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Abstract: In this article, by the use of the lower and upper solutions method, we prove the existence
of a positive solution for a Riemann–Liouville fractional boundary value problem. Furthermore, the
uniqueness of the positive solution is given. To demonstrate the serviceability of the main results,
some examples are presented.
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1. Introduction

The aim of this work is to study the existence and uniqueness of the positive solution for the
following problem: {

Dα
0+k(t) = j(t, k(t)), 1 < α ≤ 2, 0 < t < 1 ,

k(0) = 0, βk(1)− γk(η) = 0, η ∈ [0, 1] ,
(1)

where β, γ, and η are positive real numbers such that β− 2γηα−1 > 0, j is a nonnegative continuous
function on [0, 1] × [0, ∞), and Dα

0+ is the fractional derivative in the sense of Riemann–Liouville.
This type of equation is important in many disciplines such as chemistry, aerodynamics, polymer
rheology, etc.

Different techniques are used in such problems to obtain the existence of solutions, for example
the variational method, the Adomian decomposition method, etc.; we refer the reader to [1–8] and
references therein.

Existence results of nonlinear fractional problems are given by the use of fixed point theorems;
see [9–15]. More precisely, the authors in [12] gave the existence of positive solutions for the following
equation:

Dα
0+k(t) + j(t, k(t)) = 0, 1 < α ≤ 2, 0 < t < 1,

according to some boundary conditions.
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Using the theory of the fixed point index, the author in [11], presented the existence of the positive
solution for the following system:{

Dα
0+k(t) + j(t, k(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

k(0) = 0, βk(η) = k(1).

Recently, the upper solution method and lower solution method have been the aim of many papers;
see for example the book [16] and the recent papers [17–30]. The main idea of this method is to study
some modified problem and, then, give the existence results for the principal problem.

Motivated by the above works, in this article, we will present a new method to study the given
problem, that is we combine the lower and upper solution method with the fixed point theorem
method in order to prove the existence and uniqueness of the positive solution. Let us assume the
following:

Hypothesis (H1). The function j is nonnegative and continuous on [0, 1]× [0,+∞).

Hypothesis (H2). For each t ∈ [0, 1], the function j(t, .) is bounded and increasing on [0,+∞).

Hypothesis (H3). There exists a function a : [0, 1]→ [0, ∞) such that the function j satisfies:

|j(s, x)− j(s, y)| ≤ a(s)|x− y|, ∀ s ∈ [0, 1], ∀ x, y ≥ 0. (2)

The main theorems of this paper are summarized as follows.

Theorem 1. Under Hypotheses (H1)–(H2). If β− 2γηα−1 > 0, then Equation (1) admits a positive solution.

Theorem 2. Under hypothesis (H3), if β− 2γηα−1 > 0 and if:

∫ 1

0
[1 +

β

(β− γηα−1)
(1− δ)α−1]δα−1a(δ)dδ < Γ(α), (3)

then Equation (1) admits a unique positive solution.

2. Preliminaries

In this section, we collect some basic results and notations that will be used in the
forthcoming sections.

We denote by L(0, 1) the set of all integrable functions on (0, 1) and by C(0, 1) the set of functions
that are continuous on (0, 1).

Lemma 1 ([31]). Let α > 0, N = [α] + 1. Assume that the function k is in C(0, 1) ∩ L(0, 1). Then,
the following equation:

Dα
0+k(t) = 0,

admits a unique solution. Moreover, this solution is given by:

k(t) = C1tα−1 + C2tα−2 + . . . + CNtα−N ,

for some Ci ∈ R, where i = 1, 2, ..., N.

Lemma 2 ([31]). Let α > 0 and N = [α] + 1. Assume that either k and Dα
0+k are in C(0, 1) ∩ L(0, 1). Then,

there exists Ci ∈ R, for i = 1, 2, ..., N, such that:

Iα
0+Dα

0+k(t) = k(t)− C1tα−1 − C2tα−2 − . . .− CNtα−N .
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Now, we give the Green function associated with the problem (1).

Theorem 3. If 1 < α < 2 and h is continuous in [0, 1], then equation:

Dα
0+k(t) + h(t) = 0, 0 < t < 1, (4)

with the following conditions:

k(0) = 0, βk(1)− γk(η) = 0, η ∈ [0, 1], (5)

admits a unique solution, which is given by:

k(t) =
∫ 1

0
G(t, δ)h(δ)dδ,

with G(t, δ) being the Green function defined by:

Γ(α)G(t, δ)

= (t− δ)α−1χ[0,t](δ) +
tα−1

β− γηα−1

[
β(1− δ)α−1 − γ(η − δ)α−1χ[0,η](δ)

]
, (6)

where χA is the function defined by:

χA(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

Proof. From Equation (4) and using Lemma 2, there exist two real numbers C1 and C2 such that:

k(t) = −Iα
0+h(t) + C1tα−1 + C2tα−2.

It follows that:

k(t) =
∫ t

0

(t− δ)α−1

Γ(α)
h(δ)dδ + C1tα−1 + C2tα−2. (7)

Since k(0) = 0, then C2 = 0.
On the other hand:  k(1) =

∫ 1
0

(1−δ)α−1

Γ(α) h(δ)dδ + C1,

k(η) =
∫ η

0
(η−δ)α−1

Γ(α) h(δ)dδ + C1ηα−1.

As βk(1)− γk(η) = 0, then we have:

C1 =
β
∫ 1

0
(1−δ)α−1

Γ(α) h(δ)− γ
∫ η

0
(η−δ)α−1

Γ(α) h(δ)dδ

β− γηα−1 . (8)

By substituting the values of C1 and C2 into Equation (7), we get:

k(t)

=
∫ t

0

(t− δ)α−1

Γ(α)
h(δ)dδ +

1
β− γηα−1

[
β
∫ 1

0

(1− δ)α−1

Γ(α)
h(δ)dδ− γ

∫ η

0

(η − δ)α−1

Γ(α)
h(δ)dδ

]
tα−1

=
1

Γ(α)

∫ 1

0

[
(t− δ)α−1χ[0,t](δ) +

1
β− γηα−1

{
β(1− δ)α−1 − γ(η − δ)α−1χ[0,η](δ)

}
tα−1

]
h(δ)dδ.
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That is:

k(t) =
∫ t

0
G(t, δ)h(δ)dδ.

It follows that for all real numbers t, δ ∈ [0, 1], we have:

G(t, δ) =
(t− δ)α−1

Γ(α)
χ[0,t](δ) +

1
Γ(α)(β− γηα−1)

[
β(1− δ)α−1 − γ(η − δ)α−1χ[0,η](δ)

]
tα−1.

Proposition 1. Let G be the function given by Equation (6), then we have the following properties:

(i) Put q(δ) = 2β−γηα−1

Γ(α)(β−γηα−1)
(1− δ)α−1, then we have:

G(t, δ) ≤ q(δ), ∀ t, δ ∈ [0, 1].

(ii) Put p(t) = β

β−γηα−1 tα−1, then we obtain:

G(t, δ) ≥ q(δ)p(t), ∀ t, δ ∈ [0, 1].

Proof. (i) Firstly, we remark that G(1, δ) is given by:

G(1, δ) =
1

Γ(α)

 (1− δ)α−1 + 1
β−γηα−1

{
β(1− δ)α−1 − γ(η − δ)α−1

}
, if 0 ≤ δ ≤ η

(1− δ)α−1 + 1
β−γηα−1 β(1− δ)α−1 , if η ≤ δ ≤ 1.

On the other hand, for all δ ∈ [0, 1], the function t 7−→ G(t, δ) is increasing, so, for any t, δ ∈ [0, 1],
we have:

G(t, δ) ≤ G(1, δ).

As γ > 0, it is easy to see that:

Γ(α)G(t, δ) ≤ (1− δ)α−1 +
1

β− γηα−1 β(1− δ)α−1

=
2β− γηα−1

β− γηα−1 (1− δ)α−1, ∀t, δ ∈ [0, 1].

That is, if t, δ ∈ [0, 1], then we have:
G(t, δ) ≤ q(δ).
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(ii) If 0 ≤ η ≤ t < 1, then using (6) and the fact that β− 2γηα−1 > 0, we obtain:

G(t, δ)

= q(δ)


β−γηα−1

2β−γηα−1

(
t−δ
1−δ

)α−1
+ 1

2β−γηα−1

{
β− γ( η−δ

1−δ )
α−1
}

tα−1, if 0 ≤ δ ≤ η

β−γηα−1

2β−γηα−1

(
t−δ
1−δ

)α−1
+ β

2β−γηα−1 tα−1, if η ≤ δ ≤ t
β

2β−γηα−1 tα−1, if t ≤ δ < 1

≥ q(δ)


p(t) + β−γηα−1

2β−γηα−1

(
t−δ
1−δ

)α−1
− γ

2β−γηα−1 (
η−δ
1−δ )

α−1tα−1, if 0 ≤ δ ≤ η

p(t) + β−γηα−1

2β−γηα−1

(
t−δ
1−δ

)α−1
, if η ≤ δ ≤ t

p(t), if t ≤ δ < 1,

≥ q(δ)

 p(t) +
(β− γηα−1)(t− δ)α−1 − γ(η − δ)α−1tα−1

2β− γηα−1 , if 0 ≤ δ ≤ η

p(t), if η ≤ δ < 1,

≥ q(δ)

 p(t) + 1
2β−γηα−1

[
(β− γηα−1)tα−1 − γηα−1tα−1

]
, if 0 ≤ δ ≤ η

p(t), if η ≤ δ < 1,

≥ q(δ)

{
p(t) + 1

2β−γηα−1 (β− 2γηα−1)tα−1, if 0 ≤ δ ≤ η

p(t), if η ≤ δ < 1,

≥ p(t)q(δ),

where p(t) = β

2β−γηα−1 tα−1. The proof of Proposition 1 is now completed.

3. Proof of the Main Results

This section is devoted to proving our main results. To this aim, we will apply the following
lemma.

Lemma 3 (See [32]). Let E be a semi-order Banach space and P be a cone in E. Let D ⊂ P and a nondecreasing
operator T : D → E. Assume that the equation x − T(x) = 0 admits a lower solution x0 ∈ D and an
upper solution y0 ∈ D, with x0 ≤ y0. Assume that if x0 ≤ x ≤ y0, then x ∈ D. If one of the following
statements holds:

(i) P is normal, and T is compact continuous.
(ii) P is regular, and T is continuous.
(ii) E is reflexive, P normal, and T continuous or weak continuous.

Then, the equation
T(x) = x,

admits a maximum solution x∗ and admits a minimum solution y∗ such that x0 ≤ x∗ ≤ y∗ ≤ y0.

Note that a function v (resp. A function w) is called the lower solution (resp. upper solution) of
operator T if:

v(t) ≤ Tv(t), ( resp. w(t) ≥ Tw(t)).

Let E = C[0, 1], equipped with the supremum norm. Put P = {k ∈ E k(t) ≥ 0; 0 ≤ t ≤ 1}, which
is a cone in E. Define T on P by:

T(k)(t) =
∫ 1

0
G(t, δ)j(δ, k(δ))dδ,
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so it is not difficult to see that k is a solution for Equation (1) if and only if T(k) = k.

Proof of Theorem 1. We divide the proof into four steps.

Step 1: We will prove that T maps P into itself and that it is completely continuous.

First, since G and j are nonnegative and continuous, it is easy to see that T maps P into itself and
that it is continuous. Let Ω be a bounded subset of P, which is to say the existence of M > 0 with:

‖k‖ ≤ M, ∀ k ∈ Ω.

Put:
L = max

0≤t≤1,k∈Ω
|h(t, k)|.

Then, for all k in Ω, we get:

|Tk(t)| ≤
∫ 1

0
G(t, δ)|h(δ, k(δ))|dδ ≤ L

∫ 1

0
G(t, δ)dδ.

That is, T(Ω) is a bounded subset of P.
Now, for any k ∈ Ω and 0 ≤ t1 < t2 ≤ 1, we have:

|Tk(t2)− Tk(t1)| = |
∫ 1

0
G(t2, δ)h(δ, k(δ))dδ−

∫ 1

0
G(t1, δ)h(δ, k(δ))dδ|

= |
∫ 1

0
(G(t2, δ)− G(t1, δ))h(δ, k(δ))dδ|

≤
∫ 1

0
|G(t2, δ)− G(t1, δ)||h(δ, k(δ))|dδ

≤ L
∫ 1

0
|G(t2, δ)− G(t1, δ)|dδ

≤ L

( ∫ t1

0
|G(t2, δ)− G(t1, δ)|dδ +

∫ t2

t1

|G(t2, δ)− G(t1, δ)|dδ +
∫ 1

t2

|G(t2, δ)− G(t1, δ)|dδ

)

≤ L

(
I1 + I2 + I3

)

where:

I1 =
∫ t1

0
|G(t2, δ)− G(t1, δ)|dδ

≤
∫ t1

0
|(t2 − δ)α−1χ[0,t2]

(δ)− (t1 − δ)α−1χ[0,t1]
(δ)|dδ

+
(tα−1

2 − tα−1
1 )

β− γηα−1

∫ t1

0
|β(1− δ)α−1 − γ(η − δ)α−1χ[0,η](δ)|dδ

=


1
α

(
tα
2 − (t2 − t1)

α − tα
1

)
+

(tα−1
2 −tα−1

1 )

β−γηα−1

( β
α (1− (1− t1)

α) + γηα

α

)
, if η < t1

tα
2−tα

1
α +

(tα−1
2 −tα−1

1 )

β−γηα−1

( β
α (1− (1− t1)

α) + γ
ηα−(η−t1)

α

α

)
, if η > t1
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I2 =
∫ t2

t1

|G(t2, δ)− G(t1, δ)|dδ

≤
∫ t2

t1

|(t2 − δ)α−1χ[0,t2]
(δ)− (t1 − δ)α−1χ[0,t1]

(δ)|dδ

+
(tα

2 − (t2 − t1)
α)

β− γηα−1

∫ t2

t1

|β(1− δ)α−1 − γ(η − δ)α−1χ[0,η](δ)|dδ

=



1
α (t2 − t1)

α +
(tα−1

2 −tα−1
1 )

β−γηα−1
β
α

(
(1− t1)

α − (1− t2)
α
)
, if 0 ≤ η < t1

tα
2−tα

1
α ++

(tα−1
2 −tα−1

1 )

β−γηα−1

{
β
α

(
(1− t1)

α − (1− t2)
α
)
− γ

α (t1 − η)α

}
, if t1 ≤ η ≤ t2

tα
2−tα

1
α ++

(tα−1
2 −tα−1

1 )

β−γηα−1

{
β
α

(
(1− t1)

α − (1− t2)
α
)
+ γ

α [(t2 − η)α − (t1 − η)α]

}
, if t2 ≤ η ≤ 1

,

I3 =
∫ 1

t2

|G(t2, δ)− G(t1, δ)|dδ

≤
∫ t2

t1

|(t2 − δ)α−1χ[0,t2]
(δ)− (t1 − δ)α−1χ[0,t1]

(δ)|dδ

≤
∫ t2

t1

|(t2 − δ)α−1χ[0,t2]
(δ)− (t1 − δ)α−1χ[0,t1]

(δ)|dδ

+
(tα

2 − (t2 − t1)
α)

β− γηα−1

∫ t2

t1

|β(1− δ)α−1 − γ(η − δ)α−1χ[0,η](δ)|dδ

=


tα−1
2 −tα−1

1
β−γηα−1

β
α (1− t2)

α, if η < t2

tα−1
2 −tα−1

1
β−γηα−1

{
β
α (1− t2)

α − γ
α (η − t2)

α

}
, if t2 < 1.

Then, we obtain that:

|Tk(t2)− Tk(t1)| ≤ L(I1 + I2 + I3)

≤ L
(

tα
2 − tα

1
α

+
tα−1
2 − tα−1

1
β− γηα−1 (

β− γηα

α
)

)
.

Since tα and tα−1 are uniformly continuous when t ∈ [0, 1] and 1 < α < 2, it is easy to prove that
T(Ω) is equicontinuous. From the Arzela–Ascoli theorem (see [33], we deduce that T(Ω) is a compact
subset. That is, T : P→ P is a completely continuous operator.

Step 2: T is an increasing operator.

Let 0 ≤ t ≤ 1. Since the function δ 7−→ j(t, δ) is nondecreasing, then there exists a > 0, such that
the function [0, a] 3 δ 7−→ j(t, δ) is strictly increasing. It follows that for k1 ≤ k2, we have:

Tk1(t) =
∫ 1

0
G(t, δ)h(δ, k1(δ))dδ ≤

∫ 1

0
G(t, δ)h(δ, k2(δ))dδ = Tk2(t).

Step 3: For each t ∈ [0, 1] and from (H2), there exists M > 0 with 0 < j(t, k(t)) < M. It follows by
applying Theorem 3 that equation:{

Dα
0+w(t) + M = 0, 0 < t < 1, 1 < α ≤ 2,

w(0) = 0, βw(1)− γw(η) = 0 , η ∈ [0, 1].
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has a solution w. Moreover, this solution satisfies:

w(t) =
∫ 1

0
G(t, δ)Mdδ ≥

∫ 1

0
G(t, δ)j(t, w(δ))dδ = Tw(t).

That is, the operator T admits w as an upper solution.
On the other hand, the operator T admits the zero function as a lower solution; moreover:

0 ≤ w(t) ∀ 0 ≤ t ≤ 1.

Step 4: Since P is a normal cone, Lemma 3 implies that T admits a fixed point k ∈ 〈0, w(t)〉. Therefore,
Equation (1) admits a positive solution.

Proof of Theorem 2. To prove Theorem 2, we begin to prove that T has a fixed point. We remark that
if for n large enough, Tn is a contraction operator, then T has a unique fixed point. Indeed, assume
that for n large enough, Tn is a contraction operator, and fix x ∈ E. Since T is an increasing operator,
which is uniformly bounded, then the sequence {Tmx}m∈N is convergent, that is there is p ∈ E such
that lim

m→∞
Tmx = p. Since T is continuous, we get:

Tp = T lim
m→∞

Tm p = lim
m→∞

Tm+1 = p,

On the other hand, if p is a fixed point for the operator T, then it is also a fixed point for the
operator Tn, so we obtain the uniqueness of p.

Now, let us prove that for n large enough, the operator Tn is a contraction. Let k, v ∈ P,
then we have:

|Tk(t)− Tv(t)| =
∫ 1

0
G(t, δ)|j(δ, k(δ))− j(δ, v(δ))|dδ

≤
∫ 1

0
G(t, δ)a(δ)|k(δ)− v(δ)|dδ

≤ ‖k− v‖
Γ(α)

∫ 1

0
[(t− δ)α−1 +

tα−1β

(β− γηα−1)
(1− δ)α−1]a(δ)dδ

≤ ‖k− v‖tα−1

Γ(α)

∫ 1

0
[1 +

β

(β− γηα−1)
(1− δ)α−1]a(δ)dδ

≤ ‖k− v‖tα−1

Γ(α)
K,

where K =
∫ 1

0 [1 +
β

(β−γηα−1)
(1− δ)α−1]a(δ)dδ.

Similarly, we have:

|T2k(t)− T2v(t)| =
∫ 1

0
G(t, δ)|j(δ, Tk(δ))− j(δ, Tv(δ))|dδ

≤
∫ 1

0
G(t, δ)a(δ)|Tk(δ)− Tv(δ)|dδ

≤
∫ 1

0
G(t, δ)a(δ)

‖k− v‖δα−1

Γ(α)
Kdδ

≤ ‖k− v‖tα−1

Γ(α)2

∫ 1

0
[1 +

β

(β− γηα−1)
(1− δ)α−1]δα−1a(δ)dδ

≤ ‖k− v‖tα−1

Γ(α)2 KH,
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where H =
∫ 1

0 [1 +
β

(β−γηα−1)
(1− δ)α−1]δα−1a(δ)dδ.

By mathematical induction, it follows that:

|Tnk(t)− Tnv(t)| ≤ ‖k− v‖tα−1

Γ(α)n KHn−1.

By using (3), we get:
H

Γ(α)
< 1.

Then, for n large enough, it follows that:

KHn−1

Γ(α)n =
K

Γ(α)

(
H

Γ(α)

)n−1

< 1.

Hence, it holds that:

|Tnk(t)− Tnv(t)| < ‖k− v‖tα−1 ≤ ‖k− v‖,

and this completes the proof.

4. Examples

In this section, some examples are presented in order to illustrate the usefulness of our
main results.

Example 1. Consider the system:{
Dα

0+k(t) =
√

te−k(t), 0 < t < 1, 1 < α ≤ 2,
k(0) = 0, βk(1)− γk(η) = 0, η ∈ [0, 1] ,

(9)

where β, γ > 0, β− 2γηα−1 > 0.
Note that since for any t ∈ [0, 1], we have 0 <

√
te−k(t) <

√
t, which implies that Conditions (H1) and

(H2) hold. On the other hand, there is an equivalence between the solution of Problem (9) and the fixed point of
the operator T given by:

Tk(t) =
∫ 1

0
G(t, δ)

√
δe−k(δ)dδ.

Take w(t) =
∫ 1

0 G(t, δ)
√

δdδ and v(t) ≡ 0, then:

w(t) ≥
∫ 1

0
G(t, δ)

√
δe−w(δ)dδ = Tw(t),

which implies that the operator T admits the function w as an upper solution. Moreover, it is obvious that
the zero function is a lower solution for T. Hence, from Theorem 1, we conclude that Problem (9) admits a
positive solution.

Example 2. In the second example, we study the following problem:{
D3/2

0+ k(t) = sin t
(1+t2)

arctan(1 + k(t)), 0 < t < 1,

k(0) = 0, βk(1)− γk(η) = 0, η ∈ [0, 1] ,
(10)

where β, γ > 0, β− 2γ
√

η > 0.
Note that arctan(1 + k(t)) < π

2 for each t ∈ [0, 1], then j(t, k(t)) = sin t
(1+t2)

arctan(1 + k(t)) is an
increasing and bounded function on k. Therefore, we can easily prove that Conditions (H1) and (H2) are
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satisfied.
Take w(t) =

∫ 1
0 G(t, δ) sin δ

(1+δ2)
dδ and v(t) ≡ 0, then:

w(t) ≥
∫ 1

0
G(t, δ)

√
δ

sin δ

(1 + δ2)
arctan(1 + k(δ))dδ = Tw(t),

which implies that T admits the function w as an upper solution and the zero function as a lower solution. Thus,
from Theorem 1, we obtain a positive solution to Problem (9).

Example 3. In this example, we take β = 1, γ = 0, and η ∈ [0, 1], and we consider the following problem:{
D

3
2 y(t) = λy(t) + f (t),

y(0) = 0, y(1) = 0,
(11)

where f is a nonnegative function. It is clear that we have:

j(t, x) = λx + f (t),

and α = 3
2 . Moreover, for all t ∈ [0, 1], one has:

|j(t, x1)− j(t, x2)| ≤ λ|x1 − x2|, that is a(t) = λ,

and: ∫ 1

0
[1 +

β

(β− γηα−1)
(1− δ)α−1]δα−1a(δ)dδ = λ

∫ 1

0

(
1 + (1− δ)α−1

)
δα−1dδ

= λ(B(1, α) + B(α, α))

= λΓ(α)
(

1
Γ(α + 1)

+
Γ(α)
Γ(2α)

)
= λΓ(

3
2
)

(
1

Γ( 5
2 )

+
Γ( 3

2 )

Γ(3)

)
< Γ(

3
2
),

for all 0 < λ < 12
√

π
16+3π , where B(., .) is the beta function.

Finally, all conditions of Theorem 2 are satisfied. Therefore, for 0 < λ < 12
√

π
16+3π , Problem (11) admits a

unique solution.
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