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Abstract: In this paper, we define q-rung picture fuzzy hypergraphs and illustrate the formation
of granular structures using q-rung picture fuzzy hypergraphs and level hypergraphs. Further, we
define the q-rung picture fuzzy equivalence relation and q-rung picture fuzzy hierarchical quotient
space structures. In particular, a q-rung picture fuzzy hypergraph and hypergraph combine a
set of granules, and a hierarchical structure is formed corresponding to the series of hypergraphs.
The mappings between the q-rung picture fuzzy hypergraphs depict the relationships among granules
occurring at different levels. The consequences reveal that the representation of the partition of the
universal set is more efficient through q-rung picture fuzzy hypergraphs and the q-rung picture fuzzy
equivalence relation. We also present an arithmetic example and comparison analysis to signify the
superiority and validity of our proposed model.
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1. Introduction

Granular computing (GrC) is defined as an identification of techniques, methodologies, tools,
and theories that yield the advantages of clusters, groups, or classes, i.e., the granules. The terminology
was first introduced by Lin [1]. The fundamental concepts of GrC are utilized in various fields of
research, including rough set theory, machine learning, fuzzy set theory, and artificial intelligence.
Different models have been proposed to study the numerous issues occurring in GrC, including
classification of the universe, illustration of granules, and the identification of relations among granules.
For example, the procedure of problem solving through GrC can be considered as distinct descriptions
of the problem at multiple levels, and these levels are linked together to construct a hierarchical
space structure. Thus, this is a way of dealing with the formation of granules and the switching
between different granularities. Here, the term “hierarchy” implies the methodology of hierarchical
analysis in solving complicated problems and human diversions [2]. To understand this methodology,
let us consider an example of national administration in which the complete nation is subdivided into
various provinces. Further, divide every province into various divisions similarly. The human activities
and problem solving involve the simplification of the original complicated problem by ignoring some
details rather than thinking about all points of the problem. This rational model is then further sifted
till the issue is completely resolved. Thus, we resolve and interpret the complex problems from the
weaker grain to the stronger one, or from the highest rank to lowest, or from universal to particular.
This technique is called hierarchical problem solving. It is further acknowledged that the hierarchical
strategy is the only technique that is used by humans to deal with complicated problems, and it
enhances the competency and efficiency. This strategy is also known as multi-GrC. Yang et al. [3]
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proposed a partition-based knowledge distance based on the Earth Mover’s Distance (EMD) and
proved that their knowledge distance is equivalent to the binary granule-based knowledge distance
(BGKD) but is more intuitive than the BGKD.

Granulation for simple graphs was firstly introduced by Stell [4]. He demonstrated the different
kinds of granulation for simple graphs and discussed the connection of vague graphs with granulation.
Chen and Zhong [5] extracted the granular structures using simple graphs. They developed the
granular structure models based on three types of elements in a simple graph, i.e., vertices, edges,
and their combination. In 2016, Chiaselotti et al. [6] studied some interesting concepts of simple graphs,
which correspond to GrC. Further, they applied the theoretical concepts of their work to three families
of graphs. Micro and macro models of granular computing based on the indiscernibility relation
were studied by Bisi et al. [7]. They investigated the indiscernibility structures of the knowledge
representation system and developed three hypergraphic structures, including the discernibility
hypergraph, the reduct, and the essential hypergraph.

Hypergraphs, as an extension of classical graphs, experience various characteristics, which are
the foundation of many methodologies and appear very effective and useful in many fields, including
problem solving, declustering, and databases [8]. The formation of hypergraphs is the same as that of
granule structures, and the relations between the vertices and hyperedges of hypergraphs can depict the
relationships of granules and objects. A hyperedge can contain n vertices and therefore represents n-ary
relations, and hence, a hypergraph can provide a more effective analysis and description of granules.
Many researchers have used hypergraph methods to study the clustering of complex documentation
by means of GrC and investigated the database techniques [9,10]. Chen et al. [11] proposed a model of
GrC based on a crisp hypergraph. They related a crisp hypergraph to a set of granules and represented
the hierarchical structures. They proved their hypergraphic model as a visual description of GrC.

Zadeh’s [12] fuzzy set (FS) has acquired greater attention by researchers in a wide range of
scientific areas, including management sciences, robotics, decision theory, and many other disciplines.
Atanassov [13] originated the notion of the intuitionistic fuzzy set (IFS), which is distinguished by a
positive degree (T) and negative degree (F) satisfying the requirement that the summation of both
membership degrees should not exceed one and is considered as an extension of FSs. However, in many
practical decision-making problems, the sum of positive and negative degrees may not be less than
one, but the sum of their squares may be less than one. To handle such a type of difficulty, Yager [14]
gave the concept of Pythagorean fuzzy sets (PYFSs) as a generalization of IFSs. The two membership
degrees in PYFSs are needed to fulfill the requirement T2(x) + F2(x) ≤ 1, which shows that PYFSs
have expanded space to assign the orthopair as compared to IFSs. PYFS can deal with various real-life
problems more effectively, but still, there are cases that cannot be handled using this set. Take an
example: the degrees of truth and falsity suggested by a decision maker are 0.8 and 0.9, respectively.
Then, the problem can never be handled by means of PYFS as 0.82 + 0.92 = 1.45 > 1. In order to deal
with such types of cases, Yager [15] introduced the idea of the q-rung orthopair fuzzy sets (q-ROFSs).
A q-ROFS is represented by means of two membership degrees: one is truth and the other is falsity,
with the characteristic that the summation of the qth power of the positive degree and the qth power
of the negative degree should not be greater than one. In 2014, Cuong [16] introduced picture fuzzy
sets (PFSs), which generalize the concepts of FSs and IFSs. He also studied some operations on PFSs.
Li et al. [17] proposed the extension of q-ROFSs and PFSs as q-rung picture fuzzy sets (q-RPFSs).
A q-RPFS expresses the impartial behavior in the form of the neutral degree and also relaxes the
restriction of PFSs. The limitation of q-RPFS implies that T(x)q + N(x)q + F(x)q ≤ 1, (q ≥ 1), and this
is considered as the most prominent characteristic of q-RPFS. The space of depiction of acceptable
triplets can be widened by taking the larger values of q into consideration; for example, if an agent
provides the positive, negative, and neutral degrees as 0.8, 0.6, and 0.7, respectively. It is clearly
seen that 0.8 + 0.6 + 0.7 ≥ 1 and 0.82 + 0.62 + 0.72 ≥ 1. Thus, it is appropriate to apply q-RPFS since
0.7q + 0.5q + 0.6q ≤ 1 for sufficiently large q. Moreover, the interdependency of functions T, N, and F
makes this concept closer to real-world applications. Specific types of Pythagorean fuzzy graphs and
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applications to decision-making were discussed by Akram et al. [18]. Recently, a novel description on
edge-regular q-rung picture fuzzy graphs with applications was proposed by Akram et al. [19].

To combine the benefits of both fuzzy sets and hypergraphs, Kaufmann [20], in 1977, defined
fuzzy hypergraphs. Fuzzy hypergraphs were redefined and generalized by Lee-Kwang and
Keon-Myung [21]. A valuable contribution to fuzzy graphs and fuzzy hypergraphs was given in [22].
Many researchers have explored the formation of granules/granular structures using hypergraphs
in various fields, but there are many graph theoretic problems that may contain uncertainty
and vagueness. To overcome the problems of uncertainty in models of GrC, Wang and Gong [23]
studied the construction of granular structures by means of fuzzy hypergraphs. They concluded that
the representation of granules and partition is very efficient through the fuzzy hypergraphs. Gong and
Wang [24] represented the connection of fuzzy hypergraph with the fuzzy information system and the
fuzzy concept lattice. Parvathi et al. [25] originated the notion of IF hypergraphs. Later on, this idea
was extended by Akram and Dudek [26]. Akram and Luqman [27,28] introduced the intuitionistic
single-valued neutrosophic and bipolar neutrosophic hypergraphs. Recently, q-ROF hypergraphs with
applications were studied by Luqman et al. [29]. Luqman et al. [30] also introduced an m-polar fuzzy
hypergraph model of GrC.

The fundamental goal of this research work is to introduce the q-rung picture fuzzy hypergraphs
and to construct a hypergraph model of GrC possessing the characteristics of PFSs, as well as q-ROFSs.
In the proposed model, the vertex of the q-rung picture fuzzy hypergraph denotes an object, and a
q-rung picture fuzzy hyperedge represents a granule. By applying the most effective and flexible
theory of q-RPFSs to hypergraphs, we not only broaden the space of uncertain and vague data, but also
deal with neutral relationships between granules. Our proposed model of GrC, based on q-rung
picture fuzzy hypergraphs, is much closer to and considerable of human reasoning as compared to
earlier concepts. In this model, the range of indication of decision data can be changed by changing
the value of parameter q, q ≥ 1. The rest of the paper is arranged as follows: In Section 2, q-rung
picture fuzzy hypergraphs are defined. A q-rung picture fuzzy hierarchical quotient space structure
is developed based on the q-rung picture fuzzy equivalence relation. In Section 3, we construct a
q-rung picture fuzzy hypergraph model of GrC. The partition and covering of granules are defined
in the same section. The method of bottom-up construction is explained by an algorithm and an
example. In Section 4, a model of GrC is constructed using level hypergraphs based on the q-rung
picture fuzzy equivalence relation, and the construction of the level hypergraph model is illustrated
through a concrete example. The “refinement” and “coarsening” operators are defined and their
certain properties are discussed briefly. In Section 5, we compare the flexibility of our proposed
model with existing models of q-ROFSs and PFSs. Section 6 deals with some concluding remarks and
future studies.

2. q-Rung Picture Fuzzy Hierarchical Structure

Definition 1. [14] A q-rung orthopair fuzzy set (q-ROFS) Q in the universe X is an object of the form,

Q = {(a, TQ(a), FQ(a))|a ∈ X},

where TQ : X → [0, 1] represents the positive degree and FQ : X → [0, 1] represents the negative degree of the
element a ∈ X such that,

0 ≤ Tq
Q(a) + Fq

Q(a) ≤ 1, q ≥ 1, for all a ∈ X.

Furthermore, πQ(a) = q
√

1− Tq
Q(a)− Fq

Q(a) is called a q-ROF index or indeterminacy degree of a to the
set Q.

Definition 2. [16] A picture fuzzy set (PFS) P is an object of the form,

P = {(a, TP(a), NP(a), FP(a))|a ∈ X},
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where the mapping TP : X → [0, 1] represents the positive degree, NP : X → [0, 1] represents the neutral degree,
and FP : X → [0, 1] represents the negative degree of the element a ∈ X such that,

0 ≤ TP(a) + NP(a) + FP(a) ≤ 1, for all a ∈ X.

The refusal degree of a in P is defined as (1− TP(a)− NP(a)− FP(a)).

Definition 3. [17] A q-rung picture fuzzy set (q-RPFS) R is an object having the form,

R = {(a, TR(a), NR(a), FR(a))|a ∈ X},

where the function TR : X → [0, 1] represents the positive degree, NR : X → [0, 1] represents the neutral degree,
and FR : X → [0, 1] represents the negative degree of the element a ∈ X such that,

0 ≤ Tq
R(a) + Nq

R(a) + Fq
R(a) ≤ 1, q ≥ 1, for all a ∈ X.

The refusal degree of a in R is defined as q
√
(1− Tq

P(a)− Nq
P(a)− Fq

P(a)).

Definition 4. The support of a q-RPFS R = {(a, TR(a), NR(a), FR(a))|a ∈ X} is defined as,

supp(R) = {a|TR(a) 6= 0, NR(a) 6= 1, FR(a) 6= 1}.

The height of a q-RPFS R = {(a, TR(a), NR(a), FR(a))|a ∈ X} is defined as,

h(R) = {(max{TR(a)}, min{NR(a)}, min{FR(a)})|a ∈ X}.

Definition 5. Let M and L be two q-RPFSs on X. The union and intersection of M and L are defined as,

(i) M ⊆ L⇔ TM(x) ≤ TL(x), NM(x) ≥ NL(x), FM(x) ≥ FL(x).
(ii) M ∪ L = {(x, max(TM(x), TL(x)), min(NM(x), NL(x)), min(FM(x), FL(x)))|x ∈ X}.
(iii) M ∩ L = {(x, min(TM(x), TL(x)), min(NM(x), NL(x)), max(FM(x), FL(x)))|x ∈ X}.

Definition 6. Let X be a set of universes. A q-rung picture fuzzy hypergraph (q-RPFH) on X is defined as an
ordered pair H = (R, S), whereR = {R1, R2, R3, . . . , Rl} is a collection of non-trivial q-RPFSs on X and S is
a q-RPFR on Ri such that:

1. TS(El) = TS({r1, r2, r3, · · · , rk}) ≤ min{TRi (r1), TRi (r2), TRi (r3), · · · , TRi (rk)},
NS(El) = NS({r1, r2, r3, · · · , rk}) ≤ min{NRi (r1), NRi (r2), NRi (r3), · · · , NRi (rk)},
FS(El) = FS({r1, r2, r3, · · · , rk}) ≤ max{FRi (r1), FRi (r2), FRi (r3), · · · , FRi (rk)},
for all r1, r2, r3, · · · , rk ∈ X.

2. X =
⋃
k

supp(Ri), for all Ri ∈ R.

Here, E = {E1, E2, E3, · · · , El} is the family of hyperedges.

Definition 7. A q-RPFH H = (R, S) is simple if H does not contain repeated q-RPF hyperedges, and whenever
Ei ⊆ Ej, Ei, Ej ∈ E, then Ei = Ej.

Definition 8. Let H = (R, S) be a q-RPFH and Ei ∈ E. Suppose α, β, γ ∈ [0, 1]; the (α, β, γ)-cut of Ei,
E(α,β,γ)

i , is given as:

E(α,β,γ)
i = {a ∈ X|TEi (a) ≥ α , NEi (a) ≥ β , FEi (a) ≤ γ}.

Let:

• E(α,β,γ) = {E(α,β,γ)
i |Ei ∈ E},

• X(α,β,γ) = ∪{E(α,β,γ)
i |Ei ∈ E}.
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If E(α,β,γ) is non-empty, then the (α, β, γ)-level hypergraph of H is defined as H(α,β,γ) = (X(α,β,γ),
E(α,β,γ)), which is a crisp hypergraph.

We now discuss the q-rung picture fuzzy hierarchical quotient space structure.
Different techniques have been proposed to deal with GrC. Quotient space (QS), FSs, and rough

sets are three basic computing tools dealing with uncertainty. Based on FSs, the fuzzy equivalence
relation (FER), as an extension of equivalence relation, was proposed by Zadeh [31]. The question
of distinct membership degrees of the same object from different scholars has arisen because of
various ways of thinking about the interpretation of different functions dealing with the same problem.
To resolve this issue, FS was structurally defined by Zhang and Zhang [32], which was based on QS
theory and FER [33]. This definition provides some new intuitiveness regarding the membership
degree, called a hierarchical QS structure of an FER. By following the same concept, we develop a
hierarchical QS structure of a q-RPFER.

Definition 9. Let X1 and X2 be two finite sets, then the Cartesian product between X1 and X2 is
X1 × X2. Every q-RPF subset R of X1 × X2 is defined as a q-RPF binary relation from X1–X2. Let X1 =

{r1, r2, r3, · · · , rl} and X2 = {s1, s2, s3, · · · , sm}, a q-RPF binary relation matrix M̃R, be given as follows,

M̃R =


dR(r1, s1) dR(r1, s2) · · · dR(r1, sm)

dR(r2, s1) dR(r2, s2) · · · dR(r2, sm)
...

...
...

...
dR(rl , s1) dR(rl , s2) · · · dR(rl , sm)

 .

In general, M̃R is called q-RPF relation matrix of R, where dR(r, s) = (TR(r, s), NR(r, s), FR(r, s)),
and TR : X1 × X2 → [0, 1], NR : X1 × X2 → [0, 1], FR : X1 × X2 → [0, 1] represent the positive degree,
neutral degree, and negative degree of r and s, respectively, such that:

0 ≤ Tq
R(r, s) + Nq

R(r, s) + Fq
R(r, s) ≤ 1, q ≥ 1,

for all (r, s) ∈ X1 × X2.

Definition 10. A q-RPFR is called a q-RPF similarity relation if it satisfies,

1. dR(r, r) = (1, 0, 0), for all r ∈ X,
2. dR(r, s) = dR(s, r), for all r, s ∈ X.

Definition 11. A q-RPFR is called a q-RPF equivalence relation (q-RPFER) if the following conditions
are satisfied,

1. dR(r, r) = (1, 0, 0), for all r ∈ X,
2. dR(r, s) = dR(s, r), for all r, s ∈ X,
3. for all r, s, t ∈ X

(i) TR(r, t) = sup
s∈X
{min(TR(r, s), TR(s, t))},

(ii) NR(r, t) = sup
s∈X
{min(NR(r, s), NR(s, t))},

(iii) FR(r, t) = inf
s∈X
{max(FR(r, s), FR(s, t))}.

A q-RPF quotient space (q-RPFQS) is denoted by a triplet (X, Ã, R), where X is a finite domain, Ã
represents the attributes of X, and R represents the q-RPF relationship between the objects of universe
X, which is called the structure of the domain.
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Definition 12. Let xi and xj be two objects in the universe X. The similarity between xi, xj ∈ X having the
attribute ãk is defined as:

TR(xi, xj) =
|ãik ∩ ãjk|
|ãik ∪ ãjk|

, NR(xi, xj) =
|ãik ∩ ãjk|
|ãik ∪ ãjk|

, FR(xi, xj) =
|ãik ∪ ãjk|
|ãik ∩ ãjk|

,

where ãik represents that object xi possesses the attribute ãk and ãjk represents that object xj possesses the
attribute ãk.

It is noted that the q-RPFR matrix M̃R is symmetric and reflexive q-RPFR, but in general, it does
not satisfy the transitivity condition.

Proposition 1. Let R be a q-RPFR on a finite domain X and R(α,β,γ) = {(x, y)|TR(x, y) ≥ α, NR(x, y) ≥
β, FR(x, y) ≤ γ}, (α, β, γ) ∈ [0, 1]. Then, R(α,β,γ) is an ER on X and is said to be a cut-equivalence relation
of R.

Proposition 1 depicts that R(α,β,γ) is a crisp relation, which is an equivalence relation on X, and its
knowledge space is given as τR(α,β,γ)(X) = X/R(α,β,γ).

The value domainof an ER R on X is defined as D = {dR(x, y)|x, y ∈ X} such that,

(i) TX(x) ∧ TX(y) ∧ TR(x, y) > 0,
(ii) NX(x) ∧ NX(y) ∧ NR(x, y) > 0,
(iii) FX(x) ∨ FX(y) ∨ FR(x, y) > 0.

Definition 13. Let R be a q-RPFER on a finite set X. The set given by τX(R) = {X/R(α,β,γ)|(α, β, γ) ∈ D}
is called the q-RPF hierarchical quotient space structure (q-RPFHQSS) of R, where D is the value domain.

Example 1. Let X = {s1, s2, s3, s4, s5} and R be a 5-RPFER on X; the corresponding relation matrix M̃R is
given as follows,

M̃R =


(1, 0, 0) (0.3, 0.4, 0.3) (0.7, 0.5, 0.1) (0.5, 0.5, 0.2) (0.5, 0.5, 0.2)

(0.3, 0.4, 0.3) (1, 0, 0) (0.3, 0.4, 0.3) (0.3, 0.4, 0.3) (0.3, 0.4, 0.3)
(0.7, 0.5, 0.1) (0.3, 0.4, 0.3) (1, 0, 0) (0.5, 0.5, 0.2) (0.5, 0.5, 0.2)
(0.5, 0.5, 0.2) (0.3, 0.4, 0.3) (0.5, 0.5, 0.2) (1, 0, 0) (0.9, 0.5, 0.1)
(0.5, 0.5, 0.2) (0.3, 0.4, 0.3) (0.5, 0.5, 0.2) (0.9, 0.5, 0.1) (1, 0, 0)

 .

Its corresponding HQSS is given as,

X/R(α1,β1,γ1) = {{s1, s2, s3, s4, s5}} , 0 < α1 ≤ 0.3, 0 < β1 ≤ 0.4, 0.3 > γ1 ≥ 0,

X/R(α2,β2,γ2) = {{s2}, {s1, s3, s4, s5}} , 0.3 < α2 ≤ 0.5, 0.4 < β2 ≤ 0.5, 0.3 > γ2 ≥ 0.2,

X/R(α3,β3,γ3) = {{s1, s3}, {s2}, {s4, s5}} , 0.5 < α3 ≤ 0.7, 0.5 < β3 ≤ 0.5, 0.2 > γ3 ≥ 0.1,

X/R(α4,β4,γ4) = {{s1}, {s2}, {s3}, {s4, s5}} , 0.7 < α4 ≤ 0.9, 0.5 < β4 ≤ 0.5, 0.1 > γ4 ≥ 0.1,

X/R(α5,β5,γ5) = {{s1}, {s2}, {s3}, {s4}, {s5}} , 0.9 < α5 ≤ 1, 0.5 < β5 ≤ 1, 0.1 > γ4 ≥ 0.

Hence, a HQSS induced by 5-RPFER R is given as τX(R) =

{X/R(α1,β1,γ1), X/R(α2,β2,γ2), X/R(α3,β3,γ3), X/R(α4,β4,γ4), X/R(α5,β5,γ5)} and is shown in Figure 1.
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s1 s2 s3 s4 s5

s2 s1 s3 s4 s5

s2

s2

s2

s1 s3 s4 s5

s1 s3 s4 s5

s1 s3 s4 s5

Figure 1. The hierarchical quotient space structure (HQSS) of R.

Furthermore, assuming the number of blocks in every distinct layer of this HQSS, a pyramid model can
also be constructed as shown in Figure 2.

α = 0, β = 0, γ = 0Layer 1

α = αk−1, β = βk−1, γ = γk−1Layer k − 1

α = αk, β = βk, γ = γk

α = αi, β = βi, γ = γi

Layer k

Layer i

Figure 2. The pyramid model of an HQSS.

Note that the same HQSS can be formed by different 5-rung picture fuzzy equivalence relations.
For instance, the relation matrix M̃R1 of 5-RPFER generates the same HQSS as given by M̃R. The relation
matrix M̃R1 is given as,

M̃R1 =


(1, 0, 0) (0.2, 0.3, 0.2) (0.9, 0.5, 0.1) (0.6, 0.6, 0.3) (0.6, 0.6, 0.3)

(0.2, 0.3, 0.2) (1, 0, 0) (0.2, 0.3, 0.2) (0.2, 0.3, 0.2) (0.2, 0.3, 0.2)
(0.9, 0.5, 0.1) (0.2, 0.3, 0.2) (1, 0, 0) (0.6, 0.6, 0.3) (0.6, 0.6, 0.3)
(0.6, 0.6, 0.3) (0.2, 0.3, 0.2) (0.6, 0.6, 0.3) (1, 0, 0) (0.7, 0.5, 0.1)
(0.6, 0.6, 0.3) (0.2, 0.3, 0.2) (0.6, 0.6, 0.3) (0.7, 0.5, 0.1) (1, 0, 0)

 .

Definition 14. Let R be a q-RPFER on X. Let τX(R) = {X(ρ1), X(ρ2), X(ρ3), · · · , and X(ρj)} be its
corresponding HQSS, where ρi = (αi, βi, γi), i = 1, 2, · · · , j and X(ρj) < X(ρj−1) < · · · < X(ρ1).
Then, the partition sequence of τX(R) is given as P(τX(R)) = {P1, P2, P3, · · · , Pj}, where Pi = |X(ρi)|,
i = 1, 2, · · · , j, and |.| represents the total number of elements in a set.

Definition 15. Let τX(R) = {X(ρ1), X(ρ2), X(ρ3), · · · , X(ρj)} be its corresponding HQSS, where ρi =

(αi, βi, γi), i = 1, 2, · · · , j and X(ρj) < X(ρj−1) < · · · < X(ρ1), P(τX(R)) = {P1, P2, P3, · · · , Pj} be the
partition sequence of τX(R). Assume that X(ρi) = {Xi1, Xi2, · · · , XiPi}. The information entropy IX(ρi) is

defined as IX(ρi) = −
Pi
∑

t=1

|Xit |
|X| ln( |Xit |

|X| ).
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Theorem 1. Let R be a q-RPFER on X. Let τX(R) = {X(ρ1), X(ρ2), X(ρ3), · · · , X(ρj)} be its
corresponding HQSS, where ρi = (αi, βi, γi), i = 1, 2, · · · , j, then the entropy sequence I(τX(R)) =

{IX(ρ1), IX(ρ2), · · · , IX(ρj)} increases monotonically and strictly.

Proof. The terminology of HQSS implies that X(ρj) < X(ρj−1) < · · · < X(ρ1), i.e., X(ρj−1)

is a quotient subspace of X(ρj). Suppose that X(ρi) = {Xi1, Xi2, · · · , XiPi} and X(ρi−1) =

{X(i−1)1, X(i−1)2, · · · , X(i−1)P(i−1)
}, then every sub-block of X(ρi−1) is an amalgam of sub-blocks of

X(ρi). Without loss of generality, it is assumed that only one sub-block Xi−1,j in X(ρi−1) is formed by
the combination of two sub-blocks Xir, Xis in X(ρi), and all other remaining blocks are equal in both
sequences. Thus,

IX(ρj−1) = −
Pi−1

∑
t=1

|Xi−1,t|
|X| ln(

|Xi−1,t|
|X| )

= −
Pj−1

∑
t=1

|Xi−1,t|
|X| ln(

|Xi−1,t|
|X| )−

Pi−1

∑
t=j+1

|Xi−1,t|
|X| ln(

|Xi−1,t|
|X| )− |Xi−1,j|

|X| ln(
|Xi−1,j|
|X| )

= −
Pj−1

∑
t=1

|Xi,t|
|X| ln(

|Xi,t|
|X| )−

Pi

∑
t=j+1

|Xi,t|
|X| ln(

|Xi,t|
|X| )−

|Xi,r|+ |Xi,s|
|X| ln(

|Xi,r|+ |Xi,s|
|X| ).

Since,

|Xi,r|+ |Xi,s|
|X| ln(

|Xi,r|+ |Xi,s|
|X| ) =

|Xi,r|
|X| ln(

|Xi,r|+ |Xi,s|
|X| ) +

|Xi,s|
|X| ln(

|Xi,r|+ |Xi,s|
|X| )

>
|Xi,r|
|X| ln(

|Xi,r|
|X| ) +

|Xi,s|
|X| ln(

|Xi,s|
|X| ).

Therefore, we have:

IX(ρj−1) < −
Pj−1

∑
t=1

|Xi,t|
|X| ln(

|Xi,t|
|X| )−

Pi

∑
t=j+1

|Xi,t|
|X| ln(

|Xi,t|
|X| )−

|Xi,r|
|X| ln(

|Xi,r|
|X| )−

|Xi,s|
|X| ln(

|Xi,s|
|X| )

= IX(ρj), (2 ≤ j ≤ n).

Hence, IX(ρ1) < IX(ρ2) < IX(ρ2) < · · · < IX(ρj).

Definition 16. Let X = {x1, x2, x3, · · · , xn} be a non-empty set of universes, and let Pt(X) =

{X1, X2, X3, · · · , Xt} be a partition space (PS) of X, where |Pt(X)| = t, then Pt(X) is called the t-order
partition space (t-OPS) on X.

Definition 17. Let Pt(X) = {X1, X2, X3, · · · , Xt} be a t-OPS on X. Let |X1| = b1, |X2| = b2, · · · ,
|Xt| = bt, and the sequence {b1, b2, · · · , bt} is arranged in increasing order, then we get a new sequence
H(t) = {b′1, b′2, · · · , b′t}, which is also increasing and called a sub-block sequence of Pt(X).

Note that two different t-order partition spaces on X may possess the similar sub-block
sequence H(t).

Definition 18. Let Pt(X) = {X1, X2, X3, · · · , Xt} be a partition space of X. Suppose that H1(t) =

{b′1, b′2, · · · , b′t} is a sub-block sequence of Pt(X), then the ω-displacement of H1(t) is defined as as the
increasing sequence H2(t) = {b′1, b′2, · · · , b′r + 1, · · · , b′s − 1, · · · , b′t}, where r < s, b′r + 1 < b′s − 1.

An ω-displacement is obtained by subtracting one from some bigger term and adding one to the smaller
one such that the sequence does not change its increasing property.
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Theorem 2. A single time ω-displacement H2(t), derived from H1(t), satisfies I(H1(t)) < I(H2(t)).

Proof. Let H1(t) = {p′1, p′2, · · · , p′t}, and H2(t) = {p′1, p′2, · · · , p′r + 1, · · · , p′s − 1, · · · , p′t}, p′1 + p′2 +
· · ·+ p′t = q, then we have,

I(H2(t)) = −
t

∑
j=1

p′l
q

ln
p′l
q
+

p′r
q

ln
p′r
q
+

p′s
q

ln
p′s
q
− p′r + 1

q
ln

p′r + 1
q
− p′s − 1

q
ln

p′s − 1
q

.

Let ϕ(x) = − x
q ln x

q − l−x
q ln l−x

q , where l = p′r + p′s and ϕ′(x) = 1
q ln l−x

x . Suppose that ϕ′(x) = 0,

then we obtain a solution, i.e., x = l
2 . Furthermore, ϕ′′(x) = −l

q(l−x)x < 0, 0 ≤ x ≤ l
2 , and ϕ(x) is

increasing monotonically. Let x1 = p′r and x2 = p′r + 1, p′r + 1 < p′s − 1, i.e., x1 < x2 ≤ l
2 = p′r+p′s

2 .
Since, ϕ(x) is monotone, then ϕ(x2)− ϕ(x1) > 0. Thus,

p′r
q

ln
p′r
q
+

p′s
q

ln
p′s
q
− p′r + 1

q
ln

p′r + 1
q
− p′s − 1

q
ln

p′s − 1
q

> 0.

Therefore, we have:

I(H2(t)) = −
t

∑
j=1

p′l
q

ln
p′l
q
+

p′r
q

ln
p′r
q
+

p′s
q

ln
p′s
q
− p′r + 1

q
ln

p′r + 1
q
− p′s − 1

q
ln

p′s − 1
q

> −( p′r + 1
q

ln
p′r + 1

q
+

p′s − 1
q

ln
p′s − 1

q
)

> −
t

∑
j=1

p′l
q

ln
p′l
q

= I(H1(t)).

3. Formation of the Model of GrC

3.1. Construction of Model

GrC may utilize frameworks in terms of levels and granular structures, which are built on the
basis of multiple representations and multiple levels. A granule is defined as a group of elements
having the same attributes or properties and are taken as a whole.

Definition 19. A system (X, R) is called an object space, where X is a universe of objects or elements and
R = {r1, r2, r3, · · · , rk}, k = |X| is a family of relations between the elements of X. For n ≤ k, rn ∈ R,
rn ⊆ X×X×X · · · ×X, if (x1, x2, · · · , xn) ⊆ rn, then there exists an n-array relation rn on (x1, x2, · · · , xn).

The elements of an object space having some relation ri ∈ R can be assumed as a granule. A single
object is considered as the smallest granule, and the set of all elements is said to be the largest granule
in an object space.

We consider one vertex of a q-RPFH as a representation of an object, and the group of elements
having some relationship si is represented by the q-RPF hyperedge. The positive membership T of
an element xi refers to the belonging; neutral membership N refers to the unbiased behavior; and
negative membership F refers to the disconnection to the granule, where T(xi), N(xi), F(xi) ∈ [0, 1],
satisfying the condition Tq(xi) + Nq(xi) + Fq(xi) ≤ 1, q ≥ 1. Thus, we can establish a q-RPFH model
of GrC.



Mathematics 2019, 7, 496 10 of 25

Example 2. Let X = {s1, s2, s3, s4, s5} be the set of objects and R = {r′1, r′2, r′3, r′4, r′5, r′6} be the set of relations.
A hypergraph H = (R, S) representing the objects and the relations r′i ∈ R(1 ≤ i ≤ 6) between them
is shown in Figure 3. By assigning the positive membership T ∈ [0, 1], neutral membership N ∈ [0, 1],
and negative membership F ∈ [0, 1] to each element si, we form a seven-rung picture fuzzy hypergraph.
Let X = {s1, s2, s3, s4, s5} and S = {S1, S2, S3, S4}, and the corresponding incidence matrix is given in Table 1.

bb b

bb

s1
s2

s3

s4

s5

S1

S 2

S3 S4

Figure 3. Hypergraph representation of granules.

Table 1. Incidence matrix of H.

I S1 S2 S3 S4

s1 (0.7, 0.2, 0.1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
s2 (0.8, 0.2, 0.3) (0, 0, 1) (0, 0, 1) (0, 0, 1)
s3 (0.5, 0.3, 0.4) (0.5, 0.3, 0.1) (0, 0, 1) (0, 0, 1)
s4 (0, 0, 1) (0.6, 0.2, 0.1) (0.5, 0.3, 0.1) (0, 0, 1)
s5 (0, 0, 1) (0, 0, 1) (0.6, 0.2, 0.1) (0.5, 0.3, 0.1)

Let α = 0.5, β = 0.3, γ = 0.5, then we have r′1 = {(s3), (s4)}, r′2 = {(s2, s4)}, r′3, r′4, r′5 = {∅}.
Hypergraph representation of granules in a level is given in Figure 4.

b

b
b

bs
2

s
4

s3

s5

E
1

E
2

E3

E4

Figure 4. Representation of granules in a level through the hypergraph.

The relationships between the vertices can be obtained by following the present situation, through computing
the mathematical function or by figuring out the internal, external, and contextual properties of the granule.
After the relationship is computed, the set of vertices possessing the relationship among them can be combined into
one module. By taking into account the actual condition, we can calculate or assign positive, neutral, and negative
degrees through the membership functions T(s), N(s), and F(s), respectively. As a result, we have formed
a granule that is also called the q-RPF hyperedge. The (α, β, γ)-cuts are computed for this q-RPF hyperedge.
When all vertices under consideration are to be integrated into a single unit and the membership degrees are
assigned or computed for the unit, we have constructed a single-level model of GrC.

The amalgamation of the elements or objects that are processed at the same time while resolving
a problem is called a granule. It reflects the representation of the perceptions and the attributes of
the integration. A granule may be a small part of another granule and can also be considered as
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the block to form larger granules. It can also be a collection of granules or may be thought of as a
whole unit. Thus, a granule may play two distinct roles.

Definition 20. A partition of a set X established on the basis of relations between objects is defined as a
collection of non-empty subsets that are pairwise disjoint and whose union is the whole of X. These subsets that
form the partition of X are called blocks. Every partition of a finite set X contains the finite number of blocks.
Corresponding to the q-RPFH, the constraints of partition ψ = {Ei|1 ≤ i ≤ n} can be stated as follows,

(i) every Ei is non-empty,
(ii) Ei ∩ Ej = ∅, for i 6= j,
(iii) ∪{supp(Ei)|1 ≤ i ≤ n} = X.

Definition 21. A covering c = {Ei|1 ≤ i ≤ n} of a set X is defined as non-empty subsets of X such that,

(i) every Ei is non-trivial,
(ii) ∪{supp(Ei)|1 ≤ i ≤ n} = X.

In a q-RPFH, if Si, Sj ∈ S, and Si ∩ Sj = ∅, i.e., Si and Sj do not intersect each other, then these
hyperedges form a partition of granules. Furthermore, if Si, Sj ∈ S and Si ∩ Sj 6= ∅, i.e., Si and
Sj intersect each other, then these hyperedges form a covering of granules at this level. Note that,
the definition of q-RPFH concludes that the q-RPFH forms a covering of a set of universes X.

Example 3. Let X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}. The partition and covering of X is given in
Figures 5 and 6, respectively.

b

b

b

b b b

b

b

b

b

x1

x2

x3

x4
x5 x6

x 7

x 8

x 9

x 1
0

E
1

E2

E
3

Figure 5. A partition of granules in a level.

b

b

b

b b b

b

b

b

b

x1

x2

x3

x4 x5 x6

x
7

x 8

x 9

x 1
0

E
1

E2

E
3

Figure 6. A covering of granules in a level.

The elements belonging to the granule determine the internal property and study the relationships
between objects. The internal property in this model incorporates the interaction of vertices.
The external property reflects the relationships between granules. This property incorporates those
vertices that belong to a q-RPF hyperedge under the membership functions T, N, and F. The existence
of a granule is indicated by the contextual property in an environment.

A set-theoretic way to study the GrC model uses the following operators in a q-RPFH model.
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Definition 22. Let G1 and G2 be two granules in our model and the q-RPF hyperedges E1, E2 represent their
external properties. The union of two granules G1 ∪ G2 is defined as a larger q-RPF hyperedge that contains
the vertices of both E1 and E2. If xi ∈ G1 ∪ G2, then the membership degrees of xi in larger granule G1 ∪ G2 are
defined as follows,

TG1∪G2(xi) =


max{TE1(xi), TE2(xi)}, if xi ∈ E1 and xi ∈ E2,

TE1(xi), if xi ∈ E1 and xi 6∈ E2,

TE2(xi), if xi ∈ E2 and xi 6∈ E1.

NG1∪G2(xi) =


max{NE1(xi), NE2(xi)}, if xi ∈ E1 and xi ∈ E2,

NE1(xi), if xi ∈ E1 and xi 6∈ E2,

NE2(xi), if xi ∈ E2 and xi 6∈ E1.

FG1∪G2(xi) =


min{FE1(xi), FE2(xi)}, if xi ∈ E1 and xi ∈ E2,

FE1(xi), if xi ∈ E1 and xi 6∈ E2,

FE2(xi), if xi ∈ E2 and xi 6∈ E1.

Definition 23. Let G1 and G2 be two granules in our model and the q-RPF hyperedges E1, E2 represent their
external properties. The intersection of two granules G1 ∩ G2 is defined as a smaller q-RPF hyperedge that
contains those vertices belonging to both E1 and E2. If xi ∈ G1 ∩ G2, then the membership degrees of xi in
smaller granule G1 ∩ G2 are defined as follows,

TG1∩G2(xi) =


min{TE1(xi), TE2(xi)}, if xi ∈ E1 and xi ∈ E2,

TE1(xi), if xi ∈ E1 and xi 6∈ E2,

TE2(xi), if xi ∈ E2 and xi 6∈ E1.

NG1∩G2(xi) =


min{NE1(xi), NE2(xi)}, if xi ∈ E1 and xi ∈ E2,

NE1(xi), if xi ∈ E1 and xi 6∈ E2,

NE2(xi), if xi ∈ E2 and xi 6∈ E1.

FG1∩G2(xi) =


max{FE1(xi), FE2(xi)}, if xi ∈ E1 and xi ∈ E2,

FE1(xi), if xi ∈ E1 and xi 6∈ E2,

FE2(xi), if xi ∈ E2 and xi 6∈ E1.

Definition 24. Let G1 and G2 be two granules in our model and the q-RPF hyperedges E1, E2 represent their
external properties. The difference between two granules G1 − G2 is defined as a smaller q-RPF hyperedge that
contains those vertices belonging to E1, but not to E2.

Note that, if a vertex xi ∈ E1 and xi 6∈ E2, then:

TE1(xi) > 0, NE1(xi) > 0, FE1(xi) < 1 and TE2(xi) = 0, NE2(xi) = 0, FE2(xi) = 1

Definition 25. A granule G1 is said to be the sub-granule of G2, if each vertex xi of E1 also belongs to E2, i.e.,
E1 ⊆ E2. In such a case, G2 is called the super-granule of G1.

Note that, if E(xi) = {0, 1}, then all above-described operators are reduced to the classical
hypergraphs theory of GrC.
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3.2. The Construction of Hierarchical Structures

As earlier, we have constructed a granular structure of a specific level as a q-RPFH. In this way,
we can interpret a problem at distinct levels of granularities. Hence, these granular structures at
different levels produce a set of q-RPFHs. The upper set of these hypergraphs constructs a hierarchical
structure at distinct levels. The relationships between granules are expressed by the lower level, which
represents the problem as a concrete example of granularity. The relationships between granule sets
are expressed by the higher level, which represents the problem as an abstract example of granularity.
Thus, the single-level structures can be constructed and then can be subdivided into hierarchical
structures using the relational mappings between different levels.

Definition 26. Let H1 = (R1, S1) and H2 = (R2, S2) be two q-RPFHs. In a hierarchy structure, their
level cuts are H(α,β,γ)

1 and H(α,β,γ)
2 , respectively. Let (α, β, γ) ∈ [0, 1] and TE1

i
≥ α, NE1

i
≥ β, FE1

i
≤ γ,

where E1
i ∈ S1, then a mapping φ : H(α,β,γ)

1 → H(α,β,γ)
2 from H(α,β,γ)

1 to H(α,β,γ)
2 maps the E1(α,β,γ)

i in

H(α,β,γ)
1 to a vertex x2

i in H(α,β,γ)
2 . Furthermore, the mapping φ−1 : H(α,β,γ)

2 → H(α,β,γ)
1 maps a vertex x2

i in

H(α,β,γ)
2 to the (α, β, γ)-cut of q-RPF hyperedge E1(α,β,γ)

i in H(α,β,γ)
1 . It can be denoted as φ(E1(α,β,γ)

i ) = x2
i or

φ−1(x2
i ) = E

1(α,β,γ)
i , for 1 ≤ i ≤ n.

The q-RPFH H1 possesses a finer granularity than H2, so H1 is referred to as the finer granularity
and H2 as the coarser granularity.

In a q-RPFH model, the mappings are used to describe the relations among different levels
of granularities. At each distinct level, the problem is interpreted w.r.t. the q-RPF granularity of
that level. The different descriptions of some problems are associated through mappings at distinct
levels of granularities. There are two fundamental types to construct the hierarchical structures,
the top-down construction procedure and the bottom-up construction procedure [34]. The method for
the bottom-up construction is described in Algorithm 1.

Algorithm 1 The bottom-up construction.
Input: An undirected q-RPFH H.
Output: The bottom-up construction of granular structures.

1: Combine the vertices having some relationship r ∈ R into a unit Uj, according to the set of relations
R = {r1, r2, r3, · · · , rn}.

2: Compute the membership degrees through the functions T(x), N(x), and F(x) of each unit Uj,
which are q-RPF hyperedges and regarded as granules.

3: Now, formulate the i-level of the model using the following steps.
4: Input the number of q-RPF hyperedges or granules k.
5: Fix parameters α, β, and γ.
6: for α, β, γ ∈ [0, 1] do
7: for s from 1–k do
8: if (TUs(a) ≥ α, NUs(a) ≥ β, FUs(a) ≤ γ) then
9: a ∈ U(α,β,γ)

s
10: end if
11: if (U(α,β,γ)

s 6= ∅) then
12: U(α,β,γ)

s ∈ H(α,β,γ)
i

13: end if
14: end for
15: end for
16: return H(α,β,γ)

i is the ith-level of H.
17: A single level of bottom-up construction is constructed.
18: Perform the steps form 1–16 repeatedly to construct the i + 1-level of granularity.
19: Except the last level, each level is mapped to the next level using some operators.
20: Step 1–Step 16 are performed repeatedly until the complete set is formulated as a single granule.

The method of bottom-up construction is explained by the following example.
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Example 4. Let H = (R, S) be a seven-rung picture fuzzy hypergraph as shown in Figure 7. Let X =

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} and S = {E1, E2, E3, E4, E5}.

b
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Figure 7. A seven-rung picture fuzzy hypergraph (RPFH).

For α = 0.5, β = 0.5, and γ = 0.6, the (0.5, 0.5, 0.6)-level hypergraph of H is given in Figure 8.

b
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b
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x3
x5
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E
1

E2 E5
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x11

Figure 8. The (0.5, 0.5, 0.6)-level hypergraph of H.

By considering the fixed α, β, γ and following Algorithm 1, the bottom-up construction of this model is
given in Figure 9.

In GrC, more than one hierarchical structure (HS) is considered to emphasize the
multiple approaches. These different HSs can be formed by considering the different interpretations
of the relation set R. Every HS is a distinct aspect of the problem. A multiple or a multilevel model
of GrC based on the hypergraph is formed by combining these different hierarchical structures. In a
hypergraph model, a series of correlated hypergraphs is used to present every hierarchical structure.
The mapping relates the distinct levels in an HS, and each hypergraph denotes a particular level in
that structure. Each specific level has multiple hyperedges, and the objects having similar attributes are
contained in one hyperedge. We now extend the example given in [23] to construct a q-RPFH model of
GrC to illustrate the validity and flexibility of our model.

Example 5. Consider an express hypernetwork, where the vertices represent the express corporations.
These vertices are combined together in one unit U according to the relation set R and possessing some
type of relation among them. To form a 6-RPF hyperedge, which is also called a granule, we calculate and
assign the membership degrees to each unit. Each 6-RPF hyperedge denotes a shop demanding express services,
and the vertices contained in that hyperedge are the express corporations serving that shop. There are ten
{c1, c2, c3, c4, c5, c6, c7, c8, c9, c10} express corporations, and the corresponding incidence matrix of this model is
given in Table 2.
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Figure 9. The bottom-up construction procedure.

Table 2. Incidence matrix of the express hypernetwork.

Shop 1 Shop 2 Shop 3 Shop 4 Shop 5

c1 (0.8, 0.2, 0.1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
c2 (0.9, 0.3, 0.5) (0, 0, 1) (1, 0, 0) (0, 0, 1) (0, 0, 1)
c3 (0.3, 0.5, 0.9) (0.6, 0.5, 0.2) (0, 0, 1) (0, 0, 1) (0, 0, 1)
c4 (0.8, 0.2, 0.1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
c5 (0, 0, 1) (0.3, 0.5, 0.9) (0, 0, 1) (0, 0, 1) (0, 0, 1)
c6 (0, 0, 1) (0.7, 0.2, 0.3) (0, 0, 1) (0, 0, 1) (0, 0, 1)
c7 (0, 0, 1) (0.5, 0.3, 0.6) (0, 0, 1) (0.1, 0.2, 0.8) (0, 0, 1)
c8 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0.6, 0.5, 0.2) (0, 0, 1)
c9 (0, 0, 1) (0, 0, 1) (0.6, 0.5, 0.2) (0.7, 0.2, 0.3) (0.4, 0.7, 0.5)
c10 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0.5, 0.2, 0.7)

The corresponding 6-rung picture fuzzy hypergraph is shown in Figure 10.
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Figure 10. A 6-rung picture fuzzy hypergraph model of express corporations.

A 6-RPFH model of GrC illustrates an uncertain set of objects with specific positive, neutral, and negative
degrees, which incorporate the undetermined behavior of an element with respect to its granule. In this example,
there are five shops requiring the services of the express corporation. The membership degrees of each corporation
to distinct shops is different because every shop selects a corporation by considering different factors, including
consignment, life span, limited liability, scale of that express corporation, the distance of receiving and mailing
parcels, and so on. Note that, using a q-RPFH in GrC is meaningful and more flexible as compared to the
fuzzy hypergraph because it also deals with negative membership and the neutral behavior of objects toward
their granules.

3.3. Zooming-in and Zooming-out Operators

The multi-level granularity of the problem is represented by a q-RPFH model, which allows the
problem solvers to decompose it into various minor problems and transform it into other granularities.
The transformation of the problem in other granularities is performed by using two operators, i.e,
zooming-in and zooming-out operators. The transformation from the weaker level to the finer level of
granularity is done by zoom-in and the zoom-out operators dealing with the shifting of the problem
from coarser to finer granularity.

Definition 27. Let H1 = (R1, S1) and H2 = (R2, S2) be two q-RPFHs, which are considered as two levels of
hierarchical structures, and H2 owns a coarser granularity than H1. Suppose H(α,β,γ)

1 = (X1, E(α,β,γ)
1 ) and

H(α,β,γ)
2 = (X2, E(α,β,γ)

2 ) are the corresponding (α, β, γ)-level hypergraphs of H1 and H2, respectively. Let

e1
i ∈ E(α,β,γ)

1 , x1
j ∈ X1, e2

j ∈ E(α,β,γ)
2 , x2

l , x2
m ∈ X2, and x2

l , x2
m ∈ e2

j . If φ(e1
i ) = x2

l , then r(x1
j , x2

m) is the
relationship between x1

j and x2
m and is obtained by the characteristics of granules.

Definition 28. Let the hyperedge φ−1(xl) be a vertex at a new level and the relation between hyperedges at
this level be the same as that of the relationship between vertices at the previous level. This is called the zoom-in
operator and transforms a weaker level to a stronger level. The function r(x1

j , x2
m) defines the relation between

vertices of the original level, as well as the new level.
Let the vertex φ(ei) be a hyperedge at the next level and the relation between elements at this level be

the same as that of the relationship between hyperedges at the corresponding level. This is called the zoom-out
operator and transformation of a finer granularity to a coarser one.

By applying these operators, a problem can be viewed at multiple levels of granularities.
These operations allow us to solve the problem more appropriately, and granularity can be switched
easily at any level of problem solving.

In a q-RPFH model of GrC, the membership degrees of elements reflect the actual situation more
efficiently, and a wide variety of complicated problems in uncertain and vague environments can be
presented by means of q-RPFHs. The previous analysis concluded that this model of GrC generalized
the classical hypergraph model and fuzzy hypergraph model.

We now construct a hypergraph model of GrC based on q-RPFER.



Mathematics 2019, 7, 496 17 of 25

4. A Level Hypergraph Partition Model

In this partition model, the blocks are represented by hyperedges and each block contains the
elements having some q-RPFER R. Let πR be the partition of X induced by R, then the q-RPFER Rπ is
defined as, xRπy if and only if they are contained in a similar block/subset.

Definition 29. A system (X, Rρ), ρ = (α, β, γ) is called an object space, where Rρ is a non-empty collection of
equivalence relations between the elements of X. Rρ = {rρ

1 , rρ
2 , rρ

3 , · · · , rρ
n}, n = |X|. For i ≤ n, rρ

i ∈ Rρ, rρ
i ⊆

X× X× X · · · × X, if (x1, x2, · · · , xi) ⊆ rρ
i , then there exists an i-array relation rρ

i on (x1, x2, · · · , xi).

Example 6. Let X = {x1, x2, x3, x4, x5} and Rρ = {rρ
1 , rρ

2 , rρ
3 , rρ

4 , rρ
5}, for 0.7 < α ≤ 0.9, 0.5 < β ≤

0.5, 0.1 > γ ≥ 0.1, as shown in Example 1, rρ
1 = {(x1), (x2), (x3)}, rρ

2 = {(x4, x5)}, rρ
3 , rρ

4 , rρ
5 = {∅}.

The q-RPFERs between the vertices are obtained from the actual situation, and then, the vertices
having some relation are combined into a hyperedge. After the integration of all vertices into
hyperedges is done, a single level of the GrC model is obtained. The construction of the level
hypergraph model is illustrated through the following example, which is the extension of example
given in [23].

Example 7. Consider an express hypernetwork, as discussed in Example 5; we consider the same hypernetwork
to illustrate the construction of the level hypergraph model. Ten express corporations are considered, and
suppose that each corporation experiences six attributes. These attributes are delivery time, freight, tracking
and circulation information, time window service, customer satisfaction, and flexible and customizable and are
denoted by A1, A2, A3, A4, A5, and A6, respectively. To indicate the values of attributes, zero and one are used,
as shown in Table 3.

Table 3. Description of the attributes.

Attributes Characteristic Value Characteristic Value

Delivery time Short 1 Long 0
Freight Low 1 High 0
Tracking and circulation information Existence 1 Non-existence 0
Time window service Existence 1 Non-existence 0
Customer satisfaction High 1 Low 0
Flexible and customizable Large 1 Small 0

The information about express corporations having these attributes is given in Table 4.

Table 4. Corporations having attributes.

Express Corporations A1 A2 A3 A4 A5 A6

x1 E1 1 0 0 1 0 0
x2 E2 1 0 0 1 0 0
x3 E3 1 1 0 1 0 0
x4 E4 1 1 0 1 1 0
x5 E5 1 1 0 0 0 1
x6 E6 1 1 0 0 0 0
x7 E7 1 1 1 0 0 0
x8 E8 1 0 1 0 0 0
x9 E9 1 0 1 0 1 0
x10 E10 0 0 1 0 1 0
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The positive membership function T(xi) ∈ [0, 1] represents the beneficial and helpful relationships between
these corporations, and this affirmative relationship is described through the following matrix.

TM̃R
=



1 1 0.67 0.55 0.25 0.33 0.25 0.33 0.25 0
1 1 0.67 0.55 0.25 0.33 0.25 0.33 0.25 0

0.67 0.67 1 0.75 0.55 0.66 0.55 0.25 0.20 0
0.55 0.55 0.75 1 0.40 0.40 0.40 0.20 0.40 0.20
0.25 0.25 0.55 0.40 1 0.67 0.55 0.25 0.20 0
0.33 0.33 0.67 0.40 0.67 1 0.67 0.33 0.25 0
0.25 0.25 0.55 0.40 0.55 0.67 1 0.67 0.55 0.25
0.33 0.33 0.25 0.20 0.25 0.33 0.67 1 0.67 0.33
0.25 0.25 0.20 0.40 0.20 0.25 0.55 0.67 1 0.67

0 0 0 0.20 0 0 0.25 0.33 0.67 1


.

The neutral membership function N(xi) ∈ [0, 1] represents the unbiased and vague relationships between
these corporations, and this indeterminate behavior is described through the following matrix.

NM̃R
=



0 0 0.23 0.31 0.31 0.12 0.31 0.12 0.31 0
0 0 0.23 0.31 0.31 0.12 0.31 0.12 0.31 0

0.23 0.23 0 0.23 0.31 0.33 0.31 0.31 0.12 0
0.31 0.31 0.23 0 0.20 0.20 0.20 0.12 0.20 0.12
0.31 0.31 0.31 0.20 0 0.23 0.31 0.31 0.12 0
0.12 0.12 0.23 0.20 0.23 0 0.23 0.12 0.31 0
0.31 0.31 0.31 0.20 0.31 0.23 0 0.23 0.31 0.31
0.12 0.12 0.31 0.12 0.31 0.12 0.23 0 0.23 0.12
0.31 0.31 0.12 0.20 0.12 0.31 0.31 0.23 0 0.23

0 0 0 0.12 0 0 0.31 0.12 0.23 0


.

The negative membership function F(xi) ∈ [0, 1] represents the contrary and competent relationships
between these corporations, and this opposing relationship is described through the following matrix.

FM̃R
=



0 0 0.32 0.45 0.65 0.65 0.65 0.65 0.65 1
0 0 0.32 0.45 0.65 0.65 0.65 0.65 0.65 1

0.32 0.32 0 0.25 0.45 0.23 0.45 0.65 0.7 1
0.45 0.45 0.25 0 0.50 0.50 0.50 0.76 0.50 0.76
0.65 0.65 0.45 0.50 0 0.32 0.45 0.65 0.76 1
0.65 0.65 0.32 0.50 0.32 0 0.32 0.65 0.65 1
0.65 0.65 0.45 0.50 0.45 0.32 0 0.32 0.45 0.65
0.65 0.65 0.65 0.76 0.65 0.65 0.32 0 0.32 0.65
0.65 0.65 0.76 0.50 0.76 0.65 0.45 0.32 0 0.32

1 1 1 0.76 1 1 0.65 0.65 0.32 1


.

A 5-RPFR matrix can be obtained by combining positive membership, neutral membership, and negative
membership degrees, as shown in the following matrix.

M̃R =


(1, 0, 0) (1, 0, 0) . . . (0, 0, 1)
(1, 0, 0) (1, 0, 0) . . . (0, 0, 1)

(0.67, 0.23, 0.32) (0.67, 0.23, 0.32) . . . (0, 0, 1)
...

...
...

...
(0, 0, 1) (0, 0, 1) . . . (1, 0, 0)

 .
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The positive T(mij), neutral N(mij), and negative F(mij) degrees of each mij entry of the above matrix
describe the healthy, neutral, and rival relationships among the xi and xj corporations, respectively. The transitive
closure of the above matrix is shown in the matrix below. The transitive closure of 5-RPFER is also an
equivalence relation.



1 (0.40, 0.20, 0.50)(0.67, 0.23, 0.32)(0.55, 0.31, 0.45)(0.55, 0.31, 0.45) 0 0 0 0 0
(0.40, 0.20, 0.50) 1 (0.40, 0.20, 0.50)(0.40, 0.20, 0.50)(0.40, 0.20, 0.50) 0 0 0 0 0
(0.67, 0, 23, 0.32)(0.40, 0.20, 0.50) 1 (0.55, 0.31, 0.45)(0.55, 0.31, 0.45) 0 0 0 0 0
(0.55, 0.31, 0.45) (0.40, 0.20, 0.50)(0.55, 0.31, 0.45) 1 (0.75, 0.23, 0.32) 0 0 0 0 0
(0.55, 0.31, 0.45) (0.40, 0.20, 0.50)(0.55, 0.31, 0.45)(0.75, 0.23, 0.32) 1 0 0 0 0 0

0 0 0 0 0 1 0(0.33, 0.12, 0.65)(0.20, 0.12, 0.76)(0.20, 0.12, 0.76)
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 (0.33, 0.12, 0.65)0 1 (0.20, 0.12, 0.76)(0.20, 0.12, 0.76)
0 0 0 0 0 (0.20, 0.12, 0.76)0(0.20, 0.12, 0.76) 1 (0.25, 0.31, 0.65)
0 0 0 0 0 (0.20, 0.12, 0.76)0(0.20, 0.12, 0.76)(0.25, 0.31, 0.65) 1



Note that, here, 0 = (0, 0, 1) and 1 = (1, 0, 0). The positive, neutral, and negative value domains are
given as follows,
TD = {0.75, 0.67, 0.55, 0.40, 0.33, 0.25, 0.20},
ND = {0.31, 0.23, 0.20, 0.12},
FD = {0.76, 0.65, 0.50, 0.45, 0.32}.

Let 0.20 < α ≤ 0.25, 0.12 < β ≤ 0.20, and 0.32 < γ ≤ 0.45 and their corresponding HQS be given
as follows,
X/R(α,β,γ) = {(x4, x5), (x1, x4, x5), (x1, x3, x5), (x1, x3, x4)}.

Thus, we can conclude that r1 = {∅}, r2 = {(x4, x5)}, r3 = {(x1, x4, x5), (x1, x3, x5), (x1, x3, x4)}, r4

= r5 = r6 = r7 = r8 = r9 = r10 = {∅}. We obtain four hyperedges E1 = {x4, x5}, E2 = {x1, x4, x5}, E3 =

{x1, x3, x5}, E4 = {x1, x3, x4}. Thus, we have constructed a single level of the hypergraph model, as shown in
Figure 11.

b

b

b

b

x1

x3

x 4 x
5

E1

E
2

E3

E
4

Figure 11. A single level of the hypergraph model.

It is noted that a q-RPFER determines the partition of the domain set into different layers.
All q-RPFER, which are isomorphic, can also determine the same classification.

Definition 30. Let H1 and H2 be two crisp hypergraphs. Suppose that H1 owns a finer q-RPF granularity
than H2. A mapping from H1 to H2 ψ : H1 → H2 maps a hyperedge of H1 to the vertex of H2, and the mapping
ψ−1 : H2 → H1 maps a vertex of H2 to the hyperedge of H1.

The procedure of bottom-up construction for the level hypergraph model is illustrated in
Algorithm 2.
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Algorithm 2 The bottom-up construction for level hypergraphs.

1: Input the number of vertices m of universal set X.
2: Input a q-RPFER matrix R = [rij]m×m of membership degrees.
3: Determine the value domain D of R as follows:
4: for i from 1–m do
5: for j from 1–m do
6: xi, yj ∈ X
7: if (TX(xi) ∧ TX(yj) ∧ TR(xi, yj) > 0, NX(xi) ∧ NX(yj) ∧ NR(xi, yj) > 0, FX(xi) ∨ FX(yj) ∨

FR(xi, yj) > 0) then
8: (xi, yj) ∈ D
9: end if

10: if (U(α,β,γ)
s 6= ∅) then

11: U(α,β,γ)
s ∈ H(α,β,γ)

i
12: end if
13: return D is the value domain of R.
14: Fix the parameters α, β, γ ∈ [0, 1], where α, β, γ ∈ D.
15: if (TR(xi, yj) ≥ α, NR(xi, yj) ≥ β, FR(xi, yj) ≤ γ) then
16: (xi, yj) ∈ R(α,β,γ)

17: end if
18: return {X/R(α,β,γ)|(α, β, γ) ∈ D} is q-RPFHQSS of R.
19: end for
20: end for
21: The subsets {X/R(α,β,γ)|(α, β, γ) ∈ D} of q-RPFHQSS correspond to the hyperedges or granules

of the level hypergraph.
22: The k-level of granularity is constructed.
23: These hyperedges or granules at the k-level are mapped to (k + 1)-level.
24: Step 1–Step 22 are repeated until the whole universe is formulated as a single granule.
25: Except the last level, each level is mapped to the next level of granularity through

different operators.

Definition 31. Let R be a q-RPFER on X. A coarse grained universe X/R(α,β,γ) can be obtained by using
q-RPFER, where [xi]Rα,β,γ = {xj ∈ X|xiRxj}. This equivalence class [xi]R(α,β,γ) is considered as a hyperedge in
the level hypergraph.

Definition 32. Let H1 = (X1, E1) and H2 = (X2, E2) be level hypergraphs of q-RPFHs, and H2 has weaker
granularity than H1. Suppose that e1

i , e2
j ∈ E1, and x2

i , x2
j ∈ X2, i, j = 1, 2, · · · , n. The zoom-in operator

κ : H2 → H1 is defined as κ(x2
i ) = e1

i , e1
i ∈ E1. The relations between the vertices of H2 define the relationships

among the hyperedges at the new level. The zoom-in operator of the two levels is shown in Figure 12.

b

b
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x
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x
2
2

x 2
3

H2

b b

b

bb

b

e11

e1 2

e 1
3

κ(x21)

κ(x2
2)

κ(x2
3)

H1

Figure 12. The zoom-in operator.

Remark 1. For all X′2, X′′2 ⊆ X2, we have κ(X′2) =
⋃

x2
i ∈X′2

κ(x2
i ) and κ(X′′2 ) =

⋃
x2

j ∈X′′2

κ(x2
j ).

Theorem 3. Let H1 = (X1, E1) and H2 = (X2, E2) be two levels and κ : H2 → H1 be the zoom-in operator.
Then, for all X′2, X′′2 ⊆ X2, the zoom-in operator satisfies,

(i) κ maps the empty set to an empty set, i.e., κ(∅) = ∅.



Mathematics 2019, 7, 496 21 of 25

(ii) κ(X2) = E1.
(iii) κ([X′2]

c) = [κ(X′2)]
c.

(iv) κ(X′2 ∩ X′′2 ) = κ(X′2) ∩ κ(X′′2 ).
(v) κ(X′2 ∪ X′′2 ) = κ(X′2) ∪ κ(X′′2 ).
(vi) X′2 ⊆ X′′2 if and only if κ(X′2) ⊆ κ(X′′2 ).

Proof. (i) It is trivially satisfied that κ(∅) = ∅.
(ii) As we know that for all x2

i ∈ X2, we have κ(X′2) =
⋃

x2
i ∈X′2

κ(x2
i ). Since κ(x2

i ) = e1
i ; thus, we have

κ(X′2) =
⋃

x2
i ∈X′2

κ(x2
i ) =

⋃
e1

i ∈E1

e1
i = E1.

(iii) Let [X′2]
c = Z′2 and [X′′2 ]

c = Z′′2 , then it is obvious that Z′2 ∩ X′2 = ∅ and Z′2 ∪ X′2 = X2. It follows
from (ii) that κ(X2) = E1, and we denote by W ′1 that edge set of H1 on which the vertex set Z′2 of
H2 is mapped under κ, i.e., κ(Z′2) = W ′1. Then, κ([X′2]

c) = κ(Z′2) =
⋃

x2
i ∈Z′2

κ(x2
i ) =

⋃
e1

i ∈W ′1

e1
i = Z′1

and [κ(X′2)]
c = [

⋃
x2

j ∈X′2

κ(x2
j )]

c = [
⋃

e1
j ∈E′1

e1
j ]

c = (E′1)
c. Since the relationship between hyperedges at

the new level is the same as that of the relations among the vertices at the original level, we have
(E′1)

c = Z′1. Hence, we conclude that κ([X′2]
c) = [κ(X′2)]

c.
(iv) Assume that X′2 ∩ X′′2 = X̃2, then for all x2

i ∈ X̃2, this implies that x2
i ∈ X′2 and x2

i ∈ X′′2 . Further,
we have κ(X′2 ∩ X′′2 ) = κ(X̃2) =

⋃
x2

i ∈X̃2

κ(x2
i ) =

⋃
e1

i ∈Ẽ1

κ(e1
i ) = Ẽ1. κ(X′2) ∩ κ(X′′2 ) = {

⋃
x2

i ∈X′2

κ(x2
i )}

∩ { ⋃
x2

j ∈X′′2

κ(x2
j )} =

⋃
e1

i ∈E′1

e1
i ∩

⋃
e1

j ∈E′′1

e1
j = E′1 ∩ E′′1 . Since the relationship between hyperedges at the

new level is the same as that of the relations among the vertices at the original level, we have
E′1 ∩ E′′1 = Ẽ1. Hence, we conclude that κ(X′2 ∩ X′′2 ) = κ(X′2) ∩ κ(X′′2 ).

(v) Assume that X′2 ∪X′′2 = X̄2. Then, we have κ(X′2 ∪X′′2 ) = κ(X̄2) =
⋃

x2
i ∈X̄2

κ(x2
i ) =

⋃
e1

i ∈Ē1

κ(e1
i ) = Ē1.

κ(X′2) ∪ κ(X′′2 ) = { ⋃
x2

i ∈X′2

κ(x2
i )} ∪ {

⋃
x2

j ∈X′′2

κ(x2
j )} =

⋃
e1

i ∈E′1

e1
i ∪

⋃
e1

j ∈E′′1

e1
j = E′1 ∪ E′′1 . Since the

relationship between hyperedges at the new level is the same as that of the relations among
the vertices at the original level, we have E′1 ∪ E′′1 = Ē1. Hence, we conclude that κ(X′2 ∪ X′′2 ) =
κ(X′2) ∪ κ(X′′2 ).

(vi) First, we show that X′2 ⊆ X′′2 implies that κ(X′2) ⊆ κ(X′′2 ). Since X′2 ⊆ X′′2 , this implies that
X′2 ∩ X′′2 = X′2 and κ(X′2) =

⋃
x2

i ∈X′2

κ(x2
i ) =

⋃
e1

i ∈E′1

e1
i = E′1. Furthermore, κ(X′′2 ) =

⋃
x2

j ∈X′′2

κ(x2
j ) =

⋃
e1

j ∈E′′1

e1
j = E′′1 . Since the relationship between hyperedges at the new level is the same as that

of the relations among the vertices at the original level, we have E′1 ⊆ E′′1 , i.e., κ(X′2) ⊆ κ(X′′2 ).
Hence, X′2 ⊆ X′′2 implies that κ(X′2) ⊆ κ(X′′2 ).

We now prove that κ(X′2) ⊆ κ(X′′2 ) implies that X′2 ⊆ X′′2 . Suppose on the contrary that whenever
κ(X′2) ⊆ κ(X′′2 ), then there is at least one vertex x2

i ∈ X′2, but x2
i 6∈ X′′2 , i.e., X′2 * X′′2 . Since,

κ(x2
i ) = e1

i , and the relationship between hyperedges at the new level is the same as that of the
relations among the vertices at the original level, we have e1

i ∈ E′1, but e1
i 6∈ E′′1 ,.i.e., E′1 * E′′1 ,

which is a contradiction to the supposition. Thus, we have that κ(X′2) ⊆ κ(X′′2 ) implies that
X′2 ⊆ X′′2 . Hence, X′2 ⊆ X′′2 if and only if κ(X′2) ⊆ κ(X′′2 ).

Definition 33. Let H1 = (X1, E1) and H2 = (X2, E2) be level hypergraphs of q-RPFHs, and H2 has weaker
granularity than H1. Suppose that e1

i , e2
j ∈ E1, and x2

i , x2
j ∈ X2, i, j = 1, 2, · · · , n. The zoom-out operator

σ : H1 → H2 is defined as σ(e1
i ) = x2

i , x2
i ∈ X2. The zoom-out operator of two levels is shown in Figure 13.
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Figure 13. The zoom-out operator.

Theorem 4. Let σ : H1 → H2 be the zoom-out operator from H1 = (X1, E1) to H2 = (X2, E2), and let
E′1 ⊆ E1. Then, the zoom-out operator σ satisfies,

(i) σ(∅) = ∅.
(ii) σ maps the set of hyperedges of H1 onto the set of vertices of H2, i.e., σ(E1) = X2.
(iii) σ([E′1]

c) = [σ(E′1)]
c.

Proof. (i) This part is trivially satisfied.
(ii) By applying the definition of σ, we have σ(e1

i ) = x2
i . Since the hyperedges define a partition of

hypergraph, we have E1 = {e1
1, e1

2, e1
3, · · · , e1

n} =
⋃

e1
i ∈E1

e1
i . Then,

σ(E1) = σ(
⋃

e1
i ∈E1

e1
i ) =

⋃
e1

i ∈E1

σ(e1
i ) =

⋃
x2

i ∈X2

x2
i = X2.

(iii) Assume that [E′1]
c = V′1, then it is obvious that E′1 ∩V′1 = ∅ and E′1 ∪V′1 = E1. Suppose on the

contrary that there exists at least one vertex x2
i ∈ σ([E′1]

c), but x2
i 6∈ [σ(E′1)]

c. x2
i ∈ σ([E′1]

c) implies
that x2

i ∈ σ(V′1) ⇒ x2
i ∈

⋃
e1

i ∈V′1

σ(e1
i ) ⇒ x2

i ∈
⋃

e1
i ∈E1\E′1

σ(e1
i ). Since x2

i 6∈ [σ(E′1)]
c ⇒ x2

i ∈ σ(E′1) ⇒

x2
i ∈

⋃
e1

i ∈E′1

σ(e1
i ), which is contradiction to our assumption. Hence, σ([E′1]

c) = [σ(E′1)]
c.

Definition 34. Let H1 = (X1, E1) and H2 = (X2, E2) be two levels of q-RPFHs, and H1 possesses a
stronger granularity than H2. Let E′1 ⊆ E1, then σ̂(E′1) = {e2

i |e2
i ∈ E2, κ(e2

i ) ⊆ E′1} is called the internal
zoom-out operator.

The operator σ̌(E′1) = {e2
i |e2

i ∈ E2, κ(e2
i ) ∩ E′1 6= ∅} is called the external zoom-out operator.

Example 8. Let H1 = (X1, E1) and H2 = (X2, E2) be two levels of q-RPFHs, and H1 possesses a
stronger granularity than H2, where E1 = {e1

1, e1
2, e1

3, e1
4, e1

5, e1
6} and E2 = {e2

1, e2
2, e2

3}. Furthermore,
e2

1 = {x2
1, x2

3}, e2
2 = {x2

2, x2
4}, e2

3 = {x2
5, x2

6}, as shown in Figure 14.
Let E′1 = {e1

2, e1
3, e1

4, e1
5} be the subset of hyperedges of H1, then we cannot zoom-out to H2 directly; thus,

by using the internal and external zoom-out operators, we have the following relations.
σ̂({e1

2, e1
3, e1

4, e1
5}) = {e2

2},
σ̌({e1

2, e1
3, e1

4, e1
5}) = {e2

1, e2
2, e2

3}.
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Figure 14. The internal and external zoom-out operators.

5. Comparison Analysis

A q-ROFS is defined as an ordered pair (T, F) such that the sum of the qth power of the positive
degree T and the qth power of negative degree F is no greater than one, i.e., Tq + Fq ≤ 1. Note that
IFSs and PYFSs are special cases of q-ROFSs, i.e, every IF grade is also a PYF grade, as well as a
q-ROF grade. Suppose that (x, y) is an IF grade, where x ∈ [0, 1], y ∈ [0, 1], and 0 ≤ x + y ≤ 1, since
xq ≤ x, yq ≤ y, q ≥ 1, so we have 0 ≤ xq + yq ≤ 1. This implies that the class of q-ROFSs generalizes the
classes of IFSs and PYFSs. In spite of the fact that IFSs, q-ROFSs, and PYFSs are applicable effectively in
many decision making problems, still there are various circumstances that are difficult to handle using
these models. For example, voters can be classified into four groups of people who: vote for, abstain,
or refuse in a voting system, i.e., in many real-life situations, there are many answers other than yes or
no, including, abstain and refusal. In such cases, the existing models of IFSs, q-ROFSs, and PYFSs fail
to work effectively. Thus, Cuong [16] gave the idea of PFS, which is characterized by a positive degree
T, a neutral degree N, and a negative degree F such that T + N + F ≤ 1. We have proposed a model
of GrC based on q-RPFH and combined the advantages of two fruitful theories of q-ROFSs and PFSs.
Our proposed q-RPF (T, N, F) model not only expresses the neutral degree, but also relaxes the
condition of PFS that the sum of the three degrees must be less than one since Tq + Nq + Fq ≤ 1, q ≥ 1
is the defining constraint of q-RPFS. Note that the proposed model extends the q-ROF and PF models by
considering the neutral degree and by taking the constraint Tq + Nq + Fq ≤ 1, q ≥ 1 into consideration;
for example, if a decision maker assigns the positive, neutral, and negative degrees as 0.6, 0.3, and 0.5,
respectively. Then, the triplet (0.6, 0.3, 0.5) cannot be handled through q-ROF or PF models, whereas
the proposed q-RPF model can deal with this problem. This reveals that the q-RPF model contains a
higher capacity in modeling of uncertain data than the q-ROF and PF models. It is worth noting that
as we increase the value of parameter q, the space of uncertain data also increases, and the bounding
constraint is satisfied by more triplets. Thus, a wider range of vague information can be expressed
using q-RPFSs. Our proposed model is more generic as compared to the q-ROF and PF models, as when
q = 1, the model reduces to the PF model, and when N = 0, q ≥ 1, it reduces to the q-ROF model.
Hence, our approach is more flexible and generalized, and different values of q can be chosen by
decision makers according to the different attitudes.

6. Conclusions and Future Directions

A q-rung picture fuzzy set is the generalization of the picture of the fuzzy set and the q-rung
orthopair fuzzy set. This model deals with uncertainty and vagueness more practically and effectively
because of its third component, i.e., the neutral part. The proposed q-rung picture fuzzy model owns
the advantages of the q-rung orthopair fuzzy set, as well as the picture fuzzy set and proves to be a
more powerful framework to analyze the qualitative and quantitative studies. Granular computing is
a general criterion that emphasizes the exploitation of multi-level granular structures. GrC reflects and
captures our ability to explore real-world problems at different levels of granularity and enables us



Mathematics 2019, 7, 496 24 of 25

to change these granularities during problem solving. In this paper, we have combined the q-RPFSs
with hypergraphs to attain the advantages of both theories. A q-RPFS is the generalization of PFS and
q-ROFS. This set deals with uncertainty and vagueness more practically and effectively because of its
third component, i.e., the neutral part. It is worth noting that as we increase the value of parameter q,
the space of uncertain data also increases, and the bounding constraint is satisfied by more triplets.
Thus, a wider range of vague information can be expressed by using q-RPFSs. Our proposed model is
more generic as compared to q-ROF and PF models, as when q = 1, the model reduces to the PF model,
and when N = 0, q ≥ 1, it reduces to q-ROF model. We have defined q-RPFHs, and then, the proposed
model has been used to examine the GrC. In this hypergraph model, we have obtained the granules
as hyperedges from q-RPFER, and the partition of the universe has been defined by means of these
granules. Further, we have defined the zoom-in and zoom-out operators to give the description of
mappings between two hypergraphs. We have also discussed a concrete example to reveal the validity
and applicability of our proposed model. We aim to extend our research: (1) q-rung picture fuzzy
directed hypergraphs, (2) fuzzy rough soft directed hypergraphs, (3) granular computing based on
fuzzy rough hypergraphs, (4) hesitant q-rung orthopair fuzzy hypergraphs, and (5) q-rung picture
fuzzy concept lattice.
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