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Abstract: In this paper, we consider the Wiener–Poisson risk model, which consists of a Wiener
process and a compound Poisson process. Given the discrete record of observations, we use a
threshold method and a regularized Laplace inversion technique to estimate the survival probability.
In addition, we also construct an estimator for the distribution function of jump size and study its
consistency and asymptotic normality. Finally, we give some simulations to verify our results.
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1. Introduction

Let S = {St}t≥0 with S0 = 0 be a compound Poisson process defined as

St =
Nt

∑
i=1

γi, t ≥ 0,

where {Nt}t≥0 is a Poisson process with unknown intensity λ > 0, and γ1, γ2, γ3, ... are independent
and identically distributed positive sequence of random variables with unknown distribution function
F supported on (0, ∞).

The Wiener–Poisson risk process is defined by

Xt = x + ct + σWt −
Nt

∑
i=1

γi, t ≥ 0, (1)

where x is a given positive constant, σ > 0 is an unknown constant, the corresponding process
{Nt, t ≥ 0} is called the claim number process, {γi}i=1,2,... is a sequence of claims, and {Wt}t≥0

is a standard Brownian motion. Suppose that {Nt}t≥0, {Wt}t≥0 and {γi}i=1,2,... are independent
of each other, and the mean and variance of claim are finite, i.e., µγ =

∫ ∞
0 xF(dx) < ∞, σ2

γ =∫ ∞
0 x2F(dx)− µ2

γ < ∞. Further, we assume that the risk model in Equation (1) has a relative safety
loading ω = c

λµγ
− 1 > 0. Let τ(x) = inf{t > 0; Xt ≤ 0, X0 = x}. The survival probability of the risk

model in Equation (1) is defined by:

Φ(x) = P (τ(x) = ∞) , (2)

and Ψ(x) = 1−Φ(x), the probability of ruin.
In the last few decades, many works have been contributed to the survival probability for the

risk model in Equation (1) and its extended risk model. In [1], the author first introduced the risk
model in Equation (1) and established an asymptotic estimate for Ψ(x). In [2], the authors showed that
Φ(x) satisfies a defective renewal equation. By renewal theory, they obtained the Pollaczeck–Khinchin
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formula of Φ(x). Accurate calculation and approximation for Ψ(x) has always been an inspiration
and an important source of technological development for actuarial mathematics (see, e.g., [3–9]).
Although various approximations to the probability of ruin (e.g., importance sampling or saddle-point
approximations) are now available, developing alternative approximations of different nature is still
an interesting and practical problem.

In recent years, many authors studied the ruin probability by using statistical methods (see,
e.g., [10–18]). In [17], the author assumed that {Xtn

i
|tn

i = ihn; i = 0, 1, 2, ..., n} and {γ1, γ2, ..., γNtnn
} are

observed, where hn = tn
i − tn

i−1 is the sampling interval and the time of claims are known. The author
constructed an estimator for Gerber–Shiu function and obtained its asymptotic property. Please refer
to Equation (1.2) in [17] for the details of Gerber–Shiu function.

In our work, we suppose that a sample {Xtn
1
, Xtn

2
, Xtn

3
, ..., Xtn

n} can be observed, where hn = tn
i −

tn
i−1 is the sampling interval. However, we cannot observe the exact time and size of claims. To estimate

Φ(x), we have to estimate F, λ, λµγ and σ2. Given the discrete record of observations, we need to judge
whether a claim occurs in the interval (tn

i−1, tn
i ]. The threshold method from [19–22] is to determine

that a single jump has occurred within (tn
i−1, tn

i ] if and only if the increment |∆iX| = |Xtn
i
− Xtn

i−1
| is

larger than a suitable threshold function. By the threshold method and the work in [21,22], we can
estimate F, λ, µγ and σ2.

In [14,17], the authors estimated the ruin probability and Gerber–Shiu function by a regularized
Laplace inversion technique. Using the threshold method and the work in [23], it is easy to obtain
an estimator for the Laplace transform of Φ(x). To estimate Φ(x), the regularized Laplace inversion
technique is used. Finally, we also obtain a rate of convergence for the estimator of Φ(x) in a sense of
the integrated squared error (ISE).

This paper is organized as follows. In Section 2, we give some estimators for σ2, λµγ, λ, F and its
Laplace–Stieltjes transform. In Section 3, we study the asymptotic properties for the estimators. Finally,
we give some conclusions in Section 5. All the technical proofs are presented in Appendix A.

2. Estimation of Survival Probability

To give the estimators for σ2, λµγ, λ, F and the Laplace transform of F, we introduce the
following filter:

Cn
i (ϑ(hn)) = {ω ∈ Ω; |∆iX(ω)| > ϑ(hn)}, (3)

where ϑ(hn) is a threshold function and Dn
i (ϑ(hn)) is a complement of Cn

i (ϑ(hn)). In [19,20],

the threshold function ϑ(hn) satisfies limhn→0 ϑ(hn) = 0 and limhn→0

√
hn log( 1

hn
)

ϑ(hn)
= 0. In [21], the author

gave an expression of threshold function ϑ(hn) = Lhb
n, where L > 0 is a constant and b ∈ (0, 1

2 ).
Obviously, the expression of ϑ(hn) from [21] satisfies the two conditions. In our work, the expression
of ϑ(hn) is similar to that in [21].

We first estimate F. Using {|∆iX|; 0 ≤ i ≤ n, ICn
i (ϑ(hn)) = 1} and empirical distribution function,

we can try to construct an estimator of F as follows:

F̂n(u) =
1

∑n
i=1 ICn

i (ϑ(hn))

n

∑
i=1

I{|∆iX|≤u}ICn
i (ϑ(hn)), u ≥ 0. (4)

By Equations (3.4) and (3.6) in [21], the estimators of σ2 and λ are

σ̃2n =
∑n

i=1 |∆iX− chn|2IDn
i (ϑ(hn))

Tn
, λ̃n =

∑n
i=1 ICn

i (ϑ(hn))

Tn
.
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By Equation (3.10) in [21], an estimator of λµγ is given by

λ̃µγn =
∑n

i=1 |∆iX|ICn
i (ϑ(hn))

Tn
.

Let ρ =
λµγ

c . Obviously, the estimator of ρ is given by

ρ̃n =
1
c

∑n
i=1 |∆iX|ICn

i (ϑ(hn))

Tn
.

The Laplace transform of F is defined by lF = E[e−sγ1 ] =
∫ ∞

0 e−suF(du). An estimator of lF is
given by

l̃Fn(s) =
∑n

i=1 e−s|∆iX|ICn
i (ϑ(hn))

∑n
i=1 ICn

i (ϑ(hn))
,

where s ∈ E and E is a compact subset of (0, ∞).
By the work in [23], the Laplace transform of Φ(x) can be obtained as follows:

LΦ(s) =
∫ ∞

0
e−sxΦ(x)dx

=
1− ρ

D(s)
, s > 0 (5)

where ρ = λµ
c and D(s) = s + σ2

2c s2 − λ
c (1− lF(s)).

Let us define an estimator of LΦ(s) as follows:

L̃Φ(s) =
1− ρ̃n

D̃(s)
, D̃(s) = s +

σ̃2n

2c
s2 − λ̃n

c
(1− l̃Fn(s)), s > 0. (6)

To estimate Φ(x), we use the L2-inversion method proposed from [24]. Now, we give the
L2-inversion method by Definition 1. We say that f ∈ L2(0, ∞) if (

∫ ∞
0 | f (t)|

2dt)
1
2 < ∞.

Definition 1. Let m > 0 be a constant. The regularized Laplace inversion L−1
m : L2(0, ∞) → L2(0, ∞) is

given by

L−1
m g(t) =

1
π2

∫ ∞

0

∫ ∞

0
Ψm(y)y−

1
2 e−tvyg(v)dvdy (7)

for a function g ∈ L2(0, ∞) and t ∈ (0, ∞), where

Ψm(y) =
∫ am

0
cosh(πx) cos(x log y)dx

and am = π−1 cosh−1(πm) > 0.

For further information, and details of L−1
m , please refer to [24].

To use Definition 1, it requires to verify L̃Φ(s) ∈ L2(0, ∞). As n is sufficiently large, for P-almost
all ω ∈ Ω and s > 0, we have

P({ω ∈ Ω; (1− ρ̃n)s ≤ D̃(s) ≤ s +
σ̃2n

2c
s2}) = 1. (8)

From Equations (6) and (8), it is obvious that L̃Φ(s) /∈ L2(0, ∞). The L2-inversion method in
Definition 1 cannot be applied at once.
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Therefore, to use Definition 1, we have to amend L̃Φ(s).
Let

Φθ(x) = e−θxΦ(x), x > 0

for arbitrary fixed θ > 0. It is obvious that

LΦθ
(s) = LΦ(s + θ), s > 0.

An estimator of LΦθ
is given by

L̃Φθ
(s) = L̃Φ(s + θ), s > 0.

Obviously, L̃Φθ
∈ L2(0, ∞).

Finally, an estimator of Φ(x) is given by

Φ̃m(n)(x) = eθx ˜Φθ,m(n)(x), x > 0, (9)

where ˜Φθ,m(n)(x) = L−1
m(n) L̃Φθ

(s) and m(n) > 0.

3. Asymptotic Properties

According to Theorem 3.1 in [19], the author assumed that σ < Q and γi ≥ Γ with Q > 0, Γ > 0.
In our work, Assumption 1 is used to prove the asymptotic properties of estimators.

Assumption 1. There exist two positive constants Q and Γ such that σ < Q and P({ω ∈ Ω; γi ≥ Γ}) = 1
for i = 1, 2, ....

Let F̄ = 1− F. With Equation (4), an estimator of F̄ is given by

¯̂Fn(u) =
1

∑n
i=1 ICn

i (ϑ(hn))

n

∑
i=1

I{|∆iX|>u}ICn
i (ϑ(hn)). (10)

Let N (m, n) be a normal distribution with expectation m and variance n. Theorem 1 gives the
asymptotic properties of F̂n(u).

Theorem 1. Suppose that Tn = nhn → ∞, nh2
n → 0, hn → 0 as n→ ∞ and Assumption 1 is satisfied, then

√
Tn

(
¯̂Fn(u)− F̄(u)

)
D−→ N (0,

F(u)(1− F(u))
λ

). (11)

Obviously,
√

Tn
(

F̂n(u)− F(u)
) D−→ N (0,

F(u)(1− F(u))
λ

).

Remark 1. By Dvoretzky–Kiefer–Wolfowitz inequality, we have

P( sup
u∈[0,∞)

|F̂n(u)− F(u)| > x) ≤ Ce−2λTnx2
, x > 0,

where C is a positive constant, not depending on F. Note that this inequality may be expression in the form :

P(
√

Tn sup
u∈[0,∞)

|F̂n(u)− F(u)| > x) ≤ Ce−2λx2
, x > 0,
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which clearly demonstrate that

√
Tn sup

u∈[0,∞)

|F̂n(u)− F(u)| = OP(1).

The asymptotic properties of σ̃2n are given by the following Lemma 1.

Lemma 1. Suppose that Tn = nhn → ∞, nh2
n → 0 and hn → 0 as n→ ∞, then

σ̃2n
P−→ σ2, n→ ∞. (12)

√
n(σ̃2n − σ2)

D−→ N (0, 2σ4), n→ ∞. (13)

Lemma 2. Suppose that Tn = nhn → ∞, nhβ
n → 0 for some β ∈ (1, 2] , hn → 0 as n→ ∞ and Assumption 1

is satisfied. Then,

λ̃n
P−→ λ, sup

{s|s∈E}
|λ̃n l̃Fn(s)− λlF(s)|

P−→ 0, (14)

√
Tn(λ̃n − λ)

D−→ N (0, λ), (15)

ρ̃n
P−→ ρ (16)

and
√

n(ρ̃n − ρ)
D−→ N (0,

λσ2

c2 ), (17)

as n→ ∞.

Let ‖ f ‖2
B =

∫ B
0 | f (t)|

2dt for any function f and B > 0. Theorem 2 gives a rate of convergence for
Φ̃m(n)(x) in a sense of ISE.

Theorem 2. Suppose that there exists a constant K > 0 such that 0 ≤ Φ′(x) = g(x) ≤ K < ∞ and the
conditions in Lemma 2 are satisfied. Then, for m(n) =

√
Tn

log Tn
and for any constant B > 0, we have

‖Φ̃m(n) −Φ‖2
B = OP((log Tn)

−1), n→ ∞.

Remark 2. The explicit expression for Φ̃m(n)(x) is

Φ̃m(n)(x) =
exθ

π2

∫ ∞

0

∫ ∞

0
e−xsy L̃Φθ

(s)Ψm(n)(y)y
− 1

2 dsdy

where Ψm(n)(y) =
∫ am(n)

0 cosh(πx) cos(x log(y))dx and am(n) = π−1 cosh−1(πm(n)) > 0 and

m(n) =
√

Tn
log Tn

.

When c, λ, σ, F, θ, ϑ(hn) and sample size n are known, Φ̃m(n)(x) can be evaluated with the command
integral2( f ; 0; ∞; 0; ∞) of Matlab.

4. Simulation

If F(x) = 1− e−
1

µγ
x, the survival probability is given by

Φ(x) = 1−
r1 +

1
µγ

+
2λµγ

σ2

r1 − r2
er1x −

r2 +
1

µγ
+

2λµγ

σ2

r2 − r1
er2x, x ≥ 0, (18)
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where r2 < r1 < 0 are negative roots of the following equation

1
2

σ2s + c− λ

s + 1
µγ

= 0.

By the work in [25], Equation (18) is obtained easily.
Let c = λ = 10, µγ = 1

2 , σ = 5, θ = 0.075, ϑ(hn) = hb
n, b = 1

4 and hn = n−
4
5 .

Firstly, we computed L̃Φθ
(s). In Figure 1, we plot the mean points with sample sizes n =5000,

10,000, 30,000, 50,000, 80,000, which were computed based on 5000 simulation experiments.
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Figure 1. The estimator of LΦθ
with sample sizes n =5000, 10,000, 30,000, 50,000, 80,000.

In Remark 2, Φ̃m(n)(u) is a double complex integrals. Using Matlab to compute Φ̃m(n)(u) would
take a long time. As shown in Figure 1, L̂Φθ

is very close to LΦθ
as n ≥ 30,000. To improve

computational efficiency, let

Φp(x) =
exθ

π2

∫ ∞

0

∫ ∞

0
e−xsy[L̂Φθ

(s)]n=30000Ψp(y)y−
1
2 dsdy,

where [L̂Φθ
(s)]n=30000 =

1− 1

c30000(30000)
− 4

5
∑30000

k=1 (c(30000)−
4
5−Zk)ID30000

k
1

c(30000)
− 4

5
( 1

30000 ∑30000
k=1 esZk−1)

, Ψp(y) =
∫ ap

0 cosh(πx) cos(x log(y))dx

and ap = π−1 cosh−1(πp) > 0.
In Figure 2, we plot the mean points with sample sizes n = 30,000 and p = 100, 500, 800, 1000, 3000,

which were computed based on 5000 simulation experiments.
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Figure 2. Φp(x) with sample size n = 30,000 and p = 100, 500, 800, 1000, 3000
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5. Conclusions

In this paper, we use the threshold estimation technique and regularized Laplace inversion
technique to constructed an estimator of survival probability for the Wiener–Poisson risk model.
The rate of convergence for the estimator is a logarithmic rate. We adopt a method proposed by
Cai et al. [26] to improve the speed in simulated calculation. The further work is to improve the speed
of convergence for the estimator. We will combine the threshold estimation technique with Fourier
transform (inversion) technique to construct an estimator of survival probability. We hope some further
studies will be done when the risk model is the compound Poisson model with the barrier dividend
strategy and investment. The Gerber–Shiu function and dividend function will be estimated by some
statistical methods.
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Appendix A. Proofs of Theorems

Proof of Lemma 1. The proof of Lemma 1 is easily obtained by Theorem 3.1 in [21].

Proof of Lemma 2. The proof of Equation (14) is given as Theorem 3.2 in [21]. By Theorem 3.1 in [19],
we can get Equation (15). It is easy to get Equations (16) and (17) by Proposition 3.4 in [19] and
Theorem 3 in [20].

To prove Theorem 1, we need the following Proposition, which can be easily obtained in
Section 3.2 of [19].

Proposition A1. Following from the condition of Theorem 1, for any ε > 0,

lim
n→∞

P
(∣∣∣|∆iX|ICn

i (ϑ(hn)) − γτ(i) I{∆i N≥1}

∣∣∣ > ε
)
= 0, (A1)

where γτ(i) is the size of the eventual jump in time interval (tn
i−1, tn

i ].

Proof of Theorem 1. By Equation (10),

√
Tn

(
¯̂Fn(u)− F̄(u)

)
=

J
λ̃n

, (A2)

where

J =
∑n

i=1

(
I{|∆iX|>u} − F̄(u)

)
ICn

i (ϑ(hn))√
Tn

.

As n→ ∞, the expectation of J is

lim
n→∞

E[J] = lim
n→∞

n√
Tn

E
[
(I{|∆iX|>u} − F̄(u))ICn

i (ϑ(hn))

]
= lim

n→∞

n√
Tn

[
P(|∆iX|ICn

i (ϑ(hn)) > u)− F̄(u)P(|∆iX| > ϑ(hn))
]

.
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By Proposition A1, we have

lim
n→∞

P(|∆iX|ICn
i (ϑ(hn)) > u) = lim

n→∞
P(γτ(i) I{∆i N≥1} > u) = F̄(u)(λhn + o(hn)). (A3)

By the work in [19], it is obvious that

lim
n→∞

P(|∆iX| > ϑ(hn)) = λhn + o(hn). (A4)

Therefore,
lim

n→∞
E[J] = 0.

As n→ ∞, the variance of J is

lim
n→∞

Var[J] = lim
n→∞

n
Tn

Var
[
(I{|∆iX|>u} − F̄(u))ICn

i (ϑ(hn))

]
= lim

n→∞

n
Tn

E[I{|∆iX|ICn
i (ϑ(hn))>u}] + lim

n→∞

n
Tn

E[(F̄(u))2ICn
i (ϑ(hn))].

− lim
n→∞

n
Tn

E[2F̄(u)I{|∆iX|ICn
i (ϑ(hn))>u}].

By Equations (A3) and (A4),

lim
n→∞

Var[J] = λF̄(u)(1− F̄(u)).

With the central limit theorem, Slutsky’s theorem and Lemma 2, we have

√
Tn

(
¯̂Fn(u)− F̄(u)

)
D−→ N (0,

F̄(u)(1− F̄(u))
λ

), n→ ∞.

To prove Theorem 2, we need the following Lemma A1.

Lemma A1. Suppose that
∫ ∞

0 [t(t
1
2 f (t))′]2t−1dt < ∞ for a function f ∈ L2(0, ∞) with the derivative f ′.

Then,
‖L−1

n L f − f ‖ = O
(
(log n)−

1
2

)
, n→ ∞.

By Theorem 3.2 in [24], the proof of Lemma A1 can be found.

Proof of Theorem 2. By Equation (9),

‖Φ̃m(n) −Φ‖2
B ≤ e2θB‖Φ̃θ,m(n) −Φθ‖2

B

≤ 2e2θB{‖L−1
m(n) L̃Φθ

− L−1
m(n)LΦθ

‖2 + ‖Φθ,m(n) −Φθ‖2}. (A5)
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Let Φ′θ = gθ . Now, we show that Φθ,m(n) satisfies the condition of Lemma A1.

∫ ∞

0
[x(
√

xΦθ(x))′]2
1
x

dx =
∫ ∞

0
[x(

1
2
√

x
Φθ(x) + x

√
xgθ(x))]2

1
x

dx

≤
∫ ∞

0
2

1
x
[x

1
2
√

x
Φθ(x)]2 +

∫ ∞

0
2

1
x
[x
√

xgθ(x)]2dx

=
∫ ∞

0

1
2

Φ2
θ(x)dx + 2

∫ ∞

0
x2g2

θ(x)dx

≤
∫ ∞

0

1
2

e−2θxdx + 2
∫ ∞

0
x2[g(x)e−θx − θΦ(x)e−θx]2dx

≤ 1
4θ

+ 4
∫ ∞

0
x2g2(x)e−2θxdx + 4θ2

∫ ∞

0
Φ2(x)x2e−2θxdx

≤ 1
4θ

+ 4(K2 + θ2)
∫ ∞

0
x2e−2θxdx < ∞.

Therefore, by Lemma A1, we have

‖Φθ,m(n) −Φθ‖2 = O(
1

log m(n)
), n→ ∞. (A6)

By Equations (5) and (6),

‖L̃Φθ
− Lθ‖2 =

∫ ∞

0

(
(1− ρ)(D̃(s + θ)− D(s + θ))

D̃(s + θ)D(s + θ)
+

(ρ̃n − ρ)

D̃(s + θ)

)2

ds. (A7)

Exploiting Equation (8) and P({ω ∈ Ω; ρ̃n = 1}) = 0, the right-hand side of Equation (A7) is
bounded by

2
∫ ∞

0

(D̃(s + θ)− D(s + θ))2

(s + θ)4(1− ρ̃n)2 ds + 2
∫ ∞

0
(

ρ̃n − ρ

1− ρ̃n
)2 1
(s + θ)2 ds. (A8)

By Lemmas 1 and 2, the term

D̃n(s + θ)− D(s + θ) =
(s + θ)2

2c
(σ̃2n − σ2) +

1
c

(
(λ− λ̃n) + (λ̃n l̃Fn(s + θ)− λlF(s + θ))

)
= OP(T

− 1
2

n ) +
1
c

NTn

Tn

(∫ ∞

0
e−(s+θ)x(F̂n(dx)− F(dx))

)
= OP(T

− 1
2

n ) +
1
c

NTn

Tn

(∫ ∞

0
(s + θ)e−(s+θ)x(F̂n(x)− F(x))dx

)
≤ OP(T

− 1
2

n ) +
1
c

NTn

Tn
sup

x∈[0,∞)

|F̂n(x)− F(x)|

= OP(T
− 1

2
n ) (A9)

The last equality is obtained from Remark 1.
By Equation (A9) and Lemma 2, we have

2
∫ ∞

0

(D̃(s + θ)− D(s + θ))2

(s + θ)4(1− ρ̃n)2 ds = OP(T−1
n )

and

2
∫ ∞

0
(

ρ̃n − ρ

1− ρ̃n
)2 1
(s + θ)2 ds = oP(T−1

n ).
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Recall that ‖L−1
m(n)‖

2 ≤ πm2(n) (see [24]), so

‖L−1
m(n)‖

2‖L̃Φθ
− LΦθ

‖2 = OP(
m2(n)

Tn
). (A10)

Combining Equations (A6) and (A10), we have

‖Φ̃m(n) −Φ‖2
B = OP(

m2(n)
Tn

) + OP(
1

log m(n)
). (A11)

with an optimal m(n) =
√

Tn
log Tn

balancing the the two right-hand terms in Equation (A11), the order

becomes OP((log Tn)−1).
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