
mathematics

Article

Approximation of Fixed Points for Suzuki’s
Generalized Non-Expansive Mappings

Javid Ali 1, Faeem Ali 1,* and Puneet Kumar 2

1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India; javid.mm@amu.ac.in
2 Department of Mathematics and Statistics, Fiji National University, P.O. Box 3722, Samabula, Fiji;

puneetupc@gmail.com
* Correspondence: faeemrazaamu@gmail.com

Received: 14 May 2019; Accepted: 31 May 2019; Published: 6 June 2019
����������
�������

Abstract: In this paper, we study a three step iterative scheme to approximate fixed points of
Suzuki’s generalized non-expansive mappings. We establish some weak and strong convergence
results for such mappings in uniformly convex Banach spaces. Further, we show numerically that
the considered iterative scheme converges faster than some other known iterations for Suzuki’s
generalized non-expansive mappings. To support our claim, we give an illustrative numerical
example and approximate fixed points of such mappings using Matlab program. Our results are new
and generalize several relevant results in the literature.
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1. Introduction

Throughout this paper, we assume that N is the set of all positive integers. We consider that C is
a nonempty subset of a Banach space X and F(T), the set of all fixed points of the mapping T on C.
A mapping T : C → C is said to be non-expansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C. It is called
quasi non-expansive if F(T) 6= ∅ and ‖Tx− p‖ ≤ ‖x− p‖, for all x ∈ C and for all p ∈ F(T).

We know that F(T) is nonempty when X is uniformly convex, C is bounded closed convex subset
of X and T is non-expansive mapping, (cf. [1]).

In 2008, Suzuki [2] introduced the concept of generalized non-expansive mappings which is also
called condition (C) and defined as:

A self mapping T on C is said to satisfy condition (C) if,

1
2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖, ∀ x, y ∈ C.

Suzuki obtained existence of fixed points and convergence results for such mappings. Suzuki
also showed that the notion of mappings satisfying condition (C) is more general than the notion of
non-expansive mappings.

The following example supports the above claim.

Example 1 ([2]). Define a self mapping T on [0, 3] by

T(x) =

{
0, i f x 6= 3,
1, i f x = 3.
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Here T satisfies Suzuki’s condition (C), but T is not a non-expansive mapping.

On the other hand, Banach contraction principle states that fixed point of contraction mappings
can be approximated by Picard iterative scheme. In this scheme the sequence {xn} is defined as follows:{

x = x1 ∈ C,
xn+1 = Txn, n ∈ N.

(1)

It is well known that Picard iterative scheme does not converge to a fixed point of
non-expansive mappings.

Therefore, in 1953, Mann [3] introduced a new iterative scheme to approximate the fixed
points of non-expansive mappings. In this iterative scheme the sequence {xn} is defined in the
following manner: {

x = x1 ∈ C,
xn+1 = (1− an)xn + anTxn, n ∈ N,

(2)

where {an} is a sequence in (0, 1), satisfying appropriate conditions. It is also known that Mann
iterative scheme fails to converge to fixed points of pseudo-contractive mappings.

So in 1974, Ishikawa [4] introduced a two step Mann iterative scheme to approximate fixed points
of pseudo-contractive mappings, where the sequence {xn} is defined by

x = x1 ∈ C,
xn+1 = (1− an)xn + anTyn,
yn = (1− bn)xn + bnTxn , n ∈ N,

(3)

where {an} and {bn} are sequences in (0, 1), satisfying appropriate conditions.
Rhoades [5] made a remark on the rate of convergence of Mann and Ishikawa iterative schemes:

Mann iterative scheme for decreasing functions converges faster than Ishikawa scheme. For increasing
functions Ishikawa iterative scheme is better than Mann iterative scheme, also Mann iterative scheme
appears to be independent of the initial guess (see also [6]).

In 2000, Noor [7] introduced the following iterative scheme for general variational inequalities.
In this scheme {xn} is defined by

x = x1 ∈ C,
xn+1 = (1− an)xn + anTyn,
yn = (1− bn)xn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ N,

(4)

where {an}, {bn} and {cn} are sequences in (0, 1). He also studied the convergence criteria of this
scheme. After that, in 2007, Agrawal et al. [8] introduced the following two step iterative scheme for
nearly asymptotically non-expansive mappings. In this scheme {xn} is defined as follows:

x = x1 ∈ C,
xn+1 = (1− an)Txn + anTyn,
yn = (1− bn)xn + bnTxn, n ∈ N,

(5)

where {an} and {bn} are sequences in (0, 1). They claimed that newly defined iterative scheme
converges to a fixed point of contraction mappings same rate of convergence as Picard scheme but
converges faster than Mann iterative scheme.
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In 2014, Abbas and Nazir [9] introduced a new iterative scheme to approximate fixed points of
non-expansive mappings in uniformly convex Banach space. In this scheme the sequence {xn} starting
at initial guess x1 ∈ C is defined as:

x = x1 ∈ C,
xn+1 = (1− an)Tyn + anTzn,
yn = (1− bn)Txn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ N,

(6)

where {an}, {bn} and {cn} are sequences in (0, 1). Authors showed numerically that this scheme
converges to a fixed point of contraction mapping, faster than all of Picard, Mann and Agarwal iterative
schemes.

In 2014, Thakur et al. [10] introduced the following iterative scheme for non-expansive mappings.
In this scheme the sequence {xn} is defined as follows:

x = x1 ∈ C,
xn+1 = (1− an)Txn + anTyn,
yn = (1− bn)zn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ N,

(7)

where {an}, {bn} and {cn} are sequences in (0, 1). Authors proved that this process converges to a
fixed point of contraction mapping, faster than all of Picard, Mann, Ishikawa, Noor, Agarwal and
Abbas and Nazir iterative schemes in the sense of Berinde [11].

Recently, Sahu et al. [12] and Thakur et al. [13] introduced the following same iterative scheme
for non-expansive mappings in uniformly convex Banach space:

x = x1 ∈ C,
xn+1 = (1− an)Tzn + anTyn,
yn = (1− bn)zn + bnTzn,
zn = (1− cn)xn + cnTxn, n ∈ N,

(8)

where {an}, {bn} and {cn} are sequences in (0, 1). Authors proved that this scheme converges to a
fixed point of contraction mapping, faster than all the known iterative schemes. Also, the authors
provided an example to support their claim.

In 2011, Phuengrattana [14] proved convergence results for Suzuki’s generalized non-expansive
mappings by using Ishikawa iterative scheme in uniformly convex Banach spaces. Recently, fixed
point theorems for Suzuki’s generalized non-expansive mappings and nonlinear mappings have been
studied by a large number of researchers, e.g., see [15–20].

Motivated by the above, we prove some weak and strong convergence results using iterative
scheme (8) for Suzuki’s generalized non-expansive mappings in uniformly convex Banach spaces.
Our results generalize and extend the corresponding results of Sahu et al. [12], Thakur et al. [13] and
many others in the literature.

2. Preliminaries

In this section, we recall following definitions, propositions and lemmas which will be used in
our main results.

Definition 1. Let C be a nonempty, closed and convex subset of a Banach space X. A mapping T : C → X is
called demiclosed with respect to y ∈ X, if for each sequence {xn} in C and each x ∈ C, {xn} converges weakly
at x and {Txn} converges strongly at y imply that Tx = y.
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Definition 2. A Banach space X is said to satisfy Opial’s condition [21] if for each weakly convergent sequence
{xn} to x ∈ X,

lim
n→∞

inf ‖xn − x‖ < lim
n→∞

inf ‖xn − y‖

holds, for all y ∈ X, with y 6= x.

Definition 3. Let {xn} be a bounded sequence in a Banach space X. For x ∈ C ⊂ X, we set

r(x, {xn}) = lim
n→∞

sup ‖xn − x‖.

The asymptotic radius of {xn} relative to C is defined by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}.

The asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.

It is well known that, A(C, {xn}) consists exactly one point, in the case when X is uniformly convex
Banach space.

Proposition 1 ([2]). Let T be a self mapping on a nonempty subset C of a Banach space X.

(i) If T is non-expansive then T satisfies the condition (C).
(ii) Every mapping satisfying condition (C) with a fixed point is quasi non-expansive.

(iii) If T satisfies condition (C), then

‖x− Ty‖ ≤ 3‖Tx− y‖+ ‖x− y‖, ∀ x, y ∈ C.

Lemma 1 ([2]). Let T be a self mapping on a subset C of a Banach space X with the Opial’s property. Assume
that T satisfies condition (C). If {xn} converges weakly to z and lim

n→∞
‖xn − Txn‖ = 0, then Tz = z. That is,

I − T is demiclosed at zero.

Lemma 2 ([2]). Let T be a self map on a weakly compact convex subset C of a uniformly convex Banach space
X. Assume that T satisfies condition (C), then T has a fixed point.

Lemma 3 ([22]). Suppose X is uniformly convex Banach space and 0 < a ≤ sn ≤ b < 1 for all n ≥ 1. Let
{xn} and {yn} be two sequences in X such that lim

n→∞
sup ‖xn‖ ≤ d, lim

n→∞
sup ‖yn‖ ≤ d and lim

n→∞
sup ‖snxn +

(1− sn)yn‖ = d holds, for some d ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

3. Main Results

In this section, we prove some weak and strong convergence theorems using iterative scheme
(8) for Suzuki’s generalized non-expansive mappings in uniformly convex Banach spaces. First, we
obtain following useful lemmas to be use in next theorems.

Lemma 4. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X and let
T : C → C be a Suzuki’s generalized non-expansive mapping with F(T) 6= ∅. Let {xn} be a sequence defined
by iterative scheme (8), then lim

n→∞
‖xn − p‖ exists for all p ∈ F(T).
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Proof. Let p ∈ F(T) and z ∈ C. Since T satisfies condition (C), therefore by Proposition 1, T is quasi
non-expansive mapping. That is,

‖Tx− p‖ ≤ ‖x− p‖, f or all x ∈ C and f or all p ∈ F(T).

Now from iterative scheme (8), we get

‖zn − p‖ = ‖(1− cn)xn + cnTxn − p‖
≤ (1− cn)‖xn − p‖+ cn‖Txn − p‖
≤ (1− cn)‖xn − p‖+ cn‖xn − p‖
= ‖xn − p‖. (9)

And

‖yn − p‖ = ‖(1− bn)zn + bnTzn − p‖
≤ (1− bn)‖zn − p‖+ bn‖Tzn − p‖
≤ (1− bn)‖zn − p‖+ bn‖zn − p‖
= ‖zn − p‖
≤ ‖xn − p‖. (10)

Using (9) and (10), we have

‖xn+1 − p‖ = ‖(1− an)Tzn + anTyn − p‖
≤ (1− an)‖Tzn − p‖+ an‖Tyn − p‖
≤ (1− an)‖xn − p‖+ an‖xn − p‖
= ‖xn − p‖. (11)

This shows that the sequence {‖xn − p‖} is non-increasing and bounded below for all p ∈ F(T).
Hence, lim

n→∞
‖xn − p‖ exists.

Lemma 5. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X and let
T : C → C be a Suzuki’s generalized non-expansive mapping. Let {xn} be a sequence defined by iterative
scheme (8). Then F(T) 6= ∅ if and only if {xn} is bounded and lim

n→∞
‖xn − Txn‖ = 0.

Proof. By Lemma 4, lim
n→∞

‖xn − p‖ exists and {xn} is bounded. Put

lim
n→∞

‖xn − p‖ = α. (12)

From (9), (10) and (12), we have

lim
n→∞

sup ‖zn − p‖ ≤ lim
n→∞

sup ‖xn − p‖ ≤ α. (13)

lim
n→∞

sup ‖yn − p‖ ≤ lim
n→∞

sup ‖xn − p‖ ≤ α. (14)

Since T satisfies condition (C), we have

‖Txn − p‖ = ‖Txn − Tp‖ ≤ ‖xn − p‖

=⇒ lim
n→∞

sup ‖Txn − p‖ ≤ lim
n→∞

sup ‖xn − p‖ ≤ α. (15)
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Similarly,

lim
n→∞

sup ‖Tyn − p‖ ≤ lim
n→∞

sup ‖yn − p‖ ≤ α. (16)

lim
n→∞

sup ‖Tzn − p‖ ≤ lim
n→∞

sup ‖zn − p‖ ≤ α. (17)

Again,

α = lim
n→∞

‖xn+1 − p‖ = lim
n→∞

‖(1− an)Tzn + anTyn − p‖

= lim
n→∞

‖(1− an)(Tzn − p) + an(Tyn − p)‖. (18)

From (16)–(18) and using Lemma 3, we have

lim
n→∞

‖Tzn − Tyn‖ = 0. (19)

Now,

‖xn+1 − p‖ = ‖(1− an)Tzn + anTyn − p‖ ≤ ‖Tzn − p‖+ an‖Tyn − Tzn‖.

Taking the lim inf on both sides, we get

α = lim
n→∞

inf ‖xn+1 − p‖ ≤ lim
n→∞

inf ‖Tzn − p‖

=⇒ α ≤ lim
n→∞

inf ‖zn − p‖. (20)

So that, (13) and (20) give,
lim

n→∞
‖zn − p‖ = α.

Thus,

α = lim
n→∞

‖zn − p‖ = lim
n→∞

‖(1− cn)xn + cnTxn − p‖

= lim
n→∞

‖(1− cn)(xn − p) + cn(Txn − p)‖. (21)

From (12), (15), (21) and using Lemma 3, we have

lim
n→∞

‖xn − Txn‖ = 0.

Conversely, assume that {xn} is bounded and lim
n→∞

‖xn − Txn‖ = 0. Let p ∈ A(C, {xn}),
by Proposition 1, we have

r(Tp, {xn}) = lim
n→∞

sup ‖xn − Tp‖

≤ lim
n→∞

sup(3‖Txn − xn)‖+ ‖xn − p‖)

= lim
n→∞

sup ‖xn − p‖

= r(p, {xn}) = r(C, {xn}).

=⇒ Tp ∈ A(C, {xn}). Since X is uniformly convex, A(C, {xn}) is singleton, hence we have Tp = p.

Theorem 1. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X and let
T : C → C be a Suzuki’s generalized non-expansive mapping. Let {xn} be a sequence defined by iterative
scheme (8). Assume that X satisfies Opial’s condition, then {xn} converges weakly to a point of F(T).
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Proof. Let p ∈ F(T), then lim
n→∞

‖xn − p‖ exists by Lemma 4. Now we prove that {xn} has unique

weak sub-sequential limit in F(T). Let x and y be weak limits of the subsequences {xnj} and {xnk} of
{xn} respectively. From Lemma 5, lim

n→∞
‖xn − Txn‖ = 0 and I − T is demiclosed at zero by Lemma 1.

This implies that (I − T)x = 0 =⇒ x = Tx, similarly Ty = y.
Next we show uniqueness. If x 6= y, then by using Opial’s condition,

lim
n→∞

‖xn − x‖ = lim
nj→∞

‖xnj − x‖

< lim
nj→∞

‖xnj − y‖

= lim
n→∞

‖xn − y‖

= lim
nk→∞

‖xnk − y‖

< lim
nk→∞

‖xnk − x‖

= lim
n→∞

‖xn − x‖.

This is a contradiction, so x = y. Consequently, {xn} converges weakly to a point of F(T).

Theorem 2. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X and let T :
C → C be a Suzuki’s generalized non-expansive mapping. Let {xn} be a sequence defined by iterative scheme (8).
Then {xn} converges to a point of F(T) if and only if lim

n→∞
inf d(xn, F(T)) = 0 or lim

n→∞
sup d(xn, F(T)) = 0,

where d(xn, F(T)) = inf{‖xn − p‖ : p ∈ F(T)}.

Proof. Necessity is obvious.
Conversely, assume that lim

n→∞
inf d(xn, F(T)) = 0. From Lemma 4, lim

n→∞
‖xn − p‖ exists, for all

p ∈ F(T) therefore lim
n→∞

d(xn, F(T)) = 0 by assumption. We show that {xn} is a Cauchy sequence in C.

As lim
n→∞

d(xn, F(T)) = 0, for given ε > 0, there exists m0 ∈ N such that for all n ≥ m0,

d(xn, F(T)) <
ε

2

=⇒ inf{‖xn − p‖ : p ∈ F(T)} <
ε

2
.

In particular, inf{‖xm0 − p‖ : p ∈ F(T)} < ε
2 . Therefore there exists p ∈ F(T) such that

‖xm0 − p‖ < ε

2
.

Now for m, n ≥ m0,

‖xn+m − xn‖ ≤ ‖xn+m − p‖+ ‖xn − p‖
≤ ‖xm0 − p‖+ ‖xm0 − p‖
= 2‖xm0 − p‖ < ε.

This shows that {xn} is a Cauchy sequence in C. As C is closed subset of a Banach space
X, so that there exists a point q ∈ C such that lim

n→∞
xn = q. Now lim

n→∞
d(xn, F(T)) = 0 gives that

d(q, F(T)) = 0 =⇒ q ∈ F(T).

Theorem 3. Let C be a nonempty, compact and convex subset of a uniformly convex Banach space X, and let T
and {xn} be as in Lemma 5, then the sequence {xn} converges strongly to a fixed point of T.



Mathematics 2019, 7, 522 8 of 11

Proof. By Lemma 2, F(T) 6= ∅, so by Lemma 5, we have lim
n→∞

‖Txn − xn‖ = 0. Since C is compact,

there exists a subsequence {xnj} of {xn} such that xnj → p strongly for some p ∈ C. By Proposition 1,
we have

‖xnj − Tp‖ ≤ 3‖Txnj − xnj‖+ ‖xnj − p‖, ∀ j ≥ 1.

Letting j→ ∞, we get that xnj → Tp. This implies that Tp = p i.e., p ∈ F(T). Also, lim
n→∞

‖xn − p‖
exists by Lemma 4. Thus p is the strong limit of the sequence {xn} itself.

Senter and Dotson [23] introduced the notion of mapping satisfying condition (I) which is defined
as follows.

Definition 4. A self map T on C is said to satisfy condition (I), if there is a nondecreasing function h :
[0, ∞) → [0, ∞) with h(0) = 0 and h(r) > 0, ∀ r > 0 such that d(x, Tx) ≥ h(d(x, F(T))), for all x ∈ C,
where d(x, F(T)) = inf{d(x, p) : p ∈ F(T)}.

Now we also prove a strong convergence result using condition (I).

Theorem 4. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X and let
T : C → C be a Suzuki’s generalized non-expansive mapping satisfying condition (I). Then the sequence {xn}
defined by iterative scheme (8) converges strongly to a fixed point of T.

Proof. We proved in Lemma 5 that

lim
n→∞

‖xn − Txn‖ = 0. (22)

From condition (I) and (22), we get

0 ≤ lim
n→∞

h(d(xn, F(T))) ≤ lim
n→∞

‖xn − Txn‖ = 0

=⇒ lim
n→∞

h(d(xn, F(T))) = 0.

Since h : [0, ∞)→ [0, ∞) is a nondecreasing function satisfying h(0) = 0, h(r) > 0, ∀ r > 0, hence
we have

lim
n→∞

(d(xn, F(T))) = 0.

Now all the conditions of Theorem 2 are satisfied, therefore by its conclusion {xn} converges
strongly to a fixed point of T.

Remark 1. All the results in this paper generalize the corresponding results of Sahu et al. [12], Thakur et al.
[13] and many others because mappings here are generalized non-expansive and iterative scheme is more general
than the others.

Now, we furnish the following example to support our results.

Example 2. Define a self mapping T on [1, 2] by

T(x) =

{
3− x, i f x ∈ [1, 10

9 ),
x+16

9 , i f x ∈ [ 10
9 , 2].

Here T is a Suzuki’s generalized non-expansive mapping, but T is not a non-expansive.
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Verification. Take x = 111
100 and y = 10

9 , then

‖x− y‖ = ‖111
100
− 10

9
‖ = 1

900
.

And

‖Tx− Ty‖ = ‖3− 111
100
− 154

81
‖

=
91

8100
>

1
900

= ‖x− y‖.

Hence T is not a non-expansive mapping.
Now we verify that T is a Suzuki’s generalized non-expansive mapping.
Here following cases arise:

Case I. If either x, y ∈ [1, 10
9 ) or x, y ∈ [ 10

9 , 2]. Then in both the cases T is non-expansive mapping and
hence T is Suzuki’s generalized non-expansive mapping.

Case II. Let x ∈ [1, 10
9 ). Then 1

2‖x− Tx‖ = 1
2‖x− (3− x)‖ = 1

2‖2x− 3‖ ∈ ( 7
18 , 1

2 ]. For 1
2‖x− Tx‖ ≤

‖x− y‖, we must have 3−2x
2 ≤ y− x =⇒ y ≥ 3

2 and hence y ∈ [ 3
2 , 2]. Now,

‖Tx− Ty‖ = ‖y + 16
9
− 3 + x‖ = ‖y + 9x− 11

9
‖ < 1

9
.

And
‖x− y‖ = |x− y| > |10

9
− 3

2
| = |20− 27

18
| = 7

18
>

1
9

.

Hence 1
2‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Case III. Let x ∈ [ 10
9 , 2]. Then 1

2‖x − Tx‖ = 1
2‖

x+16
9 − x‖ = ‖ 16−8x

18 ‖ ∈ [0, 64
162 ]. For

1
2‖x− Tx‖ ≤ ‖x− y‖, we must have 16−8x

18 ≤ |x− y|, which gives two possibilities:

(a) Let x < y, then 16−8x
18 ≤ y− x, i.e., 10x+16

18 ≤ y =⇒ y ∈ [ 244
162 , 2] ⊂ [ 10

9 , 2]. So

‖Tx− Ty‖ = ‖ x + 16
9
− y + 16

9
‖ = 1

9
‖x− y‖ ≤ ‖x− y‖.

Hence 1
2‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

(b) Let x > y, then 16−8x
18 ≤ x − y, i.e., y ≤ 26x−16

18 =⇒ y ≤ 116
162 and y ≤ 2, so y ∈ [1, 2]. Since

y ∈ [1, 2] and y ≤ 26x−16
18 =⇒ 18y+16

26 ≤ x. Since x ∈ [ 34
26 , 2] and y ∈ [ 10

9 , 2] is already included in Case
I. Therefore consider, x ∈ [ 34

26 , 2] and y ∈ [1, 10
9 ). Then

‖Tx− Ty‖ = ‖ x + 16
9
− 3 + y‖ = ‖ x + 9y− 11

9
‖ < 1

9
.

And
‖x− y‖ = |x− y| > |34

6
− 10

9
| = |306− 260

234
| = 46

234
>

1
9

.

Hence 1
2‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖.

Thus T is Suzuki’s generalized non-expansive mapping.
With help of Matlab Program Software, we obtain the comparison Table 1 and Figure 1 for various

iterative schemes with control sequences an = 0.85, bn = 0.65, cn = 0.45 and initial guess x1 = 1.2.
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Table 1. A comparison table of iterative schemes.

Item Picard Mann Ishikawa Noor Agarwal Abbas Thakur Sahu, Thakur

1 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000 1.200000
2 1.911111 1.804444 1.848099 1.850281 1.954765 1.953570 1.967526 1.972859
3 1.990123 1.952198 1.971158 1.971980 1.997442 1.997305 1.998682 1.999079
4 1.998903 1.988315 1.994523 1.994756 1.999855 1.999844 1.999946 1.999969
5 1.999878 1.997144 1.998960 1.999019 1.999992 1.999991 1.999998 1.999999
6 1.999986 1.999302 1.999803 1.999816 2.000000 1.999999 2.000000 2.000000
7 1.999998 1.999829 1.999963 1.999966 2.000000 2.000000 2.000000 2.000000
8 2.000000 1.999958 1.999993 1.999994 2.000000 2.000000 2.000000 2.000000
9 2.000000 1.999990 1.999999 1.999999 2.000000 2.000000 2.000000 2.000000
10 2.000000 1.999998 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
11 2.000000 1.999999 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
12 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000

Figure 1. Convergence behavior of Sahu iterative scheme with other iterative schemes.

Remark 2. The iterative scheme (8) converges faster than the Picard, Mann, Ishikawa, Noor, Agarwal, Abbas
and Thakur iterative schemes for Suzuki’s generalized non-expansive mappings as shown in the above table
and figure. The class of Suzuki’s generalized non-expansive mappings is bigger than the class of non-expansive
mappings as shown in the Example 2.
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