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Abstract: In the present paper, we study twisted and warped products of Riemannian manifolds.
As an application, we consider projective submersions of Riemannian manifolds, since any
Riemannian manifold admitting a projective submersion is necessarily a twisted product of some
two Riemannian manifolds.

Keywords: complete Riemannian manifold; twisted and warped products; projective submersion

MSC: 53C20

1. Introduction

Recall that a Riemannian manifold is a real, smooth n-dimensional manifold M equipped with
an inner product gx on the tangent space Tx M at each point x ∈ M that varies smoothly from point
to point in the sense that if X and Y are differentiable vector fields on M, then x → gx(X, Y) is a
smooth function on M. The family g = (gx) of inner products is called a Riemannian metric. We
can also regard a Riemannian metric g as a symmetric (0,2)-tensor field that is positive-definite at
every point (i.e., gx(Xx, Xx) > 0, whenever Xx 6= 0). Therefore, a Riemannian metric g is known as a
Riemannian metric tensor. In a system of local coordinates on the manifold M given by n real-valued
functions (x1, . . . , xn), the vector fields { ∂

∂x1 , . . . , ∂
∂xn } form a basis of tangent vectors Tx M at each point

x ∈ M. In this coordinate system, we can define the components of g by the following equalities:
gij(x) = gx(

∂
∂xi , ∂

∂xj ). Equivalently, the Riemannian metric tensor g can be written in terms of the dual
basis dx1, . . . , dxn of the cotangent bundle T∗M as g = ∑n

i,j=1 gij(x)dxi ⊗ dxj.
In [1], totally umbilical complementary foliations on a Riemannian manifold (M, g) were studied

and some necessary and sufficient conditions for their existence and nonexistence were given.
In particular, this manifold M is a topological product M1 × M2 of some real smooth manifolds
M1 and M2 equipped with the Riemannian metric tensor g of the following form:

m

∑
a,b=1

µ2(x)gab(x1, . . . xm)dxa ⊗ dxb +
n

∑
α,β=m+1

λ2(x)gαβ(xm+1, . . . xn)dxα ⊗ dxβ.

In this case, the Riemannian manifold (M1×M2, g) is denoted by µ M1×λ M2 and called a double
twisted product of the Riemannian manifolds (M1, g1) and (M2, g2) with the smooth twisted functions
λ and µ and dimensions m and n− m, respectively. In particular, if µ and λ satisfy the conditions
µ = µ(xm+1, . . . , xn) and λ = λ(x1, . . . , xm), respectively, then µ M1×λ M2 and called a double warped
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product of the Riemannian manifolds (M1, g1) and (M2, g2). In [1], they used the Green divergence
theorem to prove the following proposition: If a double twisted product manifold is compact and has
non-negative sectional curvature, then it is isometric to the Riemannian product M1 ×M2 of some
Riemannian manifolds (M1, g1) and (M2, g2).

In another paper [2], the global geometry of Riemannian manifolds with two orthogonal
complementary (not necessarily integrable) totally umbilical distributions have been studied.
In particular, they used a generalized divergence theorem (see [3,4]) to prove the main statement
about two orthogonal complementary totally umbilical distributions on a complete non-compact
and oriented Riemannian manifold. In addition, we used well-known Liouville type theorems
on harmonic, subharmonic, and superharmonic functions on complete, non-compact Riemannian
manifolds (see, for example, [5]) for studying special types of doubly twisted and warped products of
Riemannian manifolds.

In the paper, we apply results of the above-mentioned papers to study twisted and warped
products of Riemannian manifolds. In particular, we consider the geometry of projective submersions
of Riemannian manifolds, since any Riemannian manifold admitting a projective submersion is
necessarily a twisted product of some two Riemannian manifolds. Moreover, we generalize results
in [6,7] using the notion of the mixed scalar curvature of a Riemannian manifold endowed with two
complementary orthogonal distributions (see [8] (p. 117)).

2. The Mixed Scalar Curvature of Complete Twisted and Warped Products Riemannian Manifolds

Let (M, g) be an n-dimensional (n ≥ 2) Riemannian manifold with the Levi-Civita connection ∇
and let TM = V⊕H be a fixed orthogonal decomposition of the tangent bundle TM into vertical V
and horizontal H distributions of dimensions n−m and m, respectively. Next, we define the mixed
scalar curvature of (M, g) as the following scalar function on M:

smix = ∑m
a=1 ∑n

b=m+1 sec(Ea, Eb),

where sec(Ea, Eb) is the sectional curvature of the mixed plane π = span{Ea, Eb} spanned by Ea and
Eb for the local orthonormal frames { E1, . . . , Em} and { Em+1, . . . , En} on TM adapted to V and H,
respectively (see also [8] (p. 117); [9] (p. 23) and [10–13]). It is easy to see that this expression is
independent of the chosen adapted frames. If V or H is a codimension-one distribution spanned by
a unit normal vector field ξ then from (1) we obtain the following equality: smix = Ric(ξ, ξ) with the
Ricci tensor Ric. and a unit normal vector field ξ of the distribution V or H, respectively. Next, assume
that V and H are totally geodesic and umbilical distributions, respectively. In this case, their second
fundamental forms QV and QH satisfy the following equations: QV = 0 and QH = g(H, H)⊗ ξH for
the mean curvature vectors ξH = (1/m)tracegQH of H (see [14] (pp. 148–151); [10]). Now consider an
example to illustrate the above concepts. The twisted product M1 × λ M2 of Riemannian manifolds
(M1, g1) and (M2, g2) is the manifold M = M1 ×M2 equipped with the Riemannian metric

g = π∗1 g1 ⊕ λ2 · π∗2 g2, (1)

where λ : M1 ×M2 → R is a positive smooth function, called a twisted function, and π1 : M1 ×M2 →
M1 and π2 : M1 × M2 → M1 are natural projections (see [15] and ([16] p. 15)).A twisted warped
product M1 × λ M2 carries two canonical orthogonal complementary integrable distributions V and
H given by vectors, which are tangent to the leaves of the product M1 ×M2. In addition, maximal
integral manifolds of V and H are two canonical totally geodesic (vertical) and umbilical (horizontal)
foliations, respectively (see [16] (p. 8) and [1,17]). In this case, we have the following.

Proposition 1. Let an n-dimensional simply connected complete Riemannian manifold (M, g) be a twisted
product M1 × λ M2 of some Riemannian manifolds (M1, g1) and (M2, g2) such that dim M1 > 1 and
dim M2 > 1. Moreover, if (M, g) has non-negative sectional curvature, then it is isometric to the Riemannian
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product (M1 × M2, g1 ⊕ g2). On the other hand, if dim M1 = 1 and the Ricci curvature of (M, g) is
non-negative, then M1 × λ M2 is also isometric to the Riemannian product (M1 ×M2, g1 ⊕ g2).

Proof. Let (M, g) be an n-dimensional complete Riemannian manifold equipped with a pair of
orthogonal integrable distributions of complementary dimension V and H such that the distribution V
is integrable with totally geodesic leaves. Assume that the sectional curvature of (M, g) is non-negative.
Then H is also totally geodesic (see [18]). Now we fix a point x ∈ M and let M1 and M2 be the maximal
integral manifolds of distributions through x, respectively. Then, by the de Rham decomposition theorem
(see [19] (p. 187)), we conclude that if (M, g) is a simply connected Riemannian manifold then it is
isometric to the Riemannian product or, in other words, to the direct product (M1 ×M2, g1 ⊕ g2) of some
Riemannian manifolds (M1, g1) and (M2, g2) for the Riemannian metrics g1 and g2 induced by g on
M1 and M2, respectively.

If, in addition, (M, g) is a simply connected complete Riemannian manifold of non-negative
Ricci curvature and dim V = 1, then (M, g) is also the Riemannian product (M1 ×M2, g1 ⊕ g2)

(see also [18]).

Remark that an arbitrary point of M1× λ M2 admits a neighborhood with local adapted coordinate
system x1, . . . , xm, xm+1, . . . , xn such that its metric ∑n

i,j=1 gij
(

x1, . . . , xn) d xi ⊗ d xj has the form
(see [1])

∑m
a,b=1 gab

(
x1, . . . , xm

)
d xa ⊗ d xb

+ eu(x1,...,xn) ∑n
α,β=m+1 gαβ(xm+1, . . . , xm) d xα ⊗ d xβ. (2)

In addition, the mean curvature vector ξV of V has the local coordinates ξa = −2−1∂ u/∂ xa in
the case where xm+1 = cm+1, . . . , xn = cn for arbitrary constants cm+1, . . . , cn, and the mean curvature
vector ξH of H has the local coordinates ξα = 0 in the case where x1 = c1, . . . , xm = cm for arbitrary
constants c1, . . . , cm (see [18]). Thus, ξV = −π1∗ (grad log λ) and ξH = 0 (see also [20]; ([16] p. 8)
and [17]). Therefore, we can formulate a corollary from [2] (Theorem 1).

Proposition 2. Let an n-dimensional simply connected complete Riemannian manifold (M, g) be a twisted
product M1 × λ M2 of some Riemannian manifolds (M1, g1) and (M2, g2) such that m = dim M1 > 1 and
n−m = dim M2 > 1. If the mixed scalar curvature of M1 ×λ M2 is nonpositive and the twisted function λ

satisfies the condition ‖π1∗(grad log λ)‖ ∈ L1(M, g) for the canonical projections π1 ∗ : TM1 × TM2 →
TM1, then M1 ×λ M2 is isometric to a Riemannian product (M1 ×M2, g1 ⊕ g2) of Riemannian manifolds
(M1, g1) and (M2, g2).

If λ depends only on the first factor, i.e., λ : M2 → R, then M1 ×M2 with metric g = π∗1 g1 ⊕
λ2 · π∗2 g2 is called a warped product and the positive function λ is regarded as a warped function
(see [20,21]). In the case of a warped product M1 × λ M2 the mean curvature vectors of V and H are
defined by the identities ξH = 0 and ξV = −π1∗(grad log λ) = −grad log λ, because λ depends
on M2 (see [16] (p. 48)). In this case, the condition ‖ ξV‖ ∈ L1(M, g) has the form ‖ grad log λ ‖ ∈
L1(M, g). Therefore, we can formulate a corollary from [2] (Theorem 1).

Proposition 3. Let an n-dimensional simply connected complete Riemannian manifold (M, g) be a warped
product M1 × λ M2 of some Riemannian manifolds (M1, g1) and (M2, g2) such that m = dim M1 > 1 and
(n−m) = dim M2 > 1. If the mixed scalar curvature of M1 ×λ M2 is nonpositive and the warped function λ

satisfies ‖ grad log λ‖ ∈ L1(M, g), then M1 × λ M2 is isometric to a Riemannian product (M1 ×M2, g1 ⊕
g2) of Riemannian manifolds (M1, g1) and (M2, g2).
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In the case of a warped product M1 × λ M2, formula (7) from [2] can be rewritten in the form

(n−m)∆ log λ = −smix + (n−m)(n−m− 1)‖grad log λ‖2, (3)

where ∆ is the Laplace-Beltrami operator, and the norm of the vector field grad log λ is defined by g.
The Christoffel symbols Γi

jk of the Levi-Civita connection associated with the metric (1) of M1 ×λ M2

are well known (see the formulas from the proof of Theorem 2). Then (by Riemannian calculations) we
can obtain the following relations:

∆ log λ = ∆1 log λ + (n−m) ‖ grad log λ‖2,

where ∆1 is the Laplace-Beltrami operator defined by g1. In addition, we have the following
obvious equalities:

∆1 log λ = ∆1 λ− ‖grad log λ‖2, (4)

where the norm of the vector field grad log λ is defined by g. As a result, we obtain from (3) to (4) the
differential equation for the mixed scalar curvature smix of a doubly warped product M1 × λ M2:

smix = −(n−m)∆1 λ/λ. (5)

If λ is a subharmonic function on (M1, g1), then from (5) we conclude that smix ≤ 0. Therefore, we can
formulate a corollary from [2] (Theorem 1).

Proposition 4. Let an n-dimensional simply connected complete non-compact Riemannian manifold (M, g)
be a warped product M1 × λ M2 of some Riemannian manifolds (M1, g1) and (M2, g2) such that the warped
function λ is subharmonic and satisfies the condition ‖ grad log λ ‖ ∈ L1(M, g). Then M1× λ M2 is isometric
to a Riemannian product (M1 ×M2, g1 ⊕ g2).

Moreover, smix is nonpositive everywhere on (M1, g1) if and only if λ is a positive subharmonic
function defined on (M1, g1). If, in addition, we assume that (M1, g1) is complete and λ ∈ Lp(M1, g1)

for some p > 1 then λ must be identically constant (see [5] (p. 663)). On the other hand, smix is
non-negative everywhere on (M1, g1) if and only if the warped function λ is a positive superharmonic
function defined on (M1, g1). If we assume, in addition, that (M1, g1) is a complete manifold and
‖grad λ‖ ∈ L1(M1, g1), then λ is a harmonic function (see Section 4). If we assume, in addition, that
λ ∈ Lp(M1, g1) for some p > 1, then λ is constant (see [5] (p. 663)). In both cases M1 × λ M2 is
isometric to the product (M1 ×M2, g1 ⊕ g2). Then we have the following.

Theorem 1. Let an n-dimensional simply connected complete Riemannian manifold (M, g) be a warped
product M1 × λ M2 of some Riemannian manifolds (M1, g1) and (M2, g2) such that (M1, g1) is complete and
λ ∈ Lp(M1, g1) for some p > 1. If the mixed scalar curvature smix of M1 × λ M2 is nonpositive everywhere on
(M1, g1) then M1 × λ M2 is isometric to the Riemannian product (M1 ×M2, g1 ⊕ g2). On the other hand,
if smix is non-negative everywhere on (M1, g1) and ‖ grad λ ‖ ∈ L1(M1, g1), then M1 ×λ M2 is isometric to
the Riemannian product (M1 ×M2, g1 ⊕ g2) as well.

3. Projective Submersions

A submersion of an n-dimensional Riemannian manifold (M, g) onto another n′-dimensional
(n > n′) Riemannian manifold (M′, g′) is a surjective C∞-map f : (M, g) → (M′, g′) such that the
induced map f∗x : Tx M → Tπ(x)M′ has a maximum rank at each point x ∈ M. The inverse image
f−1(y) of a point y ∈ M′ is called a fiber of f . In this case, we can define the almost product structure
TM = H⊕V on (M, g), where H = Ker f∗ and V = H⊥.

Recall that a curve γ in (M, g) is called a pregeodesic provided there is a reparameterization
of γ such that γ is a geodesic. O’Neill uses the term “pregeodesic" to refer to such curves in his
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monograph [22]. Consider this concept in more details. A smooth map γ : t ∈ J → γ(t) ∈ M from
an open interval J ⊂ R into a Riemannian manifold (M, g) is said to be a pregeodesic if it satisfies
∇XX = ϕ (t) X, where X := d γ

d t is tangent to γ and ∇ is the Levi-Civita connection of (M, g). Let us
reparametrize γ so that t becomes an affine parameter (see [23]). In this case, ∇XX = 0 and γ is called
a geodesic. Examining the equation ∇XX = 0, we can infer that either γ is an immersion, i.e., d γ

d t 6= 0
for all t ∈ J, or γ(J) is a point of the manifold M.

If an arbitrary pregeodesic in (M, g) is mapping by f into a pregeodesic in (M′, g′), f is called a
projective mapping (see the theory of projective mappings or, in other word, geodesic mappings in
[24]). Moreover, let f : (M, g) → (M′, g′) be a projective submersion and dim M′ < dim M (see [6,7]).
Under this assumption, we have TM = H⊕V, where the distribution H = Ker f∗ is integrable with
totally geodesic leaves and the distribution V = H⊥ is integrable with totally umbilical leaves (see [6,7]).
Moreover, in [25] they proved the following proposition: “If a complete simply connected Riemannian
manifold (M, g) admits a projective submersion f , then it is isometric to some twisted product of
two manifolds (M1, g1) and (M2, g2) such that the fibers of f and their orthogonal complements
correspond to the canonical fibering of the product M1 ×M2.” We can prove the converse statement
for this proposition in the form of the following local theorem.

Theorem 2. Let M = M1 ×λ M2 be a twisted product of the Riemannian manifolds (M1, g1) and (M2, g2)

with the Riemannian metric g = π∗1 g1 ⊕ λ2 · π∗2 g2, where λ : M1 ×M2 → R is a positive twisted function,
π1 : M1 ×M2 → M1 and π2 : M1 ×M2 → M2 are natural projections. Then the second natural projection
from M = M1 ×λ M2 onto (M2, ḡ2) for ḡ2 = λ2 · π∗2 g2 is a projective submersion.

Proof. Let M = M1 ×λ M2 be a twisted product of the manifolds (M1, g1) and (M2, g2) and
x1, . . . , xm, xm+1, . . . , xn be a local coordinate system of M = M1 ×λ M2 such that x1, . . . , xm and
xm+1, . . . , xn are local coordinate systems of M1 and M2, respectively. If in addition, we denote
by g(1) ab and g(2) αβ the components of the metric tensor g1 and g2, respectively, then with respect
to the local coordinate system x1, . . . , xm, xm+1, . . . , xn of M = M1 × λ M2 its Riemannian metric
g = π∗1 g1 ⊕ λ2 · π∗2 g2 has the local components

(gij) =
( g(1) ab 0

0 λ 2 g(2) αβ

)
for i, j, k, l = 1, . . . , n; a, b, c, d = 1, . . . , m and α, β, γ, ε = m + 1, . . . , n. In this case, the Christoffel
symbols Γk

ij of g are given as follows (see [26]):

Γc
ab = Γc

(1) ab, Γβ
α a = ( ∂a ln λ) δ

β
α , Γa

α β = −λ gab
(1) ( ∂bλ) g(2) αβ,

Γβ
αγ = Γβ

(2) αγ
+ (∂α log λ) δ

β
γ + (∂γ log λ ) δ

β
α − gβε

(2) (∂ε log λ) g(2) αγ,

and the others are zero, where ∂a = ∂
∂ xa and ∂α = ∂

∂ xα . In particular, from these identities we obtain

Γβ
αγ = Γ̄β

(2) αγ
for the metric ḡ2 = λ 2g2 and its Christoffel symbols Γ̄β

(2) αγ
. An arbitrary pregeodesic

line γ : t ∈ J ⊂ R → γ(t) ∈ M can be defined by the equations d xk

d t2 + Γk
ij

d xi

d t
d xj

d t = ϕ(t) d xk

d t . Let us
consider a natural projection π̄2 from M = M1 × λ M2 onto (M2, ḡ2), which is defined the condition
xa = const. In this case, the natural projection π̄2(γ) of a pregeodesic line γ of M1 × λ M2 has the
following equations:

d xα

d s2 + Γ̄α
(2)βγ

d xβ

d s
d xγ

d s
=

(
ϕ(t) + (∂aλ)

d xa

d s

) d xα

d s
.

Thus, we conclude that the natural projection π̄2(γ) of a pregeodesic line γ is a pregeodesic line
of (M2, ḡ2).
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Considering the above, we can formulate a corollary of our Proposition 1.

Corollary 1. Let f : (M, g)→ (M′, g′) be a projective submersion of a simply connected complete Riemannian
manifold (M, g) onto another Riemannian manifold (M′, g′) such that dim M′ < dim M. If the sectional
curvature of (M, g) is non-negative, then (M, g) is a Riemannian product (M1 × M2, g1 ⊕ g2) of some
Riemannian manifolds (M1, g1) and (M2, g2) such that integral manifolds of Ker f∗ and (Ker f∗)⊥ correspond
to the canonical foliations of the product M1 × M2. On the other hand, if the Ricci curvature of (M, g) is
non-negative and dim Ker f∗ = 1, then (M, g) is a Riemannian product of the leaves of distributions Ker f∗
and (Ker f∗)⊥.

Let f : (M, g)→ (M′, g′) be a projective submersion of a complete Riemannian manifold (M, g)
onto another Riemannian manifold (M′, g′) such that n = dim M > dim M′ = m > 1. Then from (3)
we obtain the following divergence formula:

div ξV = −1/(n−m) smix + (n−m)(n−m− 1) ‖ ξV‖2 . (6)

If now we suppose that (M, g) is a complete, non-compact, oriented Riemannian manifold with
nonpositive mixed scalar curvature smix, then from (6) we obtain the inequality div ξV ≤ 0. Moreover,
if ‖ ξV‖ ∈ L1(M, g) then by the results from [3,4] we conclude that div ξV = 0. In this case, if the
distribution V has dimension more than one then from (6) we obtain the following equality: ‖ ξV‖2 = 0.
It means that V is integrable with maximal totally geodesic integral manifolds (i.e., a totally geodesic
foliation). Then (M, g) is locally isometric to the Riemannian product (M1 ×M2, g1 ⊕ g2) of some
Riemannian manifolds (M1, g1) and (M2, g2) for the Riemannian metric g1 and g2 induced by g on
M1 and M2, respectively. In addition, recall that every simply connected manifold M is orientable.
Summarizing, we formulate the following statement.

Theorem 3. Let f : (M, g)→ (M′, g′) be a projective submersion of a simply connected complete Riemannian
manifold (M, g) onto another Riemannian manifold (M′, g′) such that dim M > dim M′ > 1, and let
the mean curvature vector field ξV of (Ker f∗)⊥ satisfies the condition ‖ ξV‖ ∈ L1(M, g). If the mixed
scalar curvature smix of (M, g) is nonpositive then (M, g) is locally isometric to a Riemannian product
(M1 ×M2, g1 ⊕ g2) of some Riemannian manifolds (M1, g1) and (M2, g2) such that integral manifolds of
Ker f∗ and (Ker f∗)⊥ correspond to the canonical foliations of the product M1 ×M2.

Remark 1. If (M, g) is a Riemannian manifold of nonpositive sectional curvature then its mixed scalar
curvature smix is also nonpositive. Therefore, we can formulate an analogue of Corollary 1.

For the case m = n− 1, from (2) we obtain the divergence formula

div ξV = −1(n− 1) smix + (n− 2) ‖ ξV‖2 (7)

(see also [1,27]), where smix = Ric (ξ, ξ) for a unit normal vector field ξ of H. From (7) we conclude
that the following corollary from Theorem 3 is true.

Corollary 2. Let f : (M, g) → (M′, g′) be a projective submersion of an n-dimensional simply connected
complete Riemannian manifold (M, g) onto a Riemannian manifold (M′, g′) such that dim M′ = n− 1, and let
the mean curvature vector field ξV of (Ker f∗)⊥ satisfies the condition ‖ ξV‖ ∈ L1(M, g). If the Ricci curvature
of (M, g) is nonpositive then (M, g) is locally isometric to a Riemannian product (M1 ×M2, g1 ⊕ g2) of some
Riemannian manifolds (M1, g1) and (M2, g2) such that integral manifolds of Ker f∗ and (Ker f∗)⊥ correspond
to the canonical foliations of the product M1 ×M2.
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4. Appendix

Here, we prove the lemma analogous to the Yau’s statement from [5] (p. 660), where he has
argued that on a complete non-compact Riemannian manifold each subharmonic function, whose
gradient has integrable norm, must be harmonic.

Lemma 1. If (M, g) is a complete Riemannian manifold without boundary, then any superharmonic function
f ∈ C2(M) with ‖grad f ‖ ∈ L1(M, g) is harmonic.

Proof. If we assume that ϕ = − f for any superharmonic function f ∈ C2M then the conditions
∆ f ≤ 0 and ‖grad f ‖ ∈ L1(M, g), which must be satisfied for the superharmonic function f , can
be written in the form ∆ ϕ ≥ 0 and ‖ grad ϕ ‖ ∈ L1(M, g). In this case, using the Yau’s result for
subharmonic functions, we conclude that ∆ ϕ = 0 and hence f = −ϕ is harmonic.

5. Concluding Remarks

In this article, we investigated the geometry in the large of warped and twisted products manifolds
and presented undoubtedly new results. Our studies are important not only for geometry, but also for
theoretical physics, because many exact solutions (e.g., Schwarzschild solution and Robertson-Walker
model) of the Einstein field equations and modified field equations are warped products, see e.g., [28].
For instance, the Schwarzschild solution and Robertson-Walker model are warped products. While
the Robertson-Walker model describes a simply connected homogeneous isotropic expanding or
contracting universe, the Schwarzschild solution is the best relativistic model of the outer space around
a massive star. The Schwarzschild model lays the groundwork for the description of the final stages
of gravitational collapse and the objects known today as black holes. Moreover, twisted products
being natural extensions of warped products, also find applications in theoretical physics, see e.g., [29].
In conclusion, remark that the notion of warped product manifolds plays very important roles not
only in geometry but also in mathematical physics.
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