2: for i = 1 to 2N
3: Select the ith individual chmi from the population Rk+1;
4: Generate the schedule si based on the individual chmi;
5: Evaluate the makespan C0,i

max of the schedule si by Equation (3);
6: Get machine failure rate λ0 and expected downtime β0;
7: Calculate the free slack time f si j and the total slack time tsi j in the schedule si;
8: Calculate the sum of processing time pn

s and py
s ;

9: Calculate the average free slack time f sa and the average total slack time tsa;
10: Determine the values xi of the input variant vector x = (λ0, β0, pn

s , py
s , f sa, tsa)

11: Evaluate the EMD by ∆a
c(si) in Equation (16) with the values of xi;

12: Update the fitness set Fk+1 = Fk+1 ∪ Fi
k+1 = Fk+1 ∪ (C0

max(si), ∆a
c(si));

13: end for
14: Return the fitness set Fk+1;
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3.4. Individual-Based Evolution Control

Generally, the approximate model is assumed to be of high fidelity and, therefore, the real fitness
function will be not at all used in the evolution [20]. However, an evolutionary algorithm using
meta-models without controlling the evolution using the real fitness function can run the risk of an
incorrect convergence [28]. For this reason, the meta-model is combined with the real fitness function
in our algorithm, which is often known as evolution control or model management.

As shown in Algorithm 3, the individual-based evolution control framework will be applied,
which chooses the best individuals according to the pre-evaluation using the meta-model ∆a

c for
reevaluation using the real fitness function. For this purpose, the fitness set Fk+1 will first be ranked by
the fast non-dominated sorting. And then, the individuals with the rank rank(Fi

k+1) = 1 will further
be reevaluated by the Monte Carlo approximation ∆sim

c in Equation (17). In addition, to avoid the
unnecessary simulation computational time, the repeated individuals will only be evaluated once.

Algorithm 3 Individual-based evolution control framework

Inputs: the fitness set Fk+1 of the combined population Rk+1
Outputs: the modified fitness set F̂k+1

1: Generate Ns scenarios with the machine failure rate λ0 and the expected downtime β0;
2: Rank the fitness set Fk+1 by the fast non-dominated sorting;
3: Sort the fitness set Fk+1 in the ascending lexicographic order of the rank, the makespan and the EMD;
4: Set F̂k+1 = Fk+1;
5: for i = 1 to 2N
6: if rank(Fi

k+1) > 1
7: Break;
8: else if Fi

k+1(1) =Fi−1
k+1(1) and Fi

k+1(2) =Fi−1
k+1(2)

9: Update the fitness F̂i
k+1 by F̂i

k+1(2) = F̂i−1
k+1(2);

10: else
11: Generate the schedule si of the individual associated by Fi

k+1 in the Rk+1;
12: Evaluate the EMD by the Monte Carlo method ∆sim

c in Equation (17);
13: Update the fitness F̂i

k+1 by F̂i
k+1(2) = ∆sim

c ;
14: end if
15: end for
16: Return the modified fitness set F̂k+1.

3.5. Evolutionary Operators

In our algorithm, the preference list representation is applied to code the chromosomes.
The chromosome built by this coding method is made up of m substrings corresponding to m
machines. Every substring is a preference list of n jobs on the corresponding machine. Supposing
the chromosome is [(2 3 1) (1 3 2) (2 1 3)], the substring (2 3 1) is the preference list for machine 1,
the substring (1 3 2) for machine 2 and the substring (2 1 3) for machine 3. When decoding, the job the
first to appear in every precedence list will be selected firstly. If a selected operation meets the process
constraint, the operation will be scheduled, and then it is removed from corresponding preference list.
If there are more than one operation can be scheduled, then select one randomly.

The main genetic operators include selection, crossover and mutation. The usual binary
tournament selection is used to select parent individuals for generating child solutions. Namely,
randomly select two individuals from the population, and choose one of them with better fitness for the
subsequent genetic operators. In the crossover operator, the substring crossover which exchanges the
substrings of parents between two randomly selected machine numbers is applied. For the mutation
operator, the swap-mutation operator to a randomly selected substring is applied.

Before updating the next generation population, the fast non-dominated sorting approach is
applied to ranking the solutions in the combined population. Then, the population will be updated by
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choosing the individuals in the order of their ranks. Since all the previous and current population
members are included in the combined population, the elitism can also be ensured.

4. Experimental Analysis

In this section, the performance of the meta-model in evaluating the EMD will first be presented,
and then the meta-model-based MOEA will be used to solve the robust JSS problem.

4.1. Experiment Setting

The algorithm is implemented using C++ and run on a 2.8 GHz PC with an Intel Pentium dual-core
CPU and 2 GB of RAM. The parameters are listed as follows: the population size is 1024; the generation
number is 64; the crossover rate is 0.95; the mutation rate is 0.05; the machine breakdown ratio is 0.005;
the expected downtime is 20; and the simulation times are 600.

In the literature, many benchmark problems have been generated by different researchers to test
the performance of different algorithms, which are also very useful for this research for they include
a wide range of problem instances. In this study, the problem instances La01-La40 with sizes from
10 × 5 to 30 × 10 in the benchmark problem set LA (Lawrence in 1984) and the problem instances
Ta01-Ta40 with sizes from 15× 15 to 30× 15 in the benchmark problem set TA (Taillard in 1994) will be
applied. In total, there are 80 benchmark problem instances will be used to test the performance of the
proposed algorithm.

4.2. Evaluation Performance of The Proposed Mete-Model

To distinguish the robustness of different schedules, an effective meta-model must have high
evaluation accuracy and perform a strong linear correlation to the real value of the robustness. To show
the accuracy of the proposed meta-model ∆a

c in evaluating the EMD, the average χ in Equation (18)
and standard variance σ(χ) in Equation (19) of the absolute relative deviation χ(∆a

c , ∆sim
c ) from the

Monte Carlo approximation ∆sim
c will be applied. In addition, a correlation study will be conducted

using IBM SPSS. For each test problem, the R2 statistic and the significance level Sig. of the linear
model ANOVA are recorded. The value of R2 is used to measure the fitting degree of the meta-model,
while the significance level Sig. is used to test whether there is a significant linear correlation between
the meta-model and the EMD. Therefore, a good meta-model should be with a large value of R2 and a
small value of Sig. for each test problem.

χ =
1
N

N∑
i=1

χ(∆a
c , ∆sim

c ) =
1
N

N∑
i=1

∣∣∣∣∣∣∆a
c − ∆sim

c

∆sim
c

∣∣∣∣∣∣ (18)

σ(χ) =

√∑N
i=1 (χ(∆

a
c , ∆sim

c ) − χ)
2

N − 1
(19)

The experimental results have been processed and recorded in Tables 1 and 2 for the problem
sets LA and TA, respectively. It can be found that the maximum and minimum values of χ for all
problems in LA are equal to 0.041 and 0.020, respectively. And, the maximum and minimum values of
χ for all problems in TA are equal to 0.026 and 0.017, respectively. That is, the values of χ for all test
problems are less than 0.05 in average. Therefore, the values of the meta-model are very close to that of
the Monte Carlo approximation, which indicate that the proposed meta-model have high accuracy in
evaluating the EMD for the JSS under RMD. On the other hand, the maximum and minimum values of
σ(χ) for all problems in LA are equal to 0.031 and 0.015, respectively. The maximum and minimum
values of σ(χ) for all problems in TA are equal to 0.020 and 0.013, respectively. All these results show
that the meta-model have a small variance in the absolute relative deviation, which indicate that the
performance of the meta-model is also robust in evaluating the EMD.
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Table 1. The experimental results of the meta-model in the problem set LA.

Cases n × m ¯
χ σ(χ) R2 Sig. Cases n × m ¯

χ σ(χ) R2 Sig.

La01 10 × 5 0.035 0.027 0.74 <0.01 La21 15 × 10 0.026 0.019 0.77 <0.01
La02 10 × 5 0.040 0.029 0.59 <0.01 La22 15 × 10 0.028 0.021 0.74 <0.01
La03 10 × 5 0.041 0.031 0.53 <0.01 La23 15 × 10 0.026 0.020 0.78 <0.01
La04 10 × 5 0.038 0.028 0.71 <0.01 La24 15 × 10 0.027 0.021 0.76 <0.01
La05 10 × 5 0.034 0.026 0.78 <0.01 La25 15 × 10 0.028 0.021 0.75 <0.01
La06 15 × 5 0.029 0.022 0.80 <0.01 La26 20 × 10 0.023 0.018 0.76 <0.01
La07 15 × 5 0.033 0.024 0.71 <0.01 La27 20 × 10 0.024 0.018 0.74 <0.01
La08 15 × 5 0.032 0.024 0.72 <0.01 La28 20 × 10 0.024 0.019 0.73 <0.01
La09 15 × 5 0.033 0.026 0.68 <0.01 La29 20 × 10 0.024 0.018 0.75 <0.01
La10 15 × 5 0.033 0.024 0.76 <0.01 La30 20 × 10 0.025 0.019 0.74 <0.01
La11 20 × 5 0.026 0.020 0.76 <0.01 La31 30 × 10 0.020 0.016 0.75 <0.01
La12 20 × 5 0.029 0.023 0.76 <0.01 La32 30 × 10 0.020 0.015 0.75 <0.01
La13 20 × 5 0.029 0.023 0.70 <0.01 La33 20 × 10 0.020 0.015 0.76 <0.01
La14 20 × 5 0.029 0.023 0.76 <0.01 La34 30 × 10 0.021 0.016 0.76 <0.01
La15 20 × 5 0.029 0.023 0.71 <0.01 La35 30 × 10 0.022 0.017 0.82 <0.01
La16 10 × 10 0.031 0.024 0.74 <0.01 La36 15 × 15 0.023 0.018 0.80 <0.01
La17 10 × 10 0.031 0.024 0.74 <0.01 La37 15 × 15 0.023 0.018 0.75 <0.01
La18 10 × 10 0.032 0.025 0.72 <0.01 La38 15 × 15 0.025 0.019 0.74 <0.01
La19 10 × 10 0.030 0.023 0.72 <0.01 La39 15 × 15 0.025 0.018 0.75 <0.01
La20 10 × 10 0.035 0.026 0.65 <0.01 La40 15 × 15 0.025 0.019 0.71 <0.01
Aver. / 0.032 0.025 0.71 <0.01 Aver. / 0.024 0.018 0.76 <0.01

The results can also be clearly presented by the quartile graphs of the absolute relative deviation
χ(∆a

c , ∆sim
c ), as shown in Figures 4 and 5. In Figure 4, the maximum value of the absolute relative

deviations χ(∆a
c , ∆sim

c ) for all problems in LA is about 0.19, but more than 75% of the values are less
than 0.06 for all the problems in the problem set LA. Especially, when the problem scale is larger, such
as the problems LA21-LA40, more than 75% of the values of χ(∆a

c , ∆sim
c ) are less than 0.04. As for the

problem set TA in Figure 5, the maximum value of the absolute relative deviation χ(∆a
c , ∆sim

c ) for all
problems is only about 0.12, and more than 75% of the values are less than 0.04 for all the test problems.
Therefore, it can be concluded that the proposed meta-model has a very small estimation error for
the EMD.

On the other hand, the results of the linear model ANOVA have also been provided in Tables 1
and 2. For the results in Table 1, except for the problems La02, La03, La09, and La20, we can find that all
the values of R2 are larger than 0.70. Especially for the problems La21-La40 with larger problem scales,
the average of R2 even reaches to 0.76. All the values of R2 are larger than 0.70 for the problems in TA
and the average value is about 0.76 as shown in Table 2. In addition, for all the problems in LA and TA,
the significance level Sig. is less than 0.01. All these results show that the proposed meta-model have a
significant linear correlation with the expected makespan.

Figure 4. The quartile graph of the absolute relative deviation χ(∆a
c , ∆sim

c ) in the problem set LA.
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Table 2. The experimental results of the meta-model in the problem set TA.

Cases n × m ¯
χ σ(χ) R2 Sig. Cases n × m ¯

χ σ(χ) R2 Sig.

Ta01 15 × 15 0.026 0.019 0.73 <0.01 Ta21 20 × 20 0.019 0.015 0.78 <0.01
Ta02 15 × 15 0.023 0.018 0.76 <0.01 Ta22 20 × 20 0.018 0.014 0.79 <0.01
Ta03 15 × 15 0.025 0.019 0.74 <0.01 Ta23 20 × 20 0.018 0.014 0.76 <0.01
Ta04 15 × 15 0.023 0.018 0.77 <0.01 Ta24 20 × 20 0.019 0.014 0.77 <0.01
Ta05 15 × 15 0.023 0.018 0.78 <0.01 Ta25 20 × 20 0.018 0.014 0.79 <0.01
Ta06 15 × 15 0.023 0.017 0.76 <0.01 Ta26 20 × 20 0.018 0.014 0.78 <0.01
Ta07 15 × 15 0.026 0.020 0.73 <0.01 Ta27 20 × 20 0.019 0.015 0.75 <0.01
Ta08 15 × 15 0.024 0.018 0.76 <0.01 Ta28 20 × 20 0.019 0.014 0.77 <0.01
Ta09 15 × 15 0.025 0.018 0.74 <0.01 Ta29 20 × 20 0.019 0.015 0.76 <0.01
Ta10 15 × 15 0.023 0.018 0.77 <0.01 Ta30 20 × 20 0.018 0.014 0.79 <0.01
Ta11 20 × 15 0.022 0.016 0.76 <0.01 Ta31 30 × 15 0.018 0.014 0.77 <0.01
Ta12 20 × 15 0.020 0.016 0.78 <0.01 Ta32 30 × 15 0.019 0.015 0.77 <0.01
Ta13 20 × 15 0.021 0.016 0.78 <0.01 Ta33 30 × 15 0.018 0.014 0.74 <0.01
Ta14 20 × 15 0.020 0.016 0.77 <0.01 Ta34 30 × 15 0.017 0.014 0.78 <0.01
Ta15 20 × 15 0.021 0.016 0.73 <0.01 Ta35 30 × 15 0.018 0.014 0.80 <0.01
Ta16 20 × 15 0.021 0.015 0.78 <0.01 Ta36 30 × 15 0.018 0.014 0.76 <0.01
Ta17 20 × 15 0.023 0.017 0.74 <0.01 Ta37 30 × 15 0.018 0.014 0.76 <0.01
Ta18 20 × 15 0.021 0.016 0.75 <0.01 Ta38 30 × 15 0.018 0.014 0.79 <0.01
Ta19 20 × 15 0.021 0.017 0.76 <0.01 Ta39 30 × 15 0.019 0.013 0.81 <0.01
Ta20 20 × 15 0.021 0.016 0.79 <0.01 Ta40 30 × 15 0.017 0.013 0.78 <0.01
Aver. / 0.023 0.017 0.76 <0.01 Aver. / 0.018 0.014 0.77 <0.01

Figure 5. The quartile graph of the absolute relative deviation χ(∆a
c , ∆sim

c ) in the problem set TA.

In summary, the proposed meta-model ∆a
c have high evaluation accuracy and holds a strong

linear correlation to the EMD. This means that the meta-model ∆a
c is able to effectively distinguish the

robustness of different schedules in the evolutionary algorithm.

4.3. Optimization Performance of The Proposed Algorithm

In this section, the performance of the proposed meta-model (MM)-based MOEA in optimizing
the makespan and the EMD for the JSS under RMD will be presented. To show the performance of
the algorithm, the Monte Carlo approximation in Equation (17)-based MOEA (MC) will be applied.
In addition, the proposed meta-meta will also be compared with the existing surrogate measures,
and thus the results on the MOEAs with the average total slack time (SM1) in [42] and the sum of
free slack time (SM2) in [26] will also be provided. By implementing these algorithms with various
approximations of EMD, four Pareto solution sets can be obtained for each problem.

To investigate the performance of MOEAs, many metrics have been developed and applied
in the related research [44]. Since a single metric can only provide some specific but incomplete
of performance, to comprehensively evaluate the performance of the proposed algorithm, both the
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average distance and the number of distinct choices will be used in our experiments to measure the
convergence and diversity of the algorithm, respectively.

Average distance metric Ad in Equation (20) evaluates the closeness of the obtained Pareto solution
set PFfind to the true Pareto solution set PFtrue, where d(zi, a j) denotes the Euclidean distance between
zi in PFfind and all points a j in PFtrue.

Ad =
1

|PFfind|

|PFfind |∑
i=1

|PFtrue |

min
j=1

d(zi, a j) (20)

Number of distinct choices Nµ in Equation (21) focuses on the distribution of solutions, which
defines the number of distinct choices for a pre-specified value of µ, 0 < µ < 1. In this metric, an
m-dimensional objective space will be divided into 1/µm number of small grids, where any solutions
within the same grid are considered similar to one another. If there are individuals in the obtained
Pareto set PFfind that fall into the region T(lm, . . . , l2, l1), NT(lm, . . . , l2, l1) is equal to one, otherwise
zero. In our experiments, the value of µ for the metric Nµ is taken as 0.05.

Nµ(PFfind) =

1/µ−1∑
lm=0

. . .

1/µ−1∑
l2=0

1/µ−1∑
l1=0

NT(lm, . . . , l2, l1) (21)

Since the NP-hard nature of the JSS under RMD, the true Pareto set PFtrue is not available for
all test problems. In view of this, the approximate Pareto solution set which is provided by all
comparison algorithms will be used to represent the true one. That is, under the obtained Pareto
fronts (PF1

find, PF2
find, . . . , PF

np

find) by different algorithms for a test problem, the true Pareto solution set
can be approximated by Equation (22), where a j ≺ bi implies that a j dominates bi. Besides, in order
to reduce the scale difference between different objectives, all Pareto fronts will be normalized by
PFfind = (PFfind − PFmin

true)/(PFmax
true − PFmin

true) based on the maximum and minimum of objectives of the
true Pareto set PFtrue.

PFtrue ≈
{
bi
∣∣∣∀bi,¬∃a j ∈ (PF1

find ∪ PF2
find ∪ . . .∪ PF

np

find) ≺ bi
}

(22)

The results on the metric Ad of the algorithms MC, MM, SM1, and SM2 have been provided in
Tables 3 and 4 for the problem sets LA and TA, respectively. The results show that the algorithms SM1
and SM2 have the similar performance in the convergence, for the values of Ad of the algorithms SM1
and SM2 are always close to each other. For example, in Table 3, their average values of Ad in the
problems La01–La20 are 1.27 and 1.26, and the average values of Ad in the problems La21–La40 are
0.21 and 0.21, respectively. The similar results can also be found in Table 4, the average values of Ad in
the problems Ta01–Ta20 are 0.21 and 0.24, while they are 0.22 and 0.23 in the problems Ta21–Ta40.

By comparison, the proposed algorithm MM performs better in the convergence than the
algorithms SM1 and SM2. This is because that, except for the problems La39, Ta14, and Ta39, all the
values of Ad for the algorithm MM in the problem sets LA and TA are less than that of the algorithms
SM1 and SM2. In average, the values of Ad for the algorithm MM in the problems La01–La20 and
La21–La40 are 0.16 and 0.08, while the corresponding values of Ad for the algorithms SM1 and SM2
are about 1.26 and 0.21, respectively. And, in the problem set TA, the average values of Ad for the
algorithm MM in the problems La01–La20 and La21–La40 are both 0.09, while the average values of
Ad for the algorithms SM1 and SM2 are about 0.22.

On the other hand, the results also indicate that the convergence of the algorithm MM can even
be very close to that of the algorithm MC. As shown in Table 3, the results show that the proposed
algorithm MM can have the best convergence in the problems La04, La05, La07, La10, La12, La13,
La14, La22, La24, La26, La27, and La31 from the problem set LA and Ta06, Ta09,Ta19, Ta23, Ta24,
Ta37, and Ta37 from the problem set TA. In addition, the average of Ad for the algorithm MM in the
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problems La01–La21 with smaller problem scales is 0.16, which is 0.12 larger than that of the algorithm
MC. But, in the problems with larger problem scales, such as the problems La21–La40 and Ta01–Ta40,
the average of Ad for the algorithm MM is only 0.06 larger that of the algorithm MC. Therefore, we
conclude that the proposed algorithm MM is better than the algorithms SM1 and SM2 and similar to
the algorithm MC in convergence.

Table 3. The values of Ad for the algorithms Monte Carlo approximation-based MOEA (MC),
meta-model (MM), total slack time (SM1), and free slack time (SM2) in the problem set LA.

Cases n × m MC MM SM1 SM2 Cases n × m MC MM SM1 SM2

La01 10 × 5 0.01 0.07 0.99 1.57 La21 15 × 10 0.00 0.10 0.31 0.34
La02 10 × 5 0.01 0.04 0.26 0.50 La22 15 × 10 0.03 0.01 0.19 0.13
La03 10 × 5 0.01 0.05 0.08 0.10 La23 15 × 10 0.00 0.14 0.19 0.31
La04 10 × 5 0.07 0.00 0.16 0.36 La24 15 × 10 0.04 0.03 0.20 0.12
La05 10 × 5 0.00 0.00 0.00 0.00 La25 15 × 10 0.00 0.07 0.19 0.30
La06 15 × 5 0.00 0.92 3.96 7.19 La26 20 × 10 0.02 0.02 0.23 0.17
La07 15 × 5 0.52 0.00 1.55 1.22 La27 20 × 10 0.06 0.02 0.26 0.06
La08 15 × 5 0.00 0.33 3.70 2.95 La28 20 × 10 0.00 0.11 0.18 0.15
La09 15 × 5 0.00 0.35 2.89 1.45 La29 20 × 10 0.01 0.07 0.17 0.08
La10 15 × 5 0.00 0.00 0.00 0.00 La30 20 × 10 0.02 0.04 0.26 0.24
La11 20 × 5 0.00 0.66 6.06 4.84 La31 30 × 10 0.15 0.00 0.21 0.25
La12 20 × 5 0.04 0.03 1.38 0.92 La32 30 × 10 0.00 0.18 0.24 0.24
La13 20 × 5 0.06 0.05 1.34 1.22 La33 20 × 10 0.00 0.17 0.24 0.09
La14 20 × 5 0.00 0.00 0.00 0.00 La34 30 × 10 0.00 0.10 0.27 0.08
La15 20 × 5 0.00 0.30 0.63 1.12 La35 30 × 10 0.01 0.16 0.18 0.26
La16 10 × 10 0.09 0.14 1.09 0.36 La36 15 × 15 0.00 0.12 0.19 0.38
La17 10 × 10 0.00 0.08 0.20 0.16 La37 15 × 15 0.00 0.12 0.22 0.25
La18 10 × 10 0.00 0.15 0.30 0.46 La38 15 × 15 0.00 0.04 0.18 0.27
La19 10 × 10 0.01 0.02 0.34 0.13 La39 15 × 15 0.00 0.13 0.04 0.20
La20 10 × 10 0.02 0.09 0.40 0.55 La40 15 × 15 0.00 0.05 0.24 0.31
Aver. / 0.04 0.16 1.27 1.26 Aver. / 0.02 0.08 0.21 0.21

Table 4. The values of Ad for the algorithms MC, MM, SM1 and SM2 in the problem set TA.

Cases n × m MC MM SM1 SM2 Cases n × m MC MM SM1 SM2

Ta01 15 × 15 0.00 0.08 0.19 0.20 Ta21 20 × 20 0.02 0.05 0.23 0.31
Ta02 15 × 15 0.00 0.08 0.22 0.33 Ta22 20 × 20 0.00 0.17 0.28 0.34
Ta03 15 × 15 0.00 0.04 0.17 0.09 Ta23 20 × 20 0.09 0.01 0.14 0.19
Ta04 15 × 15 0.01 0.12 0.21 0.17 Ta24 20 × 20 0.02 0.01 0.17 0.16
Ta05 15 × 15 0.00 0.15 0.15 0.24 Ta25 20 × 20 0.00 0.22 0.29 0.24
Ta06 15 × 15 0.04 0.01 0.23 0.22 Ta26 20 × 20 0.00 0.07 0.30 0.22
Ta07 15 × 15 0.00 0.14 0.24 0.26 Ta27 20 × 20 0.00 0.09 0.18 0.38
Ta08 15 × 15 0.01 0.02 0.08 0.11 Ta28 20 × 20 0.03 0.05 0.30 0.21
Ta09 15 × 15 0.06 0.03 0.27 0.30 Ta29 20 × 20 0.02 0.06 0.31 0.34
Ta10 15 × 15 0.06 0.10 0.29 0.22 Ta30 20 × 20 0.02 0.05 0.24 0.24
Ta11 20 × 15 0.00 0.22 0.29 0.30 Ta31 30 × 15 0.02 0.04 0.16 0.17
Ta12 20 × 15 0.01 0.04 0.24 0.19 Ta32 30 × 15 0.05 0.05 0.13 0.14
Ta13 20 × 15 0.00 0.08 0.14 0.29 Ta33 30 × 15 0.03 0.05 0.34 0.26
Ta14 20 × 15 0.01 0.12 0.10 0.17 Ta34 30 × 15 0.00 0.13 0.33 0.39
Ta15 20 × 15 0.00 0.21 0.26 0.37 Ta35 30 × 15 0.00 0.09 0.21 0.14
Ta16 20 × 15 0.00 0.06 0.23 0.21 Ta36 30 × 15 0.02 0.03 0.15 0.18
Ta17 20 × 15 0.03 0.06 0.14 0.33 Ta37 30 × 15 0.03 0.02 0.17 0.08
Ta18 20 × 15 0.00 0.07 0.24 0.30 Ta38 30 × 15 0.00 0.27 0.24 0.35
Ta19 20 × 15 0.09 0.00 0.30 0.34 Ta39 30 × 15 0.07 0.16 0.01 0.13
Ta20 20 × 15 0.00 0.14 0.17 0.19 Ta40 30 × 15 0.00 0.13 0.19 0.18
Aver. / 0.02 0.09 0.21 0.24 Aver. / 0.02 0.09 0.22 0.23

The results on the metric Nµ of the algorithms MC, MM, SM1 and SM2 are presented in Tables 5
and 6 for the problem sets LA and TA, respectively. The results show that the algorithms SM1 and SM2
also have the similar performance in the diversity. From the results in Table 5, we can found that the
average values of Nµ for the algorithms SM1 and SM2 in the problems La01–La20 are 4.7 and 5.2, and
the average values of Ad for the problems La21–La40 are 9.3 and 10.5, respectively. That is, the average
difference of Ad between the algorithms SM1 and SM2 is only about 1.0 in average. The similar results
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can also be found in Table 6, the average values of Nµ for the problems Ta01–Ta20 are 10.2 and 9.7,
while they are 8.9 and 8.4 in the problems Ta21–Ta40.

Table 5. The values of Nµ for the algorithms MC, MM, SM1, and SM2 in the problem set LA.

Cases n × m MC MM SM1 SM2 Cases n × m MC MM SM1 SM2

La01 10 × 5 11 12 2 4 La21 15 × 10 15 15 8 13
La02 10 × 5 12 9 5 4 La22 15 × 10 16 17 10 9
La03 10 × 5 11 8 2 6 La23 15 × 10 13 18 6 12
La04 10 × 5 9 8 4 4 La24 15 × 10 12 12 10 15
La05 10 × 5 1 1 2 3 La25 15 × 10 14 15 11 9
La06 15 × 5 3 3 3 6 La26 20 × 10 15 15 10 10
La07 15 × 5 11 6 4 8 La27 20 × 10 12 14 10 13
La08 15 × 5 5 7 3 9 La28 20 × 10 14 18 8 7
La09 15 × 5 7 9 9 7 La29 20 × 10 13 14 7 11
La10 15 × 5 1 2 4 2 La30 20 × 10 13 16 10 9
La11 20 × 5 4 5 6 5 La31 30 × 10 15 12 9 8
La12 20 × 5 11 8 5 7 La32 30 × 10 13 12 7 12
La13 20 × 5 12 7 7 6 La33 20 × 10 11 13 8 9
La14 20 × 5 1 1 3 1 La34 30 × 10 13 16 11 10
La15 20 × 5 12 16 7 6 La35 30 × 10 11 16 10 7
La16 10 × 10 9 8 2 2 La36 15 × 15 12 16 11 11
La17 10 × 10 10 11 7 7 La37 15 × 15 14 17 8 9
La18 10 × 10 12 14 8 4 La38 15 × 15 15 18 14 13
La19 10 × 10 12 12 6 6 La39 15 × 15 18 14 8 12
La20 10 × 10 12 14 4 7 La40 15 × 15 14 17 10 11
Aver. / 8.3 8.1 4.7 5.2 Aver. / 13.7 15.3 9.3 10.5

Table 6. The values of Nµ for the algorithms MC, MM, SM1, and SM2 in the problem set TA.

Cases n × m MC MM SM1 SM2 Cases n × m MC MM SM1 SM2

Ta01 15 × 15 16 18 9 9 Ta21 20 × 20 17 14 10 9
Ta02 15 × 15 14 10 10 12 Ta22 20 × 20 13 15 6 8
Ta03 15 × 15 15 19 12 10 Ta23 20 × 20 15 11 11 11
Ta04 15 × 15 14 19 11 11 Ta24 20 × 20 13 13 11 9
Ta05 15 × 15 17 15 9 11 Ta25 20 × 20 14 12 11 9
Ta06 15 × 15 16 14 9 10 Ta26 20 × 20 16 12 10 10
Ta07 15 × 15 15 17 12 10 Ta27 20 × 20 14 8 12 9
Ta08 15 × 15 17 11 13 9 Ta28 20 × 20 15 17 7 9
Ta09 15 × 15 15 14 10 8 Ta29 20 × 20 17 12 12 10
Ta10 15 × 15 15 14 11 12 Ta30 20 × 20 17 10 7 7
Ta11 20 × 15 13 15 10 10 Ta31 30 × 15 13 13 9 10
Ta12 20 × 15 12 14 8 7 Ta32 30 × 15 13 12 7 8
Ta13 20 × 15 16 13 8 10 Ta33 30 × 15 13 11 6 5
Ta14 20 × 15 13 14 9 10 Ta34 30 × 15 14 13 10 9
Ta15 20 × 15 17 18 12 11 Ta35 30 × 15 10 14 9 7
Ta16 20 × 15 19 13 8 8 Ta36 30 × 15 15 10 9 6
Ta17 20 × 15 15 11 10 9 Ta37 30 × 15 13 11 6 8
Ta18 20 × 15 16 15 10 9 Ta38 30 × 15 9 15 8 10
Ta19 20 × 15 10 13 12 8 Ta39 30 × 15 11 14 7 6
Ta20 20 × 15 16 17 11 10 Ta40 30 × 15 13 13 9 7
Aver. / 15.1 14.7 10.2 9.7 Aver. / 13.8 12.5 8.9 8.4

Compared with the algorithms SM1 and SM2, the proposed algorithm MM performs better in
diversity. This is because that the values of Ad for the algorithm MM are larger than that of the
algorithms SM1 and SM2 for most of the problems in the problem sets LA and TA as shown in Tables 5
and 6. In addition, the results have also shown the algorithm MM have the similar performance in
diversity to that of the algorithm MC. For example, the average values of Ad for the algorithms MM
and MC in the problems La01–La20 are about 8.1 and 8.3, while the average values of Ad are 15.3 and
13.7 in the problems La21–La40, respectively. Similar results can be found in Table 6 for the problem
set TA. Therefore, we can conclude that the proposed algorithm MM is very close to the algorithm MC
in diversity, but it is much better than the algorithms SM1 and SM2.
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Taking the problems instances La06, La15, Ta15, and Ta36 as examples, the performance of the
algorithms MC, MM, SM1, and SM2 can also be clearly illustrated by the Pareto fronts. As shown in
Figure 6, the Pareto front of the algorithm MM is very close to that of the algorithm MC, while the
Pareto fronts of the algorithms SM1 and SM2 are very far from that of the algorithm MC. On the other
hand, the number of solutions in the Pareto front of the algorithm MM is approximately equal to that
of the algorithm MC, while the number of solutions in the Pareto fronts of the algorithms SM1 and
SM2 are much less in comparison.

Figure 6. The Pareto fronts of algorithms MC, MM, SM1, and SM2. (a) For the problem La15; (b) for
the problem La30; (c) for the problem Ta06; (d) for the problem Ta18.

However, as indicated earlier, the algorithm based on the Monte Carlo approximation will be
very time-consuming. To investigate computational efforts for each algorithm, the average Ta and
the relative value Tr of CPU time have been recorded, where Tr is the ratio of the average Ta of an
algorithm (MC, MM, SM1, or SM2) to that of the algorithm MC. In this experiment, the simulation
times for the Monte Carlo approximation are set as 30, which is generally the required minimum
number of samples in statistical estimation [20]. As the results shown in Table 7, the algorithms SM1
and SM2 always consume the least time, while the algorithm MC consumes the most. By comparison,
the time consumption of the proposed algorithm MM is almost equal to that of the algorithms SM1
and SM2, but it is much less than that of the algorithm MC. What is more, the time consumption of
the algorithm MC increases significantly with the problem scale. For example, the average Ta of the
algorithm MC in the problems La01-La05 is 66, which is close to that of the algorithm MM with the
value 53. But, in the problems Ta31-Ta40, the time consumption of the algorithm MC is about 8 times
of that of the algorithm MM. In more complex problems or uncertain scenarios, a larger sample size
may be needed for the algorithm MC, which will result in a computational time that is unacceptable.



Mathematics 2019, 7, 529 17 of 19

Table 7. Results on the CPU time (in seconds) of algorithms MC, MM, SM1, and SM2.

Cases n × m
MC MM SM1 SM2

Ta Tr Ta Tr Ta Tr Ta Tr

La01–La05 10 × 5 66 1.00 53 0.80 50 0.76 50 0.76
La06–La10 15 × 5 83 1.00 54 0.65 52 0.63 50 0.60
La11–La15 20 × 5 113 1.00 55 0.49 55 0.49 52 0.46
La16–La20 10 × 10 102 1.00 54 0.53 54 0.53 51 0.50
La21–La25 15 × 10 153 1.00 56 0.37 55 0.36 54 0.35
La26–La30 20 × 10 220 1.00 60 0.27 59 0.27 57 0.26
La31–La35 30 × 10 398 1.00 73 0.18 70 0.18 68 0.17
La36–La40 15 × 15 238 1.00 65 0.27 62 0.26 60 0.25
Ta01–Ta10 15 × 15 231 1.00 63 0.27 61 0.26 59 0.26
Ta11–Ta20 20 × 15 351 1.00 75 0.21 70 0.20 68 0.19
Ta21–Ta30 20 × 20 543 1.00 85 0.16 82 0.15 83 0.15
Ta31–Ta40 30 × 15 733 1.00 95 0.13 92 0.13 89 0.12

Aver. / 269.3 1.00 65.7 0.24 63.5 0.24 61.8 0.23

5. Conclusions

In this study, we have addressed the robust JSS with RMDs, in which the makespan and the
EMD are considered simultaneously. To improve the efficiency of the MOEA, a meta-model has been
constructed by using the data-driven response surface method. Then, with the individual-based
evolution control, the meta-model-based MOEA has been proposed to solve this problem. The results
have shown that regarding the convergence and diversity, the proposed algorithm yields better Pareto
solution sets than the algorithms with the existing slack time-based surrogate measures. Moreover,
the meta-model has high accuracy in evaluating the EMD similar to the Monte Carlo approximation.
Overall, the proposed meta-model-based MOEA can effectively and efficiently solve the robust JSS
with RMDs.
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Notations:

JSS Job shop scheduling problem RMD Random machine breakdowns
EMD Expected makespan delay MOEA Multi-objective evolutionary algorithm
n Number of jobs m Number of machines
J j Job j, j = 1, 2, . . . , n Mi Machine i, i = 1, 2, . . . , m
J Set of jobs,

{
J j
∣∣∣ j = 1, 2, . . . , n

}
M Set of machines {Mi|i = 1, 2, . . . , m}

Oi j Operation that job j is on machine i O j Set of operations for job j
pi j Processing time of operation Oi j sti j Starting time of operation Oi j

cti j Completion time of operation Oi j f si j Free slack time of operation Oi j

tsi j Total slack time of operation Oi j Pri j Machine breakdown probability of Oi j
Di j Downtime when processing Oi j C0

max Makespan of a schedule before execution
Cr

max Actual makespan of a schedule δc Makespan delay of a schedule
∆c Expression of expected makespan delay ∆a

c Meta-model of ∆c

∆sim
c Monte Carlo approximation of ∆c On Set of operations without slack time

Oy Set of operations with slack time pn
s Sum of processing time in the set On

py
s Sum of processing time in the set Oy f sa Average free slack time in the set Oy

tsa Average total slack time in the set Oy λ0 Machine failure rate of each machine
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β0 Expectation of the downtime P0 Initial population
Pk Current population in generation k Rk+1 Combined population in generation k
x Input vector x = (λ0, β0, pn

s , py
s , f sa, tsa) Ii A data instance Ii = (xi, ∆i

c)

Dc Training data set si Schedule of ith individual in Rk+1
Fi

k+1 Fitness of the ith individual in Rk+1 Fk+1 Fitness set of the population Rk+1
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