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Abstract

:

The purpose of this paper is to characterize the pre-dual of the spaces introduced by I. Fofana on the basis of Wiener amalgam spaces. These spaces have a specific dilation behaviour similar to the spaces Lα(Rd). The characterization of the pre-dual will be based on the idea of minimal invariant spaces (with respect to such a group of dilation operators).
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1. Introduction


Let d be a fixed positive integer and Rd the d-dimensional Euclidean space, equipped with its Lebesgue measure dx. For 1≤q,p≤∞, the amalgam of Lq and Lp is the space (Lq,ℓp) of function f:Rd→C, which are located in Lq, so that the sequence fχIkqk∈Zd belongs to ℓp(Zd), where Ik=k+0,1d. The map f↦fp denotes the usual norm on the Lebesgue space Lp(Rd) on Rd while χE stands for the characteristic function of the subset E of Rd.



Amalgam spaces were introduced by N. Wiener in 1926 (see [1]); however, their systematic study began with the work of F. Holland [2] in 1975. Since then, they have been widely studied (see [3,4,5,6,7,8] and the references therein). It is easy to see that the usual Lebesgue space Lq coincides with the amalgam space (Lq,ℓq). Furthermore, the Lebesgue space Lq is known to be invariant under dilations. In fact, for ρ>0, the dilation operator Stρ(q):f↦ρ−dqf(ρ−1·) is isometric. Proper amalgam spaces do not possess this property. Worse still, for q≠p we cannot find α>0, such that supρ>0Stρ(α)fq,p<∞, although Stρ(α)f∈(Lq,ℓp) for all f∈(Lq,ℓp), ρ>0 and α>0 (see e.g., [9] or [10]). In order to compensate for this shortfall, in the 1980s, Fofana introduced (see [11]) the functions spaces (Lq,ℓp)α, which consist of f∈(Lq,ℓp) satisfying supρ>0Stρ(α)fq,p<∞ (see Section 2 for more precision).



These spaces can be viewed as certain generalized Morrey spaces, and we will always refer to them as Fofana spaces.



Many classical results for Lebesgue and the classical Morrey spaces have been extended to the setting of the spaces (Lq,ℓp)α(Rd) (see [11,12,13,14,15,16,17,18,19,20]). Although the dual space of Lebesgue spaces Lα(Rd) (1≤α<∞) and amalgam spaces (Lq,ℓp)(Rd) (1≤q,p<∞) are well known (Lα′ and (Lq′,ℓp′) respectively with 1p′+1p=1), that of (Lq,ℓp)α(Rd) is still unknown. However, in the case p=∞ and q<α, four characterizations of the pre-dual of (Lq,ℓ∞)α(Rd) (see [21,22,23,24]) which are equal have already been made.



The purpose of this paper is to determine the pre-dual of (Lq,ℓp)α(Rd) for 1<q<α<p<∞.



In doing so, we will make use of the idea of minimal invariant Banach spaces of functions, which has already been used previously and has been shown to be useful in a variety of situations, see [25,26,27,28,29] or [30].



The paper is organized as follows: In Section 2, we give some basic facts about amalgams and minimal Banach spaces. The third section is devoted to the pre-dual of Fofana spaces, as well as certain properties of these spaces.




2. Some Basic Facts about Amalgam and Minimal Banach Spaces


For any normed space E, we denote its topological dual space as E*. Given 1≤p,q≤∞, the amalgam space (Lq,ℓp) is equipped with the norm fq,p=fχIkqℓp. For any ρ>0, we put:


ρfq,p=∑k∈ZdfχIkρqp1pifp<∞supk∈ZdfχIkρqifp=∞



(1)




with Ikρ=Πj=1dkjρ,(kj+1)ρifk=(kj)1≤j≤d∈Zd. It is clear that fq,p=1fq,p.



We present the following well known properties (see, for example, [7]).



	(1)

	
For 0<ρ<∞, f↦ρfq,p is a norm on (Lq,ℓp)(Rd) equivalent to f↦fq,p. With respect to these norms, the amalgam spaces (Lq,ℓp)(Rd) are Banach spaces.




	(2)

	
The spaces (strictly) increase with the global exponent q and (strictly) decrease with a growing local exponent q; more precisely,


fq,p≤fq1,pifq<q1≤∞,



(2)






fq,p≤fq,p1if1≤p1<p.



(3)








	(3)

	
For 0<ρ<∞, Hölder’s inequality is fulfilled:


fg1≤ρfq,pρgq′,p′,f,g∈Lloc1(Rd),



(4)




where q′ and p′ are conjugate exponents of q and p, respectively: 1q+1q′=1=1p+1p′. When 1≤q,p<∞, (Lq′,ℓp′)(Rd) is isometrically isomorphic to the dual (Lq,ℓp)(Rd)* of (Lq,ℓp)(Rd) in the sense that for any element T of (Lq,ℓp)(Rd)*, there is an unique element ϕ(T) of (Lq′,ℓp′)(Rd) such that,


T,f=∫Rdf(x)ϕ(T)(x)dx,f∈(Lq,ℓp)(Rd)








and furthermore,


ϕ(T)q′,p′=T.



(5)











We recall that T:=supT,f|f∈Llocq(Rd)andfq,p≤1.



Next we summarize a couple of properties of dilation operators. We assume that 1≤α≤∞.



	(1)

	
For any real number ρ>0, Stρ(α) maps Lloc1(Rd) into itself.




	(2)

	
St1(α)f=f,f∈Lloc1(Rd).




	(3)

	
Stρ1(α)∘Stρ2(α)=Stρ1ρ2(α)=Stρ2(α)∘Stρ1(α).







In other words, (Stρ(α))ρ>0 is a commutative group of operators on Lloc1(Rd), isomorphic to the multiplicative group (0,∞). As mentioned in the introduction, we have for 1≤α≤∞:


Stρ(α)fα=fα,0<ρ<∞andf∈Lloc1(Rd).



(6)







In other words, each of those normalizations is isometric to exactly one of the family of Lr-spaces.



For amalgam spaces, direct computations (see for example (2.1) and Proposition 2.2 in [16]) give the following results:


Stρ(α)fq,p=ρ−d(1α−1q)ρ−1fq,p,0<ρ<∞andf∈Lloc1(Rd)








and therefore,


fq,p,α:=supρ>0Stρ(α)fq,p=supρ>0ρd(1α−1q)ρfq,p.



(7)




It follows that the space (Lq,ℓp)α(Rd) can be defined by:


(Lq,ℓp)α(Rd)=f∈Lloc1(Rd)|fq,p,α<∞.



(8)




We recall that for q<α, the space (Lq,ℓ∞)α(Rd) is exactly the classical Morrey space Mq,dqα(Rd) introduced by Morrey in 1938, see [31], and defined for λ=dqα by:


Mq,λ(Rd)=f∈Llocq(Rd)|supx∈Rd,r>0rλ−dqfχB(x,r)q<∞.



(9)




Fofana spaces have the following properties (cf. [11,17]):




	(1)

	
(Lq,ℓp)α(Rd),·q,p,α is a Banach space which is non trivial if and only if q≤α≤p,




	(2)

	
if α∈p,q, then (Lq,ℓp)α(Rd)=Lα(Rd) with equivalent norms,




	(3)

	
if q<α<p, then Lα(Rd)⊊Lα,∞(Rd)⊊(Lq,ℓp)α(Rd)⊊(Lq,ℓp)(Rd), where Lα,∞(Rd) is the weak Lebesgue space on Rd defined by:


Lα,∞(Rd)=f∈Lloc1(Rd)|fα,∞*<∞,








with fα,∞*:=supλ>0x∈Rd|f(x)>λ1α. We denote by E, the Lebesgue measure of a measurable subset E of Rd.









For any ρ>0, the dilation Stρ(α) isometrically maps the space (Lq,ℓp)α(Rd) to itself. More precisely,




Stρ(α)fq,p,α=fq,p,α,0<ρ<∞andf∈Lloc1(Rd).



(10)





Remark 1.

It is easy to see that, if 0<ρ<∞ and (f,g) is an element of Lloc1(Rd)×Lloc1(Rd) such that (Stρ(α)f)g belongs to L1(Rd), then f(Stρ−1(α)g) belongs to L1(Rd) and


∫RdStρ(α)f(x)g(x)dx=∫Rdf(x)Stρ−1(α′)g(x)dx.



(11)









Searching for a dilation invariant version of the Segal algebra S0(Rd) (introduced in [27]) Feichtinger and Zimmermann introduced a certain exotic minimal space in [32]. The results of that paper will be used later.



Theorem 1

([32], Theorem 2.1). Let B be a Banach space, and Φ=(φj)j∈J a (not necessarily countable) bounded family in B. Define


B=BΦ:=f=∑j∈Jajφj:∑j∈Jaj<∞,








and let


fB=inf∑j∈Jaj|f=∑j∈Jajφj.








Then (B,·B) is a Banach space continuously embedded into B.






3. A Pre-Dual of Fofana Spaces


Definition 1.

Let 1≤q≤α≤p≤∞. The space H(q,p,α) is defined as the set of all elements f of Lloc1(Rd) for which there exist a sequence (cn,ρn,fn)n≥1 of elements of C×(0,∞)×(Lq′,ℓp′)(Rd) such that


∑n≥1cn<∞fnq′,p′≤1,n≥1f:=∑n≥1cnStρn(α′)fninthesenseofLloc1(Rd).



(12)









We will always refer to any sequence (cn,ρn,fn)n≥1 of elements of C×(0,∞)×(Lq′,ℓp′)(Rd) satisfying (12) as h-decomposition of f.



For any element f of H(q,p,α), we set


fH(q,p,α):=inf∑n≥1cn,



(13)




where the infimum is taken over all h-decomposition of f.



Proposition 1.

Let 1≤q≤α≤p≤∞. H(q,p,α) endowed with ·H(q,p,α) is a Banach space continuously embedded into Lα′(Rd).





Proof. 

Since 1≤p′≤α′≤q′≤∞, it comes from (2) and (3) that for any element f∈(Lq′,ℓp′)(Rd),


f∈Lα′andfα′≤fq′,p′.








Therefore, by (6)


Stρ(α′)f∈Lα′andStρ(α′)fα′≤fq′,p′.








The result follows from Theorem 1, using the Banach space B=Lα′(Rd) and its bounded subset


Φ=Stρ(α′)f|ρ>0andfq′,p′≤1.








 ☐





For 1<p<∞ and 0<λ<d. Zorko proved in [24] that the Morrey space Mp,λ is the dual space of the space, Zp′,λ, which consists of all the functions f on Rd which can be written in the form f:=∑kckak, where ck is a sequence in ℓ1, and ak is a sequence of functions on Rd satisfying for each k,




	
suppak⊂aballBk,



	
akp′≤1/Bkd−λdp.








Notice that for p=∞ and q<α, the space Zq′,dqα is continuously embedded into H(q,∞,α). In fact, let f=∑kckak∈Zq′,dqα with the sequences ck and ak as in the Introduction. For any k∈N, we define,


uk=Strk−1(α′)(ak),








where rk is the radius of the ball Bk associated to ak. There exists a constant C>0 (one can take C=B(0,1)1α−1q), such that


2−dC−1ukq′,1≤1andf=∑k≥1(2dCck)Strk(α′)(2−dC−1uk).











We prove next that for 1≤q≤α≤p≤∞, the space H(q,p,α) is a certain minimal Banach space.



Proposition 2.

For 1≤q≤α≤p≤∞, the space H(q,p,α) is a minimal Banach space, isometrically invariant under the family (Stρ(α′))ρ>0 and such that


(Lq′,ℓp′)(Rd)⊂H(q,p,α)⊂Lloc1(Rd),








with continuous inclusions.





Proof. 






	(1)

	
Let us first prove that H(q,p,α) is isometrically invariant by Stρ(α′) for all ρ>0.



Let f∈H(q,p,α). For 0<ρ<∞ and any h-decomposition (cn,ρn,fn)n≥1 of f, we have


Stρ(α′)f=∑n≥1cnStρρn(α′)fn








so that


Stρ(α′)f∈H(q,p,α)andStρ(α′)fH(q,p,α)=fH(q,p,α).



(14)







Thus, Stρ(α′) is an isometric automorphism of H(q,p,α).




	(2)

	
First, we verify that (Lq′,ℓp′) is continuously embedded into H(q,p,α). For any 0≠f∈(Lq′,ℓp′) we have


f=fq′,p′St1(α1)(fq′,p′−1f)andfq′,p′−1fq′,p′=1








and, therefore, f belongs to H(q,p,α) and satisfies


fH(q,p,α)≤fq′,p′.



(15)







Thus, our claim is verified.




	(3)

	
It remains to be proved that this space is minimal. Let X be another Banach space continuously embedded into Lloc1(Rd) such that




	(a)

	
X is isometrically invariant by (Stρ(α′))ρ>0, i.e., if f∈X then Stρ(α′)f∈XandStρ(α′)fX=fX,ρ>0,




	(b)

	
(Lq′,ℓp′)(Rd) is continuously embedded into X, i.e., there exists K>0 such that for f∈(Lq′,ℓp′)(Rd), f∈X and fX≤K1fq′,p′.









For f∈H(q,p,α) and any h-decomposition (cn,ρn,fn)n≥1


cnStρn(α′)fn∈XandcnStρn(α′)fnX=cnfnX≤Kcn,n≥1.








Thus


∑n≥1cnStρn(α′)fnX≤K∑n≥1cn








and therefore, as X is a Banach space,


f=∑n≥1cnStρn(α′)fn∈XandfX≤K∑n≥1cn.











From this and (13) it follows that


f∈XandfX≤KfH(q,p,α).











Thus, H(q,p,α) is continuously included in X.









 ☐





Our main result can be stated as follows.



Theorem 2.

Let 1<q≤α≤p≤∞. The operator g↦Tg defined by (17) is an isometric isomorphism of (Lq,ℓp)α(Rd) into H(q,p,α)*.





For the proof, we need some intermediate results.



Remark 2.

It is clear that if (cn,ρn,fn)n≥1 is a h-decomposition of f∈H(q,p,α), then (∑n=1mcnStρn(α′)fn)m≥1 is a sequence of elements of (Lq′,ℓp′)(Rd) which converges to f in H(q,p,α). Hence (Lq′,ℓp′)(Rd) is a dense subspace of H(q,p,α).





Proposition 3.

Let 1≤q≤α≤p≤∞, f∈H(q,p,α) and g∈(Lq,ℓp)α. Then fg belongs to L1(Rd) and


∫Rdf(x)g(x)dx≤fH(q,p,α)gq,p,α.



(16)









Proof. 

Let (cn,ρn,fn)n≥1 be a h-decomposition of f.



By using successively (11), (4) and (7), we obtain for any n≥1,


∫RdStρn(α′)fn(x)g(x)dx=∫Rdfn(x)Stρn−1(α)g(x)dx≤∫Rdfn(x)Stρn−1(α)g(x)dx≤fnq′,p′Stρn−1(α)gq,p≤Stρn−1(α)gq,p≤gq,p,α.








Therefore, we have


∑n≥1∫RdcnStρn(α′)fn(x)g(x)dx≤gq,p,α∑n≥1cn.








This implies that fg=∑n≥1cnStρn(α′)fng belongs to L1(Rd) and


∫Rdf(x)g(x)dx≤∫Rdf(x)g(x)dx≤gq,p,α∑n≥1cn.








Taking the infimum with respect to all h-decompositions of f, we get


∫Rdf(x)g(x)dx≤∫Rdf(x)g(x)dx≤gq,p,αfH(q,p,α)








 ☐





Remark 3.

Let 1≤q≤α≤p≤∞ and set:


Tg,f=∫Rdf(x)g(x)dx,g∈(Lq,ℓp)α(Rd)andf∈H(q,p,α).



(17)




By Proposition 3 and the fact that φ↦∫Rdφ(x)dx belongs to L1(Rd)*, that:




	(1) 

	
for any element g of (Lq,ℓp)α(Rd), f↦Tg,f belongs to H(q,p,α)*,




	(2) 

	
T:g↦Tg is linear and bounded mapping from (Lq,ℓp)α(Rd) into H(q,p,α)*, satisfying T≤1, that is:


Tg≤gq,p,α,g∈(Lq,ℓp)α(Rd).



(18)















Now we can prove our main result.



Proof of Theorem 2.

We know (see Remark 3) that g↦Tg is a bounded linear application of (Lq,ℓp)α(Rd) into H(q,p,α)* such that


Tg≤gq,p,α,g∈(Lq,ℓp)α(Rd).








Let T be an element of H(q,p,α)*. From (15), it follows that the restriction T0 of T to (Lq′,ℓp′)(Rd) belongs to (Lq′,ℓp′)(Rd)*. Furthermore, we have 1≤p′≤α′≤q′<∞. So, by (5), there is an element g of (Lq,ℓp)(Rd) such that


T,f=∫Rdf(x)g(x)dx,f∈(Lq′,ℓp′)(Rd).



(19)




Hence, for f∈(Lq′,ℓp′)(Rd) and ρ>0 we have


∫RdStρ(α)g(x)f(x)dx=∫Rdg(x)Stρ−1(α′)f(x)dx=T,Stρ−1(α′)f








by (4) and (11), and


∫RdStρ(α)g(x)f(x)dx≤TStρ−1(α′)fH(q,p,α)=TfH(q,p,α)≤Tfq′,p′








by (14) and (15). From this and (5) it follows that


Stρ(α)g∈(Lq,ℓp)(Rd)andStρ(α)gq,p≤T,ρ∈(0,∞)








and therefore, by (7),


gq,p,α≤Tandg∈(Lq,ℓp)α(Rd).








From (19), the density of (Lq′,ℓp′)(Rd) in H(q,p,α) (see Remark 2) and Proposition 3, we get


T,f=∫Rdf(x)g(x)dx,f∈H(q,p,α).








This completes the proof. ☐





We end this paper by stating some interesting properties of the spaces H(q,p,α).



Proposition 4.

Let 1≤q≤α≤p≤∞.




	(1) 

	
The space H(q,p,α) is a Banach L1(Rd)-module:



for (f,φ)∈H(q,p,α)×L1(Rd)


f*φ∈H(q,p,α)andf*φH(q,p,α)≤fH(q,p,α)φ1.



(20)








	(2) 

	
If 1<q and φ∈L1(Rd) with φ≥0 and φ1=1 then


limϵ→0f*Stϵ(1)φ−fH(q,p,α)=0,f∈H(q,p,α).



(21)







Consequently, H(q,p,α) is an essential Banach L1(Rd)-module.




	(3) 

	
For 1<p,q≤∞ the Schwartz space of rapidly decreasing functions or the space of compactly supported C∞-functions are dense subspaces of H(q,p,α).




	(4) 

	
For 1<p,q≤∞, the Banach space H(q,p,α) is separable.











Proof. 

Let f∈H(q,p,α) and φ∈L1(Rd)\0.




	(1)

	
Let (cn,ρn,fn)n≥1 be a h-decomposition of f. A direct computation shows that


(Stρn(α′)fn)*φ=Stρn(α′)fn*Stρn−1(1)φ,n≥1.








Hence, combining the fact that (Lq′,ℓp′)(Rd) is a L1(Rd) Banach module and Relation (6), we obtain


fn*Stρn−1(1)φq′,p′≤fnq′,p′φ1,n≥1.








This implies that


φ1−1fn*Stρn−1(1)φq′,p′≤fnq′,p′≤1,n≥1.








Moreover,


∑n≥1cn(Stρn(α′)fn)*φα′≤∑n≥1cnStρn(α′)fnα′φ1=∑n≥1cnfnα′φ1≤∑n≥1cnfnq′,p′φ1≤(∑n≥1cn)φ1<∞.








Therefore,


f*φ=∑n≥1cn(Stρn(α′)fn)*φ=∑n≥1cnφ1Stρn(α′)(φ1−1fn*Stρn−1(1)φ)








in the sense of Lloc1(Rd), with


∑n≥1cnφ1=(∑n≥1cn)φ1<∞andφ1−1fn*Stρn−1(1)φq′,p′≤1.








That is f*φ belongs to H(q,p,α) and satisfies


f*φH(q,p,α≤fH(q,p,α)φ1.












	(2)

	
Let us assume that 1<q and φ1=1. For any real number ϵ>0, we set φϵ=Stϵ(1)φ. Let us consider (cn,ρn,fn)n≥1, a h-decomposition of f. b We know that the sequence (fm)m≥1 is defined by:


fm=∑n=1mcnStρn(α′)fn,m≥1








converges to f in H(q,p,α). Let us fix any real number δ>0. There is a positive integer mδ satisfying:


f−fmδ<δ3.











Moreover, for any real number ϵ>0, we have


f*φϵ−fH(q,p,α)≤f*φϵ−fmδ*φϵH(q,p,α)+fmδ*φϵ−fmδH(q,p,α)+fmδ−fH(q,p,α)≤2fmδ−fH(q,p,α)+∑n=1mδcn(Stρn(α′)fn)*φϵ−∑n=1mδcnStρn(α′)fnH(q,p,α).











The last term is not greater than


2δ3+∑n∈N(mδ)cnfn*φϵρn−1−fnq′,p′Stρn(α′)fn*φϵρn−1−fnfn*φϵρn−1−fnq′,p′H(q,p,α),








where,


N(mδ)=n/1≤n≤mδandfn*φϵρn−1−fnq′,p′≠0.











Therefore,


f*φϵ−fH(q,p,α)≤2δ3+∑n∈N(mδ)cnfn*φϵρn−1−fnq′,p′.











From the hypothesis, we have 1≤p′≤q′<∞ and, therefore,


limt→0g*φt−gq′,p′=0,g∈(Lq′,ℓp′)(Rd).











Therefore, we have


limϵ→0fn*φϵρn−1−fnq′,p′=0,n∈N(mδ)








thus,


limϵ→0¯f*φϵ−fH(q,p,α)≤2δ3.











Should this inequality be true for any real number δ>0, we actually have limϵ→0f*φϵ−fH(q,p,α)=0.




	(3)

	
Approximating a given function in H(q,p,α), first by some function with compact support and then convolving it by some compactly supported, infinitely differentiable test function, provides an approximation by a test function, which also belongs to the Schwartz space.




	(4)

	
For 1<q≤p≤∞, we have 1≤p′≤q′<∞. However, it is well known that (Lq′,ℓp′) is separable. Thus, the result follows from the density of (Lq′,ℓp′) in H(q,p,α).









 ☐





For 1<q≤α≤p≤∞, we have defined a pre-dual of the Fofana space (Lq,ℓp)α using a specific atomic decomposition method developed by Feichtinger, and proved that for p=∞ and q<α, the pre-dual of classical Morrey space is embedded in our space. However, our further goal is to find the dual space of (Lq,ℓp)α and their interpolation spaces. This appears to be a more complex task and has been left for future work.




4. Conclusions


In summary, we have used techniques that concern minimal invariant Banach spaces of functions in order to characterize the pre-dual of certain Fofana spaces which had, to date, remained unknown. Starting from a characterization of a Fofana space as a (dense) subspace of a Wiener amalgam space under a certain group of (suitably normalized) dilation operators, one can generate the pre-dual space by starting from the pre-dual of the mentioned Wiener amalgam spaces and then describing the pre-dual via atomic decompositions, using the (adjoint) group of dilation operators.
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