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Abstract: In this paper, by employing matched spaces for time scales, we introduce a δ-almost periodic
function and obtain some related properties. Also the hull equation for homogeneous dynamic equation is
introduced and results of the existence are presented. In the sense of admitting exponential dichotomy for
the homogeneous equation, the expression of a δ-almost periodic solution for a type of nonhomogeneous
dynamic equation is obtained and the existence of δ-almost periodic solutions for new delay dynamic
equations is considered. The results in this paper are valid for delay q-difference equations and delay
dynamic equations whose delays may be completely separated from the time scale T.
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1. Introduction

Almost periodic phenomena are common in real world phenomena and the concept of almost periodic
functions was first introduced by H. Bohr and later studied by H. Weyl and V. Stepanov, etc. (see [1–4]).
Time scale calculus was first presented by S. Hilger [5] and there were many results concerning almost
periodic dynamic equations on time scales (see [6–19]). However, in these papers, the results are only
limited to periodic time scales with translation invariance. In fact, qZ := {qn : q > 1, n ∈ Z} is not periodic
under translations. This time scale leads to q-difference dynamic equations and plays an important role in
different fields of engineering and biological science (see [20,21]). However, it was difficult to combine
almost periodic problems of q-difference dynamic equations on time scales in the past because qZ has no
translation invariance since the graininess function µ is unbounded and there was no concept of relatively
dense set defined on it. To consider more general time scales without translation periodicity, the authors
in [22,23] studied a type of dynamic equation under a new concept of periodic time scale whose period set
is contained in T. However, the period set of a periodic time scale is not always contained in this time
scale, and for this reason, in Sections 3 and 4 of the paper cited in Ref. [24], C. Wang and R.P. Agarwal for
the first time proposed a type of delay dynamic equation whose delay function range is from the period set
of the time scale and completely separated from the time scale T. They assumed τ(t) is a delay function,
the set Π1 := {τ(t), t ∈ T} and Π1 ∩T may be an empty set, and considered whether t± τ(t) belongs to
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T. Let T be a time scale with translation invariance and Π0 :=
{

τ ∈ R : t± τ ∈ T, ∀t ∈ T
}
6∈
{
{0}, ∅

}
,

then t± τ(t) ∈ T if Π1 ⊆ Π0. Note T∩Π0 may be an empty set (see Example 1.2 from [15]). We observe
that the period set of time scales are not only closely related to introducing special functions but also
closely related to delays in delay dynamic equations.

Motivated by the above, under the algebraic structure of matched spaces of time scales, the closedness
of non-translational shifts of time scales can be guaranteed. Therefore, by adopting the Definition of
matched spaces, the time scale qZ will possess a perfect shift invariance. Moreover, the period set of
a time scale under matched spaces may be completely separated from itself. We organize our paper in
five sections. In Section 2, we introduce some preliminaries of matched spaces for time scales and the
non-translational shift closedness of time scales is investigated. Section 3 is mainly devoted to introducing
δ-almost periodic functions and establishing some related properties. In Section 4, under matched spaces,
through the basic properties of δ-almost periodic functions, some fundamental results of homogeneous
and nonhomogeneous dynamic equations are established in which a sufficient existence condition of
solutions for a new delay dynamic equation is derived. Finally, we present a conclusion to end the paper.

2. Matched Spaces for Time Scales

In this section, we introduce some preliminaries of matched spaces for time scales.

Definition 1 ([25]). Assume f : T → R is a function and let t ∈ Tκ . Then we define f ∆(t) to be the number
(provided it exists) with the property that given any ε > 0, there exists a neighborhood U of t (i.e., U = (t− δ, t +
δ) ∩T for some δ > 0) such that

| f (σ(t))− f (s)− f ∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ U, and we call f ∆(t) the delta (or Hilger) derivative of f at t.

For more details of dynamic equations on time scales, one may consult [25,26].
Let Π∗ be a subset of R together with a binary operation δ̃ and a pair (Π∗, δ̃) be an Abelian group

and δ̃ be increasing with respect to its second argument, i.e., Π∗ and δ̃ satisfy the following conditions:

(1) Π∗ is closed with respect to an operation δ̃, i.e., for any τ1, τ2 ∈ Π∗, we have δ̃(τ1, τ2) ∈ Π∗.
(2) For any τ ∈ Π∗, there exists an identity element eΠ∗ ∈ Π∗ such that δ̃(eΠ∗ , τ) = τ.
(3) For all τ1, τ2, τ3 ∈ Π∗, δ̃

(
τ1, δ̃(τ2, τ3)

)
= δ̃

(
δ̃(τ1, τ2), τ3

)
and δ̃(τ1, τ2) = δ̃(τ2, τ1).

(4) For each τ ∈ Π∗, there exists an element τ−1 ∈ Π∗ such that δ̃(τ, τ−1) = δ̃(τ−1, τ) = eΠ∗ , where eΠ∗

is the identity element in Π∗.
(5) If τ1 > τ2, then δ̃(·, τ1) > δ̃(·, τ2).

Definition 2 ([27]). A subset S of R is called relatively dense with respect to the pair (Π∗, δ̃) if there exists a number
L ∈ Π∗ and L > eΠ∗ such that [a, δ̃(a, L)]Π∗ ∩ S 6= ∅ for all a ∈ Π∗. The number L is called the inclusion length
with respect to the group (Π∗, δ̃).

To illustrate the Definition of matched spaces for time scales, a notion of an adjoint mapping between
T and Π is needed.
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Definition 3 ([27]). Let T and Π be time scales, where T =
⋃

i∈I1
Ai, Π =

⋃
i∈I2

Bi. If Π∗ is the largest subset of
the time scale Π, i.e., Π∗ = Π, where A denote the closure of the set A, and (Π∗, δ̃) is an Abelian group, I1, I2 are
countable index sets, then we say Π is an adjoint set of T if there exists a bijective map:

F : T → Π

A ∈
{

Ai, i ∈ I1
}
→ B ∈

{
Bi, i ∈ I2

}
,

i.e., F(A) = B. Now F is called the adjoint mapping between T and Π.

Definition 4 ([27]). Let the pair (Π∗, δ̃) be an Abelian group and Π∗, T∗ be the largest subsets of the time scales
Π and T, respectively. Furthermore, let Π be a adjoint set of T and F the adjoint mapping between T and Π.
The operator δ : Π∗ ×T∗ → T∗ satisfies the following properties:

(P1) (Monotonicity) The function δ is strictly increasing with respect to its second argument, i.e., if

(T0, t), (T0, u) ∈ Dδ :=
{
(s, t) ∈ Π∗ ×T∗ : δ(s, t) ∈ T∗

}
,

then t < u implies δ(T0, t) < δ(T0, u).
(P2) (Existence of inverse elements) The operator δ has the inverse operator δ−1 : Π∗ ×T∗ → T∗ and δ−1(τ, t) =

δ(τ−1, t), where τ−1 ∈ Π∗ is the inverse element of τ.
(P3) (Existence of identity element) eΠ∗ ∈ Π∗ and δ(eΠ∗ , t) = t for any t ∈ T∗, where eΠ∗ is the identity element

in Π∗.
(P4) (Bridge condition) For any τ1, τ2 ∈ Π∗ and t ∈ T∗, δ

(
δ̃(τ1, τ2), t

)
= δ

(
τ1, δ(τ2, t)

)
= δ

(
τ2, δ(τ1, t)

)
.

Then the operator δ associated with eΠ∗ ∈ T∗ is said to be shift operator on the set T∗. The variable s ∈ Π∗ in
δ is called the shift size. The value δ(s, t) in T∗ indicates s units shift of the term t ∈ T∗. The sets Dδ is the domain
of the shift operator δ.

Next we present the concept of matched spaces for time scales.

Definition 5 ([27]). Let the pair (Π∗, δ̃) be an Abelian group and Π∗, T∗ be the largest subsets of the time scales
Π and T, respectively. Furthermore, let Π be a adjoint set of T and F the adjoint mapping between T and Π. If there
exists the shift operator δ satisfying Definition 4, then the group (T, Π, F, δ) is said to be a matched space for T.

Remark 1. Definition 5 demonstrates that a matched space of a time scale is the group (T, Π, F, δ).

Definition 6 ([27]). If T = Π, then we say the group (T, Π, F, δ) is a standard matched space.

Remark 2. Please note that the adjoint mapping F is a unit operator I for a standard matched space, denote it by
(T, Π, F, δ) := (T, δ). It is worth noticing that one can use the algebraic structure of a standard matched space
(T, δ) to obtain all the results from the literature [22].

Example 1. Let T =
⋃

n∈Z[22n, 22n+1] and Π = {τ : τ = 22n, n ∈ Z}. δ(τ, t) = τt, τ = 22n0 , ∀n0 ∈ Z. Thus,
∀τ1, τ2 ∈ Π∗ = Π\{0}, δ̃(τ1, τ2) = τ1 · τ2. Obviously, δ̃(τ1, τ2) ∈ Π∗. There exists a bijective map

F : T → Π

A ∈ ∪n∈Z[22n, 22n+1] → B ∈ {τ : τ = 22n, n ∈ Z}
A → the left point of the interval A

A = 0 → B = 0,
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i.e., F(A) = B. Therefore, (T, Π, F, δ) is a matched space for T.

Example 2. Let T = qZ and Π = qZ. δ(τ, t) = τt, τ = qn0 , ∀n0 ∈ Z. Thus, ∀τ1, τ2 ∈ Π∗ = Π\{0},
δ̃(τ1, τ2) = τ1 · τ2. Obviously, δ̃(τ1, τ2) ∈ Π∗. There exists a bijective map

F : T → Π

A ∈
{

qn, n ∈ Z
}
→ B ∈

{
qn, n ∈ Z

}
A → A = B,

i.e., F(A) = A. Therefore, (T, Π, F, δ) is a matched space for T.

Remark 3. For a time scale T with translations invariance, we can easily observe that the translation number set
Π =

{
τ ∈ R : t± τ ∈ T, ∀t ∈ T

}
6∈
{

∅, {0}
}

is a matched space for T.

Using the algebraic structure of matched spaces, the following new concept of time scales with shift
closedness can be introduced.

Definition 7 ([27]). A time scale T is called a periodic time scale under a matched space (T, Π, F, δ) if

Π̃ :=
{

τ ∈ Π∗ : (τ±1, t) ∈ Dδ, ∀t ∈ T∗
}
6∈
{
{eΠ∗}, ∅

}
. (1)

Remark 4. From Definition 7, one should note that Π̃ ⊆ Π∗ ⊆ Π and for every τ ∈ Π̃, there exists τ−1 ∈ Π̃,
i.e., there exists an inverse element for every element in Π̃.

Remark 5. For any t ∈ T∗, if (τ2, t) ∈ Dδ, (τ1, t) ∈ Dδ, then by Definition 4, there exists a function δ̃ : Π∗ ×
Π∗ → Π∗ such that δ̃(τ1, τ2) ∈ Π∗. Obviously, if T is a periodic time scale under Definition 1.1 from [28],
i.e., Π̃ = Π∗ = Π =

{
τ ∈ R : t± τ ∈ D,∀t ∈ T

}
6∈
{
{0}, ∅

}
, we have τ1, τ2 ∈ Π̃, then δ̃(τ1, τ2) = τ1 + τ2 ∈ Π̃.

Remark 6. From (1), we can observe (τ±1, t) ∈ Dδ implies that δ(τ−1, t) = δ−1(τ, t) exists.

Example 3. Under matched spaces for time scales, the following time scales are periodic:

(1) T = qZ, δ(τ, t) = τt, τ = q±1.
(2) T =

⋃
n∈Z[22n, 22n+1], δ(τ, t) = τt, τ = 4±1.

(3) δ(τ, t) = t + τ, τ = ±(a + b).

For any τ ∈ Π∗, we define a function A : Π∗ → Π∗,

A(τ) =

{
δ̃(τ, eΠ∗), τ > eΠ∗ ,

δ̃(τ−1, eΠ∗), τ < eΠ∗ .

Under the matched space (T, F, Π, δ), for convenience, the sub-timescale that the variable t belongs
to is denoted by Ait . Let I1 be an index set satisfying T =

⋃
i∈I1

Ai, obviously, it ∈ I1. If δ∆
τ (t) exists and is

bounded, then its upper bound is denoted by δ∆
B .

Definition 8 ([27]). Suppose the adjoint mapping F : T→ Π is continuous and satisfies:

(1) for any τ ∈ Π∗, t0 ∈ T, F
(
δτ(Ait0

)
)
= δ̃

(
τ, F(Ait0

)
)

holds;
(2) if t1, t2 ∈ T and t1 ≤ t2, then F(Ait1

) ≤ F(Ait2
).



Mathematics 2019, 7, 525 5 of 27

We say (T, F, Π, δ) a regular matched space for the time scale T.

3. δ-Almost Periodic Functions under Matched Spaces

In this section, we will study δ-almost periodic functions under the matched space (T, Π, F, δ).
For convenience, En denotes Rn or Cn, an open set in En is denoted by D or D = En, and an arbitrary

compact subset of D is denoted by S.

Definition 9 ([12]). Let T be a periodic time scale under the matched space (T, Π, F, δ). A function f ∈ C(T×
D,X) is called uniformly δ-almost periodic function with shift operators if the ε-shift set of f

E{ε, f , S} =
{

τ ∈ Π̃ :
∥∥ f
(
δτ±1(t), x

)
− f (t, x)

∥∥ < ε, for all t ∈ T∗ and x ∈ S}

is a relatively dense set with respect to the pair (Π∗, δ̃) for all ε > 0 and for each compact subset S of D; that is,
for any given ε > 0 and each compact subset S of D, there exists a constant l(ε, S) > 0 such that each interval of
length l(ε, S) contains a τ(ε, S) ∈ E{ε, f , S} such that∥∥ f

(
δτ(t), x

)
− f (t, x)

∥∥ < ε, for all t ∈ T∗ and x ∈ S.

Now τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S}.

Definition 10 ([12]). Let T be a periodic time scale under the matched space (T, Π, F, δ) and n0 ∈ N, the shift
δτ(t) is ∆-differentiable with rd-continuous bounded derivatives δ∆

τ (t) := δ∆(τ, t) for all t ∈ T∗. A function
f ∈ C(T × D,X) is called an n0-order ∆-almost periodic function (∆δ

n0
-almost periodic function) with shift

operators in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{

τ ∈ Π̃ :
∥∥ f
(
δτ(t), x

)(
δ∆

τ (t)
)n0 − f (t, x)

∥∥ < ε, for all t ∈ T∗ and x ∈ S}

is a relatively dense set with respect to the pair (Π∗, δ̃) for all ε > 0 and for each compact subset S of D; that is,
for any given ε > 0 and each compact subset S of D, there exists a constant l(ε, S) > 0 such that each interval of
length l(ε, S) contains a τ(ε, S) ∈ E{ε, f , S} such that∥∥ f

(
δτ(t), x

)(
δ∆

τ (t)
)n0 − f (t, x)

∥∥ < ε, for all t ∈ T∗ and x ∈ S. (2)

Now τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S}.

An example of an ∆δ
1-almost periodic function is provided below.

Example 4. Let a ∈ R\{0}, f1(t) = a/t and T = (
√

5)Z = {(
√

5)n, n ∈ Z}, then f1(t) is ∆δ
1-periodic under

the matched space (T, Π, F, δ) and the period τ =
√

5. In fact,

f1
(
δ(
√

5)±1(t)
)
δ∆
(
√

5)±1(t) =
a

(
√

5)±1t
(
√

5)±1 =
a
t
= f1(t).
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Now, let f2(t) =
b

(−1)log√5 tt
. Similarly, take τ = (

√
5)2, we can obtain

f2
(
δ(
√

5)±2(t)
)
(δ(
√

5)±2)
∆(t) =

b

(−1)log√5(
√

5)±2t · (
√

5)±2t
· (
√

5)±2 =
b

(−1)±2+log√5 t · t

=
b

(−1)log√5 tt
= f2(t).

Hence, we can obtain F̃(t) = f1(t) + f2(t) which is an ∆δ
1-almost periodic function under the matched space

(T, Π, F, δ). Please note that the periods of f1 and f2 are completely different.

In what follows, we introduce some notations. The set of all δ-almost periodic functions in shifts on T
is denoted by APδ(T). Let α = {αn} ⊂ Π̃ and β = {βn} ⊂ Π̃ be two sequences. Then β ⊂ α means that β

is a subsequence of α; δ̃(α, β) = {δ̃(αn, βn)}; α−1 = {α−1
n }, where δ̃(α, α−1) = eΠ∗ ; α ⊂ α

′
and β ⊂ β

′
are

common subsequences, implies that there is a function n(k) such that αn = α
′
n(k) and βn = β

′
n(k).

When the following limit exists, we introduce the moving-operator Tδ, Tδ
α f (t, x) = g(t, x) by

g(t, x) = lim
n→+∞

f
(
δαn(t), x

)
.

The convergent modes such as pointwise, uniform, etc., will be stressed at each use of this symbol.
Next, some fundamental properties of δ-almost periodic functions will be demonstrated.

Theorem 1. Assume that f ∈ C(T× D,En) is uniformly δ-almost periodic under the matched space (T, F, Π, δ),
and δτ(t) is continuous in t. Then it is uniformly continuous and bounded on T∗ × S.

Proof. For a given ε ≤ 1 and some compact set S ⊂ D, there exists an inclusion length l(ε, S), for any
interval with length l, there exists τ ∈ E{ε, f , S} such that∣∣ f (δτ(t), x

)
− f (t, x)

∣∣ < ε ≤ 1, for all (t, x) ∈ T∗ × S.

Since f ∈ C(T× D,En), for any (t, x) ∈
([

t0, δ(l, t0)
]
T
)
× S, t0 ∈ T∗, there exists an M > 0 such

that | f (t, x)| < M. For any given t ∈ T∗, take τ ∈ E(ε, f , S) ∩
[
F(Ait), δ̃

(
l, F(Ait)

)]
Π̃, then δτ(t) ∈[

δ
(

F(Ait), t
)
, δ
(
δ̃(l, F(Ait)), t

)]
T, i.e., δτ(t) ∈

[
δ
(

F(Ait), t
)
, δ
(
l, δ(F(Ait), t

)]
T. Hence, for x ∈ S, we have∣∣ f (δτ(t), x

)∣∣ < M and
∣∣ f (δτ(t), x

)
− f (t, x)

∣∣ < 1.

Thus for all (t, x) ∈ T∗ × S, we have | f (t, x)| < M + 1.

Moreover, for any ε > 0, let l1 = l1

(
ε

3
, S
)

be an inclusion length of E
(

ε

3
, f , S

)
. There is a proper

point t0 ∈ T∗ such that f (t, x) is uniformly continuous on
([

t0, δ(l1, t0)
]
T
)
× S. Hence, there exists

a positive constant δ∗ = δ∗
(

ε

3
, S
)

, for any t1, t2 ∈
[
t0, δ(l1, t0)

]
T and |t1 − t2| < δ∗,

∣∣ f (t1, x)− f (t2, x)
∣∣ < ε

3
for all x ∈ S.
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Next, one can select an arbitrary υ, t ∈ T∗ with |t− υ| < δ∗, and we choose

τ ∈ E
(

ε

3
, f , S

)
∩
[
F(Ait), δ̃

(
l1, F(Ait)

)]
Π̃,

then δτ(t), δτ(υ) ∈
[
δ
(

F(Ait , t
)
, δ
(
l1, δ(F(Ait), t)

)]
T. Since δτ(t) is continuous in t, then there exists δ∗∗ > 0

such that |t− v| < δ∗∗ implies
|δτ(t)− δτ(υ)| < δ∗,

Now, we take δ∗∗ = min
{

δ∗, δ∗∗
}

, and then |t− v| < δ∗∗ implies

∣∣ f (δτ(t), x
)
− f

(
δτ(υ), x

)∣∣ < ε

3
for all x ∈ S.

Therefore, for (t, x) ∈ T∗ × S, we have

| f (t, x)− f (υ, x)| ≤
∣∣ f (t, x)− f

(
δτ(t), x

)∣∣+ ∣∣ f (δτ(t), x
)
− f

(
δτ(υ), x

)∣∣+ ∣∣ f (δτ(υ), x
)
− f (υ, x)

∣∣ < ε.

The proof is complete.

The following theorem is about shift-convergence of δ-almost periodic functions.

Theorem 2. Assume that f ∈ C(T× D,En) is uniformly δ-almost periodic under the matched space (T, F, Π, δ).
Then for an arbitrary sequence α

′ ⊂ Π̃, there is a subsequence β ⊂ α
′

and g ∈ C(T × D,En) such that
Tδ

β f (t, x) = g(t, x) holds uniformly on T∗ × S. Furthermore, g(t, x) is uniformly δ-almost periodic under
the matched space (T, F, Π, δ).

Proof. For any given ε > 0 and S ⊂ D, there exists a positive constant l = l
(

ε

4
, S
)

as an inclusion length

of E
{

ε

4
, f , S

}
. Since there exists τ

′
n ∈ E

{
ε

4
, f , S

}
in any interval with length of l, then for any subsequence

α
′
= {α′n} ⊂ Π̃, one can select a suitable interval with length of l such that eΠ∗ ≤ δ̃

(
α
′
n, (τ

′
n)
−1) ≤ l and

γ
′
n = δ̃

(
α
′
n, (τ

′
n)
−1) ∈ Π̃. Hence, there exists τ

′
n ∈ E

{
ε

4
, f , S

}
and γ

′
n ∈ Π̃ with eΠ∗ ≤ γ

′
n ≤ l, n = 1, 2, . . .

such that α
′
n = δ̃(τ

′
n, γ

′
n). Moreover, because {γ′n} is bounded, there exists a subsequence γ = {γn} ⊂

γ
′
= {γ′n} such that γn → s as n→ ∞ and eΠ∗ ≤ s ≤ l.

According to Theorem 1, one has f (t, x) is uniformly continuous on T∗ × S. Hence, there exists
δ∗(ε, S) > 0, and when |t1 − t2| < δ∗ we obtain∣∣ f (δτ(t1), x

)
− f

(
δτ(t2), x

)∣∣ < ε

2
, ∀x ∈ S.

Since γ is convergent, there exists N = N(δ), when p, m ≥ N one has |γp − γm| < δ∗. Now, we can
choose α ⊂ α

′
, τ ⊂ τ

′
= {τ′n} such that α, τ common with γ, then for any integers p, m ≥ N, we can obtain∣∣ f (δ

δ̃(τp ,τ−1
m )(t), x

)
− f (t, x)

∣∣ ≤ ∣∣ f (δ
δ̃(τp ,τ−1

m )(t), x
)
− f

(
δτp(t), x

)∣∣+ ∣∣ f (δτp(t), x
)
− f (t, x)

∣∣
<

ε

4
+

ε

4
=

ε

2
.
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For δ̃
(
α
′
n, (γ

′
n)
−1) = τ

′
n, we obtain

δ̃
(
δ̃(αp, α−1

m ), δ̃−1(γp, γ−1
m )
)
= δ̃

(
δ̃(αp, γ−1

p ), δ̃−1(αm, γ−1
m )
)
= δ̃(τp, τ−1

m ) ∈ E
{

ε

2
, f , S

}
.

Hence, we get∣∣ f (δαp(t), x
)
− f

(
δαm(t), x

)∣∣ ≤ sup
(t,x)∈T∗×S

∣∣ f (δαp(t), x
)
− f

(
δαm(t), x

)∣∣
≤ sup

(t,x)∈T∗×S

∣∣ f (δ
δ̃(αp ,α−1

m )(t), x
)
− f (t, x)

∣∣
≤ sup

(t,x)∈T∗×S

∣∣ f (δ
δ̃(αp ,α−1

m )(t), x
)
− f

(
δ

δ̃(γp ,γ−1
m )(t), x

)∣∣
+ sup

(t,x)∈T∗×S

∣∣ f (δ
δ̃(γp ,γ−1

m )(t), x
)
− f (t, x)

∣∣ < ε

2
+

ε

2
= ε.

Therefore, one can select sequences α(k) = {α(k)n }, k = 1, 2, . . . , and α(k+1) ⊂ α(k) ⊂ α such that

∣∣ f (δ
α
(k)
p
(t), x)− f

(
δ

α
(k)
m
(t), x

)∣∣ < 1
k

, k = 1, 2, . . .

for any integers m, p, and all (t, x) ∈ T∗ × S. Moreover, for each sequence α(k), k = 1, 2, . . ., we can choose
a sequence β = {βn}, βn = α

(n)
n , and then for any integers p, m with p < m, one has

{
f
(
δβn(t), x

)}
⊂{

f
(
δαn(t), x

)}
and ∣∣ f (δβp(t), x

)
− f

(
δβm(t), x

)∣∣ < 1
p

, ∀(t, x) ∈ T∗ × S.

Therefore, the sequence
{

f
(
δβn(t), x

)}
is convergent uniformly on T∗ × S, i.e., Tδ

β f (t, x) = g(t, x)
holds uniformly on T∗ × S, where β = {βn} ⊂ α.

In the following, we will show that g(t, x) is continuous on T∗ ×D. Assume it is not true, so there will
be (t0, x0) ∈ T∗ × D such that g(t, x) is discontinuous at (t0, x0). Then there exist ε0 > 0 and sequences
{δ∗m}, {tm}, {xm}, where δ∗m > 0, δ∗m → 0 as m→ +∞, |t0 − tm|+ |x0 − xm| < δ∗m and

|g(t0, x0)− g(tm, xm)| ≥ ε0. (3)

Let X = {xm}
⋃{x0}. It is easy to observe that X is a compact subset of D. Hence, for all m ∈ Z+, there is

a positive integer N = N(ε0, X), and when n > N we have∣∣ f (δβn(tm), xm
)
− g(tm, xm)

∣∣ < ε0

3
(4)

and ∣∣ f (δβn(t0), x0
)
− g(t0, x0)

∣∣ < ε0

3
. (5)

Furthermore, from the uniform continuity of f (t, x) on T∗ × D, there exists a sufficiently large m
such that ∣∣ f (δβn(t0), x0

)
− f

(
δβn(tm), xm

)∣∣ < ε0

3
. (6)

It follows from (4)–(6) that
|g(t0, x0)− g(tm, xm)| < ε0,
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which contradicts (3). Therefore, g(t, x) is continuous on T∗ × D.
Now, we will show E{ε, g, S} is relatively dense. In fact, for any compact set S ⊂ D and given ε > 0,

one can select τ ∈ E{ε, f , S} such that∣∣ f (δβn(δτ(t)), x
)
− f

(
δβn(t), x

)∣∣ < ε, ∀(t, x) ∈ T∗ × S.

Letting n→ +∞, we can obtain∣∣g(δτ(t), x
)
− g(t, x)

∣∣ ≤ ε, ∀(t, x) ∈ T∗ × S,

which indicates that E{ε, g, S} is relatively dense. Therefore, g(t, x) is uniformly δ-almost periodic under
the matched space (T, F, Π, δ). This completes the proof.

A sequentially compact criterion of δ-almost periodic functions is given below.

Theorem 3. Assume f ∈ C(T × D,En) and for arbitrary sequence α
′ ⊂ Π̃, there is α ⊂ α

′
such that

Tδ
α f (t, x) exists uniformly on T∗ × S. Then f (t, x) is an uniformly δ-almost periodic function under the matched

space (T, F, Π, δ).

Proof. We will give the proof by contradiction. Assume it is not true. Then there exist ε0 > 0 and S ⊂ D
such that for any sufficiently large l > 0, there is an interval with the length of l in which there is no ε0-shift
numbers of f (t, x), that is, there is no intersection between the whole interval and E{ε0, f , S}.

First, we select a number α
′
1 ∈ Π̃ and an interval (a1, b1) with b1 − a1 > 2|α′1| and a1, b1 ∈ Π̃ so that

there is no ε0-shift numbers of f (t, x) in this interval. Then, choosing α
′
2 ∈

(
δ̃(α

′
1, a1), δ̃(α

′
1, b1)

)
, it is easy

to observe that δ̃
(
α
′
2, (α

′
1)
−1) ∈ (a1, b1), and we obtain δ̃

(
α
′
2, (α

′
1)
−1) 6∈ E{ε0, f , S}. Next, we can choose an

interval (a2, b2) with b2− a2 > 2(|α′1|+ |α
′
2|) and a2, b2 ∈ Π̃ such that there is no ε0-shift numbers of f (t, x)

in this interval. Then, selecting α
′
3 ∈

(
δ̃(α

′
2, a2), δ̃(α

′
2, b2)

)
∩
(
δ̃(α

′
1, a2), δ̃(α

′
1, b2)

)
, we can easily observe that

δ̃
(
α
′
3, (α

′
2)
−1), δ̃

(
α
′
3, (α

′
1)
−1) 6∈ E{ε0, f , S}. Now, we can repeat this process to select α

′
4, α

′
5, . . . , such that

δ̃
(
α
′
i, (α

′
j)
−1) 6∈ E{ε0, f , S}, i > j. Hence, for any i 6= j, i, j = 1, 2, . . . , without loss of generality, letting

i > j, for x ∈ S we can obtain

sup
(t,x)∈T∗×S

∣∣ f (δ
α
′
i
(t), x

)
− f

(
δ

α
′
j
(t), x

)∣∣ = sup
(t,x)∈T∗×S

∣∣ f (δ
δ̃(α
′
i ,(α′j )

−1)
(t), x

)
− f (t, x)

∣∣ ≥ ε0.

Hence, there does not exist a subsequence with uniform convergence in
{

f
(
δ

α
′
n
(t), x

)}
for (t, x) ∈

T∗ × S, which is a contradiction. Therefore, f (t, x) is uniformly δ-almost periodic under the matched space
(T, F, Π, δ). This completes the proof.

From Theorems 2 and 3, the following equivalent concept of uniformly δ-almost periodic functions
is immediate.

Definition 11. Assume f ∈ C(T× D,En) and for arbitrary sequence α
′ ⊂ Π̃, there is a subsequence α ⊂ α

′
such

that Tδ
α f (t, x) exists uniformly on T∗ × S. Then f (t, x) is said to be an uniformly δ-almost periodic function under

the matched space (T, F, Π, δ).

Theorem 4. Assume that f ∈ C(T×D,En) is an uniformly δ-almost periodic function and ϕ : T→ S is δ-almost
periodic. Then f

(
·, ϕ(·)

)
: T→ En is a δ-almost periodic function.
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Proof. For any given sequence α
′ ⊂ Π̃, there exists α ⊂ α

′
, ψ(t), g(t, x) such that Tδ

α ϕ(t) = ψ(t) exists
uniformly on T∗ and Tδ

α f (t, x) = g(t, x) exists uniformly on T∗ × S, where ψ(t) is δ-almost periodic and
g(t, x) is uniformly δ-almost periodic. Therefore, g(t, x) is uniformly continuous on T∗ × S, so for any

given ε > 0, there exists δ∗
(

ε

2

)
> 0 such that for any x1, x2 ∈ S and all t ∈ T∗, when |x1 − x2| < δ∗

(
ε

2

)
,

we have
|g(t, x1)− g(t, x2)| <

ε

2
.

For a sufficiently large N0(ε) > 0 so that n ≥ N0(ε) we have∣∣ f (δαn(t), x
)
− g(t, x)

∣∣ < ε

2
, ∀(t, x) ∈ T∗ × S,

∣∣ϕ(δαn(t)
)
− ψ(t)

∣∣ < δ∗
(

ε

2

)
, ∀t ∈ T∗,

where
{

ϕ
(
δαn(t)

)
: t ∈ T∗

}
⊂ S, {ψ(t) : t ∈ T∗} ⊂ S. Therefore, when n ≥ N0(ε), we have

∣∣Tδ
α f
(
t, ϕ(t)

)
− g
(
t, ψ(t)

)∣∣ = ∣∣ f (δαn (t), ϕ
(
δαn (t)

))
− g
(
t, ψ(t)

)∣∣ ≤ ∣∣ f (δαn (t), ϕ
(
δαn (t)

))
− g
(
t, ϕ(δαn (t))

)∣∣
+
∣∣g(t, ϕ

(
δαn (t)

))
− g
(
t, ψ(t)

)∣∣ < ε.

Please note that
lim

n→∞
f
(
δαn(t), ϕ

(
δαn(t)

))
= Tδ

α

(
f
(
t, ϕ(t)

)
,

thus, Tδ
α f
(
t, ϕ(t)

)
= g

(
t, ψ(t)

)
exists uniformly on T∗ × S. Thus, f

(
t, ϕ(t)

)
is δ-almost periodic under the

matched space (T, F, Π, δ). The proof is complete.

Definition 12. Let f ∈ C(T× D,En). Then Hδ( f ) = {g(t, x) : T→ En| there is α ∈ Π̃ such that Tδ
α f (t, x) =

g(t, x) exists uniformly on T∗ × S } is said to be the δ-hull of f (t, x) under the matched space (T, F, Π, δ).

Theorem 5. Hδ( f ) is a compact set iff f (t, x) is an uniformly δ-almost periodic function.

Proof. If Hδ( f ) is compact, for any given α
′
= {α′n} ⊆ Π̃, there must exist subsequence

{
f
(
δαnk

(t), x
)}

k∈N
of the sequence

{
f
(
δ

α
′
n
(t), x

)}
n∈N such that

f
(
δαnk

(t), x
)
→ g(t, x) (k→ ∞), ∀(t, x) ∈ T∗ × S.

Noting that α = {αnk}, obviously, α ⊂ α
′
, so Tδ

α f (t, x) exists uniformly on T∗ × S.
Conversely, if f (t, x) is uniformly δ-almost periodic and {gn(t, x)} ⊂ Hδ( f ), then we can choose

α
′
= {α′n} such that ∥∥ f

(
δ

α
′
n
(t), x

)
− gn(t, x)

∥∥ <
1
n

, ∀(t, x) ∈ T∗ × S.

One can choose α ⊂ α
′

so that Tδ
α f (t, x) exists uniformly. Let β ⊂ γ = {n} such that β and α are

common subsequences, then

f
(
δαn(t), x

)
− gβn(t, x)→ 0 (n→ ∞), ∀(t, x) ∈ T∗ × S,
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so that
lim

n→∞
gβn(t, x) = Tδ

α f (t, x) ∈ Hδ( f ), ∀(t, x) ∈ T∗ × S,

and thus, Hδ( f ) is compact. The proof is complete.

Theorem 6. Assume f (t, x) is uniformly δ-almost periodic under the matched space (T, F, Π, δ). Then for any
g ∈ Hδ( f ) we have Hδ( f ) = Hδ(g).

Proof. For any h(t, x) ∈ Hδ(g) there exists α
′ ⊆ Π̃ such that Tδ

α
′ g(t, x) = h(t, x). Since f (t, x) is uniformly

δ-almost periodic, from the sequence {α′n} ⊆ Π̃ one can extract a sequence {αn} such that Tδ
α f (t, x) =

lim
n→∞

f
(
δαn(t), x

)
exists uniformly on T∗ × S.

For g ∈ Hδ( f ), there is α(1) ⊆ Π̃ such that

lim
n→+∞

f
(
δ

α
(1)
n
(t), x

)
= g(t, x), ∀(t, x) ∈ T∗ × S,

so we have
lim

n→+∞
f
(
δ

δ̃(α
(1)
n ,αn)

(t), x
)
= g

(
δαn(t), x

)
, ∀(t, x) ∈ T∗ × S,

and then we can take β = {βn} = {δ̃(α(1)n , αn)} such that

∣∣ f (δβn(t), x
)
− g
(
δαn(t), x

)∣∣ < 1
n

, ∀(t, x) ∈ T∗ × S.

It follows that Tδ
β f (t, x) = Tδ

α g(t, x) = Tδ
α
′ g(t, x) = h(t, x). Hence h ∈ Hδ( f ). Thus, Hδ(g) ⊆ Hδ( f ).

On the other hand, for any g ∈ Hδ( f ), there exists α such that Tδ
α f (t, x) = g(t, x), then∣∣ f (δαn(t), x

)
− g(t, x)

∣∣→ 0, n→ ∞, ∀(t, x) ∈ T∗ × S,

so making the change of variable δαn(t) = s, one has∣∣ f (s, x)− g
(
δ

α−1
n
(s), x

)∣∣→ 0, ∀(s, x) ∈ T∗ × S,

that is Tδ
α−1 g(t, x) = f (t, x). Thus, f (t, x) ∈ Hδ(g) and so by what was shown above, Hδ( f ) ⊆ Hδ(g).

According to the above, we have Hδ( f ) = Hδ(g). The proof is complete.

From Definition 12 and Theorem 6, the result below is obvious.

Theorem 7. Assume f (t, x) is an uniformly δ-almost periodic function. Then for any g ∈ Hδ( f ), g(t, x) is
an uniformly δ-almost periodic function under the matched space (T, F, Π, δ).

Theorem 8. Assume that f (t, x) is uniformly δ-almost periodic under the matched space (T, F, Π, δ). Then for
all ε > 0, there exist constants η > 0 and α ∈ Π̃ such that [α, δ̃(α, η)]Π∗ ⊂ [a, δ̃(a, L)]Π∗ and [α, δ̃(α, η)]Π∗ ⊂
E(ε, f , S), where L(ε, S) > 0 and a ∈ Π̃.

Proof. From the uniform continuity of f (t, x) on T∗ × S, we have that for any given ε > 0, there exists
δ∗(ε1, S) > 0, so when |t1 − t2| < δ∗(ε1, S) we obtain∣∣ f (t1, x)− f (t2, x)

∣∣ < ε1, ∀x ∈ S,
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where ε1 =
ε

2
.

Now, let l(ε1, S) be the inclusion length of E(ε1, f , S). We choose η = δ∗
(

ε

2
, S
)

= δ∗(ε1, S) and

L = δ̃
(
l(ε1, S), η

)
. For an arbitrary a ∈ Π̃, considering an interval

[
a, δ̃(a, L)

]
Π∗ and selecting

τ ∈ E( f , ε1, S) ∩
[
δ̃(a, η∗), δ̃

(
η−1
∗ , δ̃

(
a, l(ε1, S)

))]
Π∗ ,

where η∗ > eΠ∗ satisfying δ̃(η∗, η∗) ≤ η
2 (in fact, we have η∗ − η−1

∗ ≤ η∗ < δ̃(η∗, η∗) ≤ η
2 ), so we obtain[

δ̃(τ, η−1
∗ ), δ̃(τ, η∗)

]
Π∗ ⊂

[
a, δ̃(a, L)

]
Π∗ .

Thus, for any ξ ∈
[
δ̃(τ, η−1

∗ ), δ̃(τ, η∗)
]

Π∗ , we can obtain

|ξ − τ| ≤ |δ̃(τ, η−1
∗ )− δ̃(τ, η∗)| ≤ 2δ̃(η∗, η∗) ≤ η.

Hence, for all (t, x) ∈ T∗ × S,∣∣ f (δξ(t), x
)
− f (t, x)

∣∣ ≤ ∣∣ f (δξ(t), x
)
− f

(
δτ(t), x

)∣∣+ ∣∣ f (δτ(t), x
)
− f (t, x)

∣∣ ≤ ε.

Now, by taking α = δ̃(τ, η−1
∗ ), we have

[
α, δ̃(α, η)

]
Π∗ ⊂ E(ε, f , S). This completes the proof.

In the following theorem, for η ∈ Π∗, we will use the notation δ̃η = δ̃(η, eΠ∗) = η, δ̃2η = δ̃(η, δ̃η),
δ̃3η = δ̃(η, δ̃2η), . . . , δ̃mη := δ̃(η, δ̃(m−1)η) for simplicity.

Theorem 9. Assume that f , g are uniformly δ-almost periodic functions under the matched space (T, F, Π, δ).
Then E( f , ε, S) ∩ E(g, ε, S) is relatively dense in Π∗ and nonempty for any ε > 0.

Proof. Because f , g are uniformly δ-almost periodic under the matched space (T, F, Π, δ), it follows
from Theorem 1 that f , g are uniformly continuous on T∗ × S. For any given ε > 0, we choose

δ∗i = δ∗i

(
ε

2
, S
)
(i = 1, 2); and select l1 = l1

(
ε

2
, S
)

, l2 = l2

(
ε

2
, S
)

as the inclusion lengths of

E( f ,
ε

2
, S), E(g,

ε

2
, S), respectively.

From Theorem 5, one can choose

η = η(ε, S) = min(δ∗1 , δ∗2 ) ∈ Π̃, Li = δ̃(li, η) (i = 1, 2), L = max(L1, L2).

Hence, one can select
ε

2
-shift numbers of f (t, x) and g(t, x): τ1 = δ̃mη and τ2 = δ̃nη , respectively,

and τ1, τ2 ∈
[
a, δ̃(a, L)

]
Π∗ , m, n ∈ Z. It follows from τ−1

2 ∈
[
δ̃(a−1, L−1), a−1]

Π∗ that

δ̃
(
δ̃(a−1, L−1), a

)
≤ δ̃

(
τ1, δ̃(a−1, L−1)

)
≤ δ̃(τ1, τ−1

2 ) ≤ δ̃(τ1, a−1) ≤ δ̃
(
a−1, δ̃(a, L)

)
,

so we obtain A
(
δ̃(τ1, τ−1

2 )
)
≤ L. Let m − n = s, then s can only be chosen from a finite number set

{s1, s2, . . . , sp}. Without loss of generality, we assume m− n = sj, j = 1, 2, . . . , p, and the
ε

2
-shift numbers

of f (t) and g(t) are denoted by τ
j
1, τ

j
2, respectively. It is obvious that δ̃

(
τ

j
1, (τ j

2)
−1) = δ̃sjη , j = 1, 2, . . . , p,

and one can select T = max
j
{A(τ

j
1), A(τ

j
2)}.
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For any a ∈ Π∗, one can choose
ε

2
-shift numbers τ1, τ2 of f and g from the interval[

δ̃(a, T), δ̃
(
δ̃(a, T), L

)]
, and then there is some integer sj such that

δ̃(τ1, τ−1
2 ) = δ̃sjη = δ̃

(
τ

j
1, (τ j

2)
−1).

Let
τ(ε, S) = δ̃

(
τ1, (τ j

1)
−1) = δ̃

(
τ2, (τ j

2)
−1),

then τ(ε, S) ∈
[
a, δ̃
(
a, δ̃
(

L, δ̃(T, T)
))]

Π∗ . Hence, for any (t, x) ∈ T∗ × S, we obtain∣∣ f (δτ(t), x
)
− f (t, x)

∣∣ ≤ ∣∣ f (δ
δ̃(τ1,(τ j

1)
−1)

(t), x
)
− f

(
δ
(τ

j
1)
−1(t), x

)∣∣
+
∣∣ f (δ

(τ
j
1)
−1(t), x

)
− f (t, x)

∣∣ < ε

and ∣∣g(δτ(t), x
)
− g(t, x)

∣∣ ≤ ∣∣g(δ
δ̃(τ2,(τ j

2)
−1)

(t), x
)
− g
(
δ
(τ

j
2)
−1(t), x

)∣∣
+
∣∣g(δ

(τ
j
2)
−1(t), x

)
− g(t, x)

∣∣ < ε.

Hence, there is at least a τ = τ(ε, S) on any interval
[
a, δ̃
(
a, δ̃
(

L, δ̃(T, T)
))]

Π∗ with the length
δ̃
(

L, δ̃(T, T)
)

such that τ ∈ E( f , ε, S) ∩ E(g, ε, S). The proof is complete.

By Definition 9, the following theorem is immediate.

Theorem 10. Assume that f (t, x) is uniformly δ-almost periodic under the matched space (T, F, Π, δ). Then for
arbitrary α ∈ R, b ∈ Π̃, the functions α f (t, x), f (δb(t), x) are uniformly δ-almost periodic under the matched space
(T, F, Π, δ).

Theorem 11. Assume that f , g are uniformly δ-almost periodic functions under the matched space (T, F, Π, δ).
Then f g is uniformly δ-almost periodic.

Proof. According to Theorem 9, for any given ε > 0, E( f ,
ε

2
, S) ∩ E(g,

ε

2
, S) is nonempty relatively dense.

Let sup
(t,x)∈T∗×S

| f (t, x)| = M1, sup
(t,x)∈T∗×S

|g(t, x)| = M2 and choose τ ∈ E( f ,
ε

2
, S) ∩ E(g,

ε

2
, S). Then for all

(t, x) ∈ T∗ × S we can obtain

∣∣ f (δτ(t), x
)

g
(
δτ(t), x

)
− f (t, x)g(t, x)

∣∣ ≤ ∣∣g(δτ(t), x
)∣∣∣∣ f (δτ(t), x

)
− f (t, x)

∣∣+ | f (t, x)||g(δτ(t), x)− g(t, x)|

≤ (M1 + M2)ε ≡ ε1.

Therefore, E( f g, ε1, S) is a relatively dense set and τ ∈ E( f g, ε1, S), i.e., f g is uniformly δ-almost
periodic. This completes the proof.

Theorem 12. Assume that f , g are uniformly δ-almost periodic under the matched space (T, F, Π, δ). Then f + g

is uniformly δ-almost periodic. If g, f are uniformly δ-almost periodic and inft∈T |g(t, x)| > 0. Then
f (t, x)
g(t, x)

is

uniformly δ-almost periodic.
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Proof. According to Theorem 9, for any ε > 0, E( f ,
ε

2
, S) ∩ E(g,

ε

2
, S) is a nonempty relatively dense set.

Clearly, if τ ∈ E( f ,
ε

2
, S) ∩ E(g,

ε

2
, S), then τ ∈ E( f + g, ε, S). Hence

(
E( f ,

ε

2
, S) ∩ E(g,

ε

2
, S)
)
⊂ E( f + g, ε, S).

Thus, E( f + g, ε, S) is a relatively dense set, i.e., f + g is uniformly δ-almost periodic.
Now, let inf

(t,x)∈T∗×S
|g(t, x)| = N and select τ ∈ E(g, ε, S), then for all (t, x) ∈ T∗ × S we can obtain

∣∣∣∣ 1
g(δτ(t), x)

− 1
g(t, x)

∣∣∣∣ = ∣∣∣∣ g(δτ(t), x)− g(t, x)
g(δτ(t), x)g(t, x)

∣∣∣∣ < ε

N2 ≡ ε2,

i.e., τ ∈ E(
1
g

, ε2, S). Hence,
1
g

is uniformly δ-almost periodic. Meanwhile, it follows from Theorem 11 that

f
g

is uniformly δ-almost periodic. The proof is complete.

In the following, a convergence theorem of δ-almost periodic function sequences is established.

Theorem 13. If fn ∈ C(T× D,En), n = 1, 2, . . . are uniformly δ-almost periodic and the sequence fn(t, x) →
f (t, x) uniformly on T∗ × S as n→ ∞. Then f (t, x) is uniformly δ-almost periodic.

Proof. For any given ε > 0, there is a sufficiently large ñ0 such that

| f (t, x)− fñ0(t, x)| < ε

3
, ∀(t, x) ∈ T∗ × S.

Selecting τ ∈ E
{

fñ0 ,
ε

3
, S
}

, then we have

∣∣ f (δτ(t), x
)
− f (t, x)

∣∣ ≤ ∣∣ f (δτ(t), x
)
− fñ0

(
δτ(t), x

)∣∣+ ∣∣ fñ0

(
δτ(t), x

)
− fñ0(t, x)

∣∣
+| fñ0(t, x)− f (t, x)| < ε, ∀(t, x) ∈ T∗ × S,

so τ ∈ E( f , ε, S). Therefore, E( f , ε, S) is relatively dense, i.e., f (t, x) is uniformly δ-almost periodic.
This completes the proof.

Theorem 14. Assume that f (t, x) is uniformly ∆δ
1-almost periodic under the matched space (T, F, Π, δ), and denote

F (t, x) =
∫ t

t0

f (s, x)∆s, t0 ∈ T∗.

Then F (t, x) is uniformly δ-almost periodic under the matched space (T, F, Π, δ) iff F (t, x) is a bounded function
on T∗ × S.

Proof. Note if we assume that F (t, x) is uniformly δ-almost periodic, one can easily observe that F (t, x)
is a bounded function on T∗ × S.

Without loss of generality, if F (t, x) is bounded, let F (t, x) be a real-valued function and

G := sup
(t,x)∈T∗×S

F (t, x) > g̃ := inf
(t,x)∈T∗×S

F (t, x).
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For any given ε > 0, there are t1 and t2 such that

F (t1, x) < g̃ +
ε

6
, F (t2, x) > G − ε

6
, ∀x ∈ S.

Set l = l(ε1, S) an inclusion length of E( f , ε1, S), and ε1 =
ε

6d
, d = |t1 − t2|. For any α ∈ Π∗,

we can choose τ ∈ E( f , ε1, S) such that δ(τ, t1) ∈
[
δ(α, t0), δ

(
δ̃(α, l), t0

)]
T. We introduce the notations

si = δ(τ, ti), (i = 1, 2), L = δ̃(l, d̃), where d̃ ∈ Π∗ and d̃ > d, then s1, s2 ∈
[
δ(α, t0), δ

(
δ̃(α, L), t0

)]
T. Hence,

for all x ∈ S, we obtain

F (s2, x)−F (s1, x) = F (t2, x)−F (t1, x)−
∫ t2

t1

f (t, x)∆t +
∫ δτ(t2)

δτ(t1)
f (t, x)∆ t

= F (t2, x)−F (t1, x) +
∫ t2

t1

[
f
(
δτ(t), x

)
δ∆

τ (t)− f (t, x)
]
∆ t

> G − g̃− ε

3
− ε1d = G − g̃− ε

2
,

which yields (
F (s1, x)− g̃

)
+
(
G −F (s2, x)

)
<

ε

2
.

Because for any interval with length L, we have

F (s1, x)− g̃ ≥ 0, G −F (s2, x) ≥ 0,

so there exist s1, s2 such that

F (s1, x) < g̃ +
ε

2
, F (s2, x) > G − ε

2
.

Next, note that L 6= eΠ∗ , and we have inf |δL(t)− t| > q > 0 for all t ∈ T∗, where q is some positive

constant. Let ε2 =
ε

2q
. We claim that if τ ∈ E( f , ε2, S), then τ ∈ E(F, ε, S). In fact, for all (t, x) ∈ T∗ × S,

we can choose s1, s2 ∈ [t, δL(t)]T such that

F (s1, x) < g̃ +
ε

2
, F (s2, x) > G − ε

2
.

Thus, for τ ∈ E( f , ε2, S), we can get

F
(
δτ(t), x

)
−F (t, x) = F (δτ(s1), x)−F (s1, x)

+
∫ s1

t
f (t, x)∆t−

∫ δτ(s1)

δτ(t)
f (t, x)∆ t

> g̃− (g̃ +
ε

2
)−

∫ s1

t

[
f
(
δτ(t), x

))
δ∆

τ (t)− f (t, x)
]
∆t

> − ε

2
− ε2q = −ε
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since |t− s1| = |δ(τ, t1)− t| ≤ |δL(t)− t|, and

F (δτ(t), x)−F (t, x) = F (δτ(s2), x)−F (s2, x) +
∫ s2

t
f (t, x)∆t−

∫ δτ(s2)

δτ(t)
f (t, x)∆ t

< G −
(
G − ε

2

)
+ ε2q = ε.

Therefore, for τ ∈ E( f , ε2, S), we can obtain τ ∈ E(F , ε, S), i.e., F (t, x) is uniformly δ-almost periodic.
The proof is complete.

Theorem 15. Assume that f (t, x) is uniformly δ-almost periodic, F (·) is uniformly continuous on the range of
f (t, x). Then F ◦ f is uniformly δ-almost periodic under the matched space (T, F, Π, δ).

Proof. Please note that F is uniformly continuous on the range of f (t, x), because f (t, x) is uniformly
δ-almost periodic, then there is a sequence α = {αn} ⊆ Π̃ such that

Tδ
α(F ◦ f ) = Tδ

α

(
F
(

f (t, x)
))

= lim
n→+∞

F
(

f
(
δαn(t), x

))
= F

(
lim

n→+∞
f
(
δαn(t), x

))
= F (Tδ

α f )

holds uniformly on T∗ × S. Therefore, F ◦ f is an uniformly δ-almost periodic function.

In the following, a sufficient and necessary criterion for δ-almost periodic functions is obtained.

Theorem 16. A function f (t, x) is uniformly δ-almost periodic under the matched space (T, F, Π, δ) iff there are
common subsequences α, β of α

′
, β
′ ⊆ Π̃, respectively, such that

Tδ
δ̃(α,β) f (t, x) = Tδ

α Tδ
β f (t, x). (7)

Proof. If f (t, x) is uniformly δ–almost periodic, for any two sequences α
′
, β
′ ⊆ Π̃, there exists subsequence

β
′′ ⊂ β

′
such that

Tδ
β
′′ f (t, x) = g(t, x)

holds uniformly on T∗ × S and g(t, x) is uniformly δ-almost periodic.
Take α

′′ ⊂ α
′

and α
′′
, β
′′

are the common subsequences of α
′
, β
′
, respectively, then there exists α

′′′ ⊂ α
′′

such that
Tδ

α
′′′ g(t, x) = h(t, x)

holds uniformly on T∗ × S.
Similarly, take β

′′′ ⊂ β
′′
, and β

′′′
, α
′′′

are the common subsequences of β
′′
, α
′′
, respectively, then there

exist common subsequence α ⊂ α
′′′

, β ⊂ β
′′′

such that

Tδ
δ̃(α,β) f (t, x) = k(t, x)

holds uniformly on T∗ × S. According to the above, it is easy to observe that

Tδ
β f (t, x) = g(t, x), Tδ

α g(t, x) = h(t, x)

hold uniformly on T∗ × S. Thus, for all ε > 0, if n is sufficiently large, then for any (t, x) ∈ T∗ × S, we have∣∣ f (δδ̃(αn ,βn)
(t), x

)
− k(t, x)

∣∣ < ε

3
,



Mathematics 2019, 7, 525 17 of 27

∣∣g(t, x)− f
(
δβn(t), x

)∣∣ < ε

3
,∣∣h(t, x)− g

(
δαn(t), x

)∣∣ < ε

3
.

Therefore

|h(t, x)− k(t, x)| ≤
∣∣h(t, x)− g

(
δαn(t), x

)∣∣+ ∣∣g(δαn(t), x
)
− f

(
δδ̃(αn ,βn)

(t), x
)∣∣

+
∣∣ f (δδ̃(αn ,βn)

(t), x
)
− k(t, x)

∣∣ < ε

holds for all (t, x) ∈ T∗ × S. Since ε > 0 is arbitrary, we have h(t, x) ≡ k(t, x), that is, Tδ
δ̃(α,β)

f (t, x) =

Tδ
α Tδ

β f (t, x) holds uniformly on T∗ × S.

On the other hand, assume (7) holds, then for any sequence γ
′ ⊆ Π̃, there is a subsequence γ ⊂ γ

′

such that Tδ
γ f (t, x) exists uniformly on T∗ × S.

Next, we will prove that f (t, x) is uniformly δ-almost periodic.
Assume this is not true, i.e., Tδ

γ f (t, x) is not convergent uniformly on T∗ × S. Then there exist ε0 > 0
and t0 ∈ T, subsequences α

′ ⊂ γ, β
′ ⊂ γ, s

′ ⊆ Π̃ and α
′
= {α′n}, β

′
= {β′n}, s = {s′n} such that∣∣ f (δ

δ̃(s′n ,α′n)
(t0), x

)
− f

(
δ

δ̃(s′n ,β′n)
(t0), x

)∣∣ ≥ ε0 > 0. (8)

According to (7), there exist common subsequences α
′′ ⊂ α

′
, s
′′ ⊂ s

′
such that for all (t, x) ∈ T∗ × S,

we have
Tδ

δ̃(s′′ ,α′′ )
f (t, x) = Tδ

s′′
Tδ

α
′′ f (t, x). (9)

Taking β
′′ ⊂ β

′
and β

′′
, α
′′
, s
′′

are common subsequences of β
′
, α
′
, s
′
, respectively, such that for all

(t, x) ∈ T∗ × S, we have
Tδ

δ̃(s,β) f (t, x) = Tδ
s Tδ

β f (t, x). (10)

Similarly, taking α ⊂ α
′′

satisfying α, β, s are common subsequences of α
′′
, β
′′
, s
′′
, respectively,

according to (9), for all (t, x) ∈ T∗ × S, we have

Tδ
δ̃(s,α) f (t, x) = Tδ

s Tδ
α f (t, x). (11)

Since Tδ
α f (t, x) = Tδ

β f (t, x) = Tδ
γ f (t, x), from (10) and (11), for all (t, x) ∈ T∗ × S, we have

Tδ
δ̃(s,β) f (t, x) = Tδ

δ̃(s,α) f (t, x),

that is, for all (t, x) ∈ T∗ × S, we have

lim
n→+∞

f
(
δδ̃(sn ,βn)

(t), x
)
= lim

n→+∞
f
(
δδ̃(sn ,αn)

(t), x
)
.

Taking t = t0, this contradicts (8). Therefore, f (t, x) is uniformly δ-almost periodic under the matched
space (T, F, Π, δ). The proof is complete.

Definition 13. Assume each element of matrix-valued function M (t, x) = (kij(t, x))n×m, where kij(t, x) ∈
C(T× E,E)(1, 2, . . . , n; j = 1, 2, . . . , m) is uniformly δ-almost periodic under the matched space (T, F, Π, δ),
then M (t, x) is said to be uniformly δ-almost periodic.
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Now, we adopt the matrix norm |M (t, x)| =
√

∑
ij

k2
ij(t, x), and then the Definition turns into:

Definition 14. A matrix function M(t, x) is uniformly δ-almost periodic iff for any ε > 0, the shift set

E(M , ε, S) = {τ ∈ Π : |M (δτ(t), x)−M (t, x)| < ε, ∀(t, x) ∈ T∗ × S}

is relatively dense in Π.

Theorem 17. Definitions 13 and 14 are equivalent.

Proof. First, assume that M (t, x) is uniformly δ-almost periodic. It follows from Definition 13 that each
element kij(t, x) is uniformly δ-almost periodic. Hence, for any given ε > 0, there is a nonempty relatively

dense set A =
⋂
i,j

E
(
kij(t, x),

ε√
mn

, S
)

such that τ ∈ A implies

∣∣M (
δτ(t), x

)
−M (t, x)

∣∣ = [∑
i,j

∣∣kij
(
δτ(t), x

)
− kij(t, x)

∣∣2]1/2

< ε.

Conversely, assume that for any given ε > 0, E(M , ε, S) is relatively dense. Then for any i =

1, 2, . . . , n; j = 1, 2, . . . , m and τ ∈ E(M , ε, S), one can obtain∣∣kij
(
δτ(t), x

)
− kij(t, x)

∣∣ < ∣∣M (
δτ(t), x

)
−M (t, x)

∣∣ < ε, ∀(t, x) ∈ T∗ × S,

so each element kij(t, x) is uniformly δ-almost periodic, i.e., M (t, x) is uniformly δ-almost periodic.
The proof is complete.

Definition 15. Let M (t, x) be a continuous matrix function. M is said to be δ-normal if for any sequence α
′ ⊆ Π̃,

there is a subsequence α ⊂ α
′

such that Tδ
αM (t, x) exists uniformly on T∗ × S.

Theorem 18. Let M (t, x) be a continuous matrix function. M is δ-normal iff M (t, x) is uniformly δ-almost
periodic under the matched space (T, F, Π, δ).

Proof. First, it is easy to observe that if M (t, x) is δ-normal, then each element kij(t, x) satisfies
Definition 11, which implies that M (t, x) is uniformly δ-almost periodic.

Conversely, assume that M (t, x) is uniformly δ-almost periodic. According to Definition 13, for any
sequence α

′ ⊆ Π̃, there is subsequence α1 ⊂ α
′

such that Tδ
α1

k11(t, x) exists uniformly on T∗ × S. Hence,
there exists α2 ⊂ α1, such that Tδ

α2
k12(t, x) exists uniformly on T∗ × S; by repeating this process mn times,

then one can obtain a series of subsequences fulfilling:

α = {αk} = αmn ⊂ αmn−1 ⊂ . . . ⊂ α2 ⊂ α1 ⊂ α
′

so that
Tδ

α kij(t, x), i = 1, 2, . . . , n, j = 1, 2, . . . , m

exist uniformly on T∗ × S. Hence, there is subsequence α ⊂ α
′

such that Tδ
αM (t, x) exists uniformly on

T∗ × S, i.e., M (t, x) is δ-normal. The proof is complete.
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4. Almost Periodic Dynamic Equations under Matched Spaces

In this section, under matched spaces, we introduce some new concepts related to dynamic equations
and establish some basic results of almost periodic dynamic equations with shift operators.

Consider the nonlinear dynamic system as follows:

x∆ = f (t, x), (12)

where f ∈ C(T×En,En), and let Ω = {x(t) : x(t) is a bounded solution to (12)}.

Definition 16. Assume that Ω 6= ∅ and λ = inf
x∈Ω
‖x‖ exists. Then λ is said to be the least-value of solutions for

(12). Suppose there exists ϕ(t) ∈ Ω such that ‖ϕ‖ = λ, and then we say ϕ(t) is a minimum norm solution for
(12), where ‖ · ‖ = supt∈T | · |.

Similar to the proof of Theorem 5.1 in [29], the following lemma is immediate.

Lemma 1. Assume that 0 ∈ S and f ∈ C(T× S,En) is bounded on T∗ × S. If a bounded function ϕ : T→ S is
a solution of (12), then there is a minimum norm solution for (12).

Lemma 2. Assume that f (t, x) is uniformly δ-almost periodic under the matched space (T, F, Π, δ), S =

{ϕ(t) : t ≥ t0} and (12) has a bounded solution ϕ(t) on [t0, ∞)T. Then (12) has an δ-almost periodic solution ψ(t)
fulfilling {ψ(t), t ∈ T} ⊂ S.

Proof. First, we choose α
′
= {α′k} ⊂ Π̃ such that lim

k→+∞
α
′
k = +∞ and

Tδ
α
′ f (t, x) = lim

k→∞
f
(
δ

α
′
k
(t), x

)
= f (t, x)

holds uniformly on T∗ × S. Let ϕk(t) = ϕ
(
δ

α
′
k
(t)
)
.

Next, for ∀a ∈ T∗, we will prove that for sufficiently large k, {ϕk} is defined on (a, ∞)T and is
a solution to x∆ = f (t, x). Because ϕ(t) is a solution to (12), then we have Tδ

α

(
ϕ∆(t)

)
= Tδ

α

(
f (t, x)

)
, i.e.,

lim
k→∞

(
ϕ
(
δ

α
′
k
(t)
))∆

=
(

lim
k→∞

(
ϕ
(
δ

α
′
k
(t)
)))∆

= lim
k→∞

(
f
(
δ

α
′
k
(t), x

)
= f (t, x).

Obviously, {ϕk(t)} is uniformly bounded and equicontinuous on (a, ∞)T. Let α be a sequence which
goes to +∞, by Corollary 3.4 from [30], there exist α = {α′kn

} ⊂ α
′

such that Tδ
α ϕ(t) = lim

n→∞
ϕ
(
δ

α
′
kn
(t)
)
=

ψ(t) holds uniformly on T∗. Therefore, we get ψ(t) ∈ S, ∀t ∈ T∗. Moreover, it follows from Tδ
α f (t, x) =

lim
n→∞

f
(
δ

α
′
kn
(t), x

)
= f (t, x) that ψ(t) is an δ-almost periodic solution for (12). This completes the proof.

Lemma 3. Assume that f ∈ C(T×En,En) is uniformly δ-almost periodic under the matched space (T, F, Π, δ).
Assume (12) has a minimum norm solution. Then for any g ∈ Hδ( f ), the equation

x∆ = g(t, x) (13)

has the same least-value of solutions with (12).

Proof. First, let ϕ(t) be the minimum norm solution for (12) and λ be the least-value. Because g ∈ Hδ( f ),
there is a sequence α

′ ∈ Π̃ such that Tδ
α
′ f (t, x) = g(t, x) holds uniformly on T∗ × S. According to Corollary
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3.4 from [30], there exists α ⊂ α
′

such that Tδ
α ϕ(t) = ψ(t) holds uniformly on T∗. Therfore, ψ(t) is

a solution to (13). Moreover, it follows from |ϕ(t)| ≤ λ that |ψ(t)| ≤ λ. Hence, λ
′
= ‖ψ‖ ≤ λ. In view

of ϕ(t) = Tδ
α−1 ψ(t) and |ψ(t)| ≤ λ

′
, one can obtain |ϕ(t)| ≤ λ

′
. Therefore, λ = ‖ϕ‖ ≤ λ

′
, i.e., λ = λ

′
.

The proof is complete.

According to the proof of Lemma 3, the following lemma is immediate.

Lemma 4. Assume that ϕ(t) is a minimum norm solution for (12) and there is a sequence α
′ ⊆ Π̃ such that

Tδ
α
′ f (t, x) = g(t, x) exists uniformly on T∗ × S. Furthermore, if there is a subsequence α ⊂ α

′
such that

Tδ
α ϕ(t) = ψ(t) holds uniformly on T∗, then ψ(t) is a minimum norm solution for (13).

Lemma 5. Assume that f ∈ C(T× En,En) is uniformly δ-almost periodic and for each g ∈ Hδ( f ), (13) has
a unique minimum norm solution. Then these minimum norm solutions are δ-almost periodic.

Proof. For any given g ∈ Hδ( f ), there is a unique minimum norm solution ψ(t) for (13). Because g(t, x) is
uniformly δ-almost periodic, for any sequences α

′
, β
′ ⊆ Π̃, there are common subsequences α ⊂ α

′
, β ⊂ β

′

such that
Tδ

δ̃(α,β)g(t, x) = Tδ
α Tδ

β g(t, x)

holds uniformly on T∗ × S and Tδ
α Tδ

βψ(t), Tδ
δ̃(α,β)

ψ(t) exist uniformly on T∗. According to Lemmas 3 and 4,

one can obtain Tδ
α Tδ

βψ(t) and Tδ
δ̃(α,β)

ψ(t) are minimum norm solutions for the following equation:

x∆ = Tδ
δ̃(α,β)g(t, x).

Thus, one has Tδ
α Tδ

βψ(t) = Tδ
δ̃(α,β)

ψ(t) because of the uniqueness of the minimum norm solution.

Therefore, ψ(t) is a δ-almost periodic solution. The proof is complete.

Consider the linear δ-almost periodic dynamic equation

x∆ = A(t)x + f (t) (14)

and its associated homogeneous equation

x∆ = A(t)x, (15)

where A : T→ En×n and f : T→ En are δ-almost periodic.

Definition 17. If B ∈ Hδ(A), the dynamic equation

y∆ = B(t)y (16)

is said to be a homogeneous hull equation of (14).

Definition 18. If B ∈ Hδ(A) and g ∈ Hδ( f ), the dynamic equation

y∆ = B(t)y + g(t) (17)

is said to be a hull equation of (14).
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Next, we define an exponential dichotomy on time scales.

Definition 19. The linear system
x∆(t) = A(t)x(t) (18)

is called admitting an exponential dichotomy on T if there are positive constants K ≥ 1, α, projection P and the
fundamental solution matrix X(t) of (18), fulfilling{

|X(t)PX−1(s)| ≤ Ke	α

(
t, ρ(s)

)
, s, t ∈ T, t ≥ s,

|X(t)(I − P)X−1(s)| ≤ Ke	α(s, ρ(t)
)
, s, t ∈ T, t ≤ s.

(19)

Based on Definition 19, a Favard’s theorem for homogeneous linear dynamic equation can be
established as follows.

Lemma 6. Assume that A : T → Rn×n is δ-almost periodic and x(t) is a δ-almost periodic solution of the
homogeneous linear dynamic equation

x∆ = A(t)x.

Then inft∈T |x(t)| > 0 or x(t) ≡ 0.

Proof. If inf
t∈T
|x(t)| = 0, there exists {tn} ⊂ T such that |x(tn)| → 0 as n → ∞, and from x ∈ Hδ(x),

then there exists α
′ ⊂ Π̃ such that lim

n→+∞
x
(
δ

α
′
n
(t)
)
= x(t) for all t ∈ T∗, and this implies that for any

ε > 0, there exists N > 0 so that n > N implies
∣∣x(δ

α
′
n
(tn)

)
− x(tn)

∣∣ < ε

2
. Furthermore, since x(t)

is δ-almost periodic on T, it is uniformly continuous on T, we can take t0 ∈ T with |t0 − tn| < δ∗

implies
∣∣x(δ

α
′
n
(t0)

)
− x

(
δ

α
′
n
(tn)

)∣∣ < ε

2
. Therefore, for sufficiently large n ∈ N, we have

∣∣x(δ
α
′
n
(t0)

)
−

x(tn)
∣∣ ≤ ∣∣x(δ

α
′
n
(t0)

)
− x

(
δ

α
′
n
(tn)

)∣∣ + ∣∣x(δ
α
′
n
(tn)

)
− x(tn)

∣∣ < ε

2
+

ε

2
< ε. Hence, we can easily see that∣∣x(δ

α
′
n
(t0)

)∣∣→ 0 as n→ +∞. Since A(t) is δ-almost periodic on T, there exists sequence α ⊂ α
′

such that

Tδ
α A(t) = B(t), Tδ

α x(t) = y(t),

Tδ
α−1 B(t) = A(t), Tδ

α−1 y(t) = x(t)

hold uniformly on T∗, since x∆ = A(t)x(t) is equivalent to(
x(t)

)∆
= A(t)x(t),

so we have

y∆(t) =
(
Tδ

α x(t)
)∆

=
(

lim
n→∞

x
(
δαn(t)

))∆
= lim

n→∞

(
x
(
δαn(t)

))∆

= lim
n→∞

A
(
δαn(t)

)
x
(
δαn(t)

)
= lim

n→∞
A
(
δαn(t)

)
· lim

n→∞
x
(
δαn(t)

)
,

that is, y(t) is a solution to the following equation:

y∆ = B(t)y
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satisfying the initial condition:

y(t0) = Tδ
α x(t0) = lim

n→+∞
x(δαn(t0)) = 0.

Hence, according to Theorem 2.77 from [25], y(t) = y(t0)eB(t, t0) ≡ 0, therefore, x(t) = Tδ
α−1 y(t) ≡ 0.

The proof is complete.

Lemma 7. Assume that (15) has an δ-almost periodic solution x(t) and inft∈T |x(t)| > 0. If a solution of (14) on
[t0, ∞)T is bounded, then (14) has a solution that is δ-almost periodic.

Proof. According to Lemmas 1 and 2, there is a minimum norm solution for (14) on T∗ and for each pair
of Tδ

α A(t) = B(t) and Tδ
α f (t) = g(t), (17) has a minimum norm solution.

Now, we claim that the minimum norm solution for (17) is unique.
In fact, for a fixed pair of B(t) and g(t), we consider (17). Let (17) have two different minimum norm

solutions x1(t) and x2(t), and their least-values are equivalent to λ. Since
1
2
[
x1(t)− x2(t)

]
is a bounded

non-trivial solution for (16), by Lemma 7, there is a real number ρ > 0 such that

inf
t∈T

1
2

∣∣x1(t)− x2(t)
∣∣ ≥ ρ > 0.

Now by the parallelogram law, we have

∣∣1
2
(

x1(t) + x2(t)
)∣∣2 + ∣∣1

2
(

x1(t)− x2(t)
)∣∣2 =

1
2
(
|x1(t)|2 + |x2(t)|2

)
≤ λ2,

and noting that

(1
2
(

x1(t) + x2(t)
))∆

=
1
2

x∆
1 +

1
2

x∆
2

=
1
2
(

B(t)x1 + g(t)
)
+

1
2
(

B(t)x2 + g(t)
)

= B(t)
(1

2
(x1 + x2)

)
+ g(t),

so 1
2
(

x1(t) + x2(t)
)

is a solution to (17), and thus∣∣∣∣12(x1(t) + x2(t)
)∣∣∣∣ < √λ2 − ρ2 < λ.

This is a contradiction. The proof is complete.

Lemma 8. Assume that each bounded solution of a homogeneous hull equation of (14) is δ-almost periodic. Then all
bounded solutions of (14) are δ-almost periodic.

Proof. It follows from Lemma 6 that each non-trivial bounded solution for the hull equations of (14)
fulfills inf

t∈T
|x(t)| > 0. According to Lemma 7, we have that if (14) has bounded solutions on T, then (14)

has a δ-almost periodic solution ψ(t). Assume ϕ(t) is an arbitrary bounded solution of (14). Then η(t) =
ψ(t)− ϕ(t) is a δ-almost periodic solution of its associated homogeneous Equation (15). Therefore, ϕ(t) is
a δ-almost periodic solution. This completes the proof.
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Lemma 9. Assume that a homogeneous hull equation of (14) has the unique bounded solution x(t) ≡ 0. Then (14)
has an unique δ-almost periodic solution.

Proof. If ψ(t), ϕ(t) are two bounded solutions to (14), then x(t) = ϕ(t) − ψ(t) is a solution of
a homogeneous hull equation of (14). It follows from x(t) ≡ 0 that ϕ(t) ≡ ψ(t). According to Lemma 8,
(14) has an unique δ-almost periodic solution. This completes the proof.

Using a proof similar to that in Lemmas 7.4-7.5 in [31], one can easily prove Lemmas 10 and 11
(we omit their proof).

Lemma 10. Assume that X is a ∆-differentiable invertible matrix and P is a projection such that XPX−1 is bounded
on T. Then there is a differentiable matrix S such that XPX−1 = SPS−1 for all t ∈ T and S, S−1 are bounded on
T. Moreover, there exists an S of the form S = XQ−1 and Q, P are commutable.

Lemma 11. Assume that (15) admits an exponential dichotomy and C non-singular. Then X(t)C admits an exponential
dichotomy with the same projection P iff CP = PC, where X(t) is a fundamental solution matrix for (15).

Lemma 12. Assume that A : T → Rn×n is δ-almost periodic under the matched spaces (T, F, Π, δ) and (15)
admits an exponential dichotomy. Then for each B ∈ Hδ(A), there exist the same projection P and constants K, α

such that (16) admits an exponential dichotomy.

Proof. By Lemma 10, let X be a fundamental solution matrix satisfying (19). Set Q and S the matrices given
by Lemma 10. Let Tδ

α A = B uniformly on T∗. For any given t0 ∈ T∗, let Xn(t) = X
(
δαn(t)

)
Q−1(δαn(t0)

)
,

and from (15), we obtain (
X(t)

)∆
= A(t)X(t), (20)

and replacing t with δαn(t) in (20), we can obtain(
X
(
δαn(t)

))∆
= A

(
δαn(t)

)
X
(
δαn(t)

)
,

i.e., X∆
n (t) = A

(
δαn(t)

)
Xn(t), so Xn(t) is a fundamental solution matrix to x∆ = A

(
δαn(t)

)
x, by Lemma

11, there exist the same projection P and the same constants such that it has an exponential dichotomy and
Q−1, P are commutable. Moreover, one can choose subsequences such that Xn(t0) and X−1

n (t0) convergent
because they are S

(
δαn(t0)

)
and S−1(δαn(t0)

)
, respectively, and bounded. Keeping the same symbols let

Xn(t0) → Y0, and then X−1
n (t0) → Z0 where Z0 = Y−1

0 . Now for a suitable subsequence Xn(t) → Y as
n→ ∞, where Y denotes a solution of y∆ = By uniformly on T, one has Y(t0) = Y0 is non-singular. Finally,
since Xn satifies (19) for all n, then Y also satisfies (19). The proof is complete.

Lemma 13. Assume that (15) admits an exponential dichotomy. Then (15) has an unique bounded solution
x(t) ≡ 0.

Proof. Assume X(t) is the fundamental solution matrix for (15). For any sequence α ⊂ Π̃, we use the
notations An = A

(
δαn(t)

)
, Xn(t) = X

(
δαn(t)

)
. For the homogeneous equation (15) has an exponential

dichotomy, and then it follows that there is a constant M such that ‖Xn(t)‖ ≤ M and ‖X∆
n (t)‖ =

‖An(t)Xn(t)‖ ≤ ĀM, where Ā = supt∈T ‖A(t)‖. Therefore, according to Corollary 3.4 from [30], there is
{αnk} := α

′ ⊂ α such that {Xnk} converges uniformly on T∗ and lim
n→+∞

X
(
δαn(t)

)
exists uniformly on T∗.

Hence, one can get that X(t) is δ-almost periodic. Moreover, because the homogeneous equation (15)
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has an exponential dichotomy, then it follows that inft∈T x(t) = 0. From Lemma 6, we have x(t) ≡ 0.
This completes the proof.

Lemma 14. Assume that (15) admits an exponential dichotomy. Then all hull equations of (15) have an unique
bounded solution x(t) ≡ 0.

Proof. According to Lemma 12, all hull equations of (15) have an exponential dichotomy, and it follows
from Lemma 13 that all hull equations (15) have an unique bounded solution x(t) ≡ 0. This completes
the proof.

Theorem 19. Let A : T → En×n and f : T → En be δ-almost periodic. Moreover, assume (15) admits
an exponential dichotomy, then (14) has an unique δ-almost periodic solution

x(t) =
∫ t

−∞
X(t)PX−1(σ(s)) f (s)∆s−

∫ +∞

t
X(t)(I − P)X−1(σ(s)) f (s)∆s, (21)

where X(t) is a fundamental solution matrix for (15).

Proof. Now, we show that x(t) is a bounded solution of (14). In fact,

x∆(t)− A(t)x(t)

= X∆(t)
∫ t

−∞
PX−1(σ(s)) f (s)∆s + X(σ(t))PX−1(σ(t)) f (t)

−X∆(t)
∫ +∞

t
(I − P)X−1(σ(s)) f (s)∆s + X(σ(t))(I − P)X−1(σ(t)) f (t)

−A(t)X(t)
∫ t

−∞
PX−1(σ(s)) f (s)∆s + A(t)X(t)

∫ +∞

t
(I − P)X−1(σ(s)) f (s)∆s

= X(σ(t))(P + I − P)X−1(σ(t)) f (t) = f (t)

and

‖x‖ = sup
t∈T

∣∣∣∣ ∫ t

−∞
X(t)PX−1(σ(s)) f (s)∆s−

∫ +∞

t
X(t)(I − P)X−1(σ(s)) f (s)∆s

∣∣∣∣
≤ sup

t∈T

(∣∣∣∣ ∫ t

−∞
e	α(t, s)∆s

∣∣∣∣+ ∣∣∣∣ ∫ +∞

t
e	α(σ(s), t)∆s

∣∣∣∣)K‖ f ‖ ≤ 2K
α
‖ f ‖,

where ‖ · ‖ = supt∈T | · |.
Next, we will show that x(t) is δ-almost periodic. By Lemma 14, all hull equations of (15) have

an unique bounded solution x̄(t) ≡ 0. Therefore, for given α
′
, β
′
, there exist common subsequences

α ⊂ α
′
, β ⊂ β

′
so that Tδ

δ̃(α,β)
A = Tδ

α Tδ
β A, Tδ

δ̃(α,β)
f = Tδ

α Tδ
β f , y = Tδ

δ̃(α,β)
x, and z = Tδ

α Tδ
βx exists uniformly

on T∗. However, y− z = Tδ
δ̃(α,β)

x− Tδ
α Tδ

βx ≡ 0 since y− z is the bounded solution to all hull equations of

(15). Hence, Tδ
δ̃(α,β)

x = Tδ
α Tδ

βx, from Theorem 16, x ∈ APδ(T). This completes the proof.

Now, we will provide an application to demonstrate our obtained results. In the sense of matched
spaces, consider the following δ-almost periodic dynamic equation with variable delays:

x∆(t) = A(t)x(t) +
n

∑
i=1

f
(
t, x
(
δ(τi(t), t)

))
, (22)



Mathematics 2019, 7, 525 25 of 27

where A : T → Rn×n is δ-almost periodic, τi : T∗ → Π∗ is δ-almost periodic for every i = 1, 2, . . . , n,
f ∈ C(T×Rn,Rn) is uniformly δ-almost periodic.

Theorem 20. We give the following assumptions:

(H1) There exist positive constants K and α such that x∆(t) = A(t)x(t) admits an exponential dichotomy.
(H2) There exists M <

α

2Kn
such that for all t ∈ T and x, y ∈ Rn,

| f (t, x)− f (t, y)| ≤ M|x− y|.

Then there is an unique δ-almost periodic solution for (22).

Proof. For any ϕ ∈ APδ(T), consider the following equation

x∆(t) = A(t)x(t) +
n

∑
i=1

f
(
t, ϕ
(
δ(τi(t), t)

))
. (23)

It follows from Theorem 19 that (23) has a unique solution Tϕ ∈ APδ(T) as follows:

Tϕ(t) =
∫ t

−∞
X(t)PX−1(σ(s))

n

∑
i=1

f
(
s, ϕ
(
δ(τi(s), s)

))
∆s

−
∫ +∞

t
X(t)(I − P)X−1(σ(s))

n

∑
i=1

f
(
s, ϕ
(
δ(τi(s), s)

))
∆s.

Consider a mapping T : APδ(T) → APδ(T) given by (Tϕ)(t) = xϕ(t), ∀ x ∈ APδ(T). From (H1),
we can obtain

|X(t)PX−1(s)| ≤ Ke	α

(
t, ρ(s)

)
, s, t ∈ T, t ≥ s,

|X(t)(I − P)X−1(s)| ≤ Ke	α

(
s, ρ(t)

)
, s, t ∈ T, t ≤ s.

For any ϕ, ψ ∈ APδ(T), one can obtain

‖Tϕ− Tψ‖ ≤
∥∥∥∥ ∫ t

−∞
X(t)PX−1(σ(s))

n

∑
i=1

∣∣ f (s, ϕ
(
δ(τi(s), s)

))
− f

(
s, ψ
(
δ(τi(s), s)

))∣∣∆ s

−
∫ +∞

t
X(t)(I − P)X−1(σ(s))

n

∑
i=1

∣∣ f (s, ϕ
(
δ(τi(s), s)

))
− f

(
s, ψ
(
δ(τi(s), s)

))∣∣∆s
∥∥∥∥

≤
[∣∣∣∣ ∫ t

−∞
Ke	α(t, s)∆s

∣∣∣∣+ ∣∣∣∣ ∫ +∞

t
Ke	α(σ(s), t)∆s

∣∣∣∣] n

∑
i=1

M‖ϕ− ψ‖

≤ 2
α

KnM‖ϕ− ψ‖,

and from (H2), T is a contractive mapping. Therefore, we obtain the desired results.

5. Conclusions

In this paper, by employing the algebraic structure of matched spaces for time scales, some basic
results of the shift closedness including non-translational shift closedness of time scales are established.
This progress combines a larger scope of time scales without translation invariance. Based on matched
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spaces of time scales, we studied δ-almost periodic functions and some fundamental theorems are
established which can be used to study δ-almost periodic dynamic equations. Moreover, some sufficient
conditions to guarantee the existence of δ-almost periodic solutions are established for a new type of delay
dynamic equation whose delay function range is from a period set of the time scale and may be separated
from the time scale T. The results in this paper develop a new theory of almost periodic dynamic equations
which include almost periodic q-difference equations and other almost periodic dynamic equations on
irregular hybrid domains.
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