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Abstract: We obtain a list of simple classes of singularities of function germs with respect to the
quasi m-boundary equivalence relation, with m ≥ 2. The results obtained in this paper are a natural
extension of Zakalyukin’s work on the new non-standard equivalent relation. In spite of the rather
artificial nature of the definitions, the quasi relations have very natural applications in symplectic
geometry. In particular, they are used to classify singularities of Lagrangian projections equipped
with a submanifold. The main method that is used in the classification is the standard Moser’s
homotopy technique. In addition, we adopt the version of Arnold’s spectral sequence method,
which is described in Lemma 2. Our main results are Theorem 4 on the classification of simple
quasi classes, and Theorem 5 on the classification of Lagrangian submanifolds with smooth varieties.
The brief description of the main results is given in the next section.
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1. Introduction

In [1], Vladimir Zakalyukin classified function germs with respect to a new non-standard
equivalence relation, which he named quasi boundary equivalence. The aim of the relation is
to preserve only the positions of critical points of functions defined on a space along a smooth
hypersurface. Using Zakalyukin’s idea, a similar quasi equivalence relation was introduced in which
case the smooth hypersurface was replaced by an arbitrary one, called a border, in particular, when
the border is a cylinder over a corner (a union of two transversal intersecting smooth hypersurfaces)
or a cuspidal edge, as considered in [2,3], respectively. In the present paper, we study an even more
general setting and consider an arbitrary algebraic variety of any dimension, which will be called a
semi-border, and the respective relation will be named quasi semi-border equivalence. In the definition
of the quasi border equivalence relation in [3], it was assumed that the border was stratified set and the
stratification satisfied the Whitney Condition A. Therefore, in many cases, we will be able to establish
similar results to that in [1–3] for semi-borders that satisfy such conditions. In particular, two function
germs are pseudo semi-border equivalent, if there is a diffeomorphism acting as a change of variables,
taking one germ to the other and satisfying the following condition: if one of these functions has a
critical point at the semi-borders, then its image (or respectively the inverse image) also belongs to
the semi-borders. After a natural modification, this equivalence relation behaves well when functions
depend on parameters. The modified definition is called quasi semi-border equivalence.

As an example, we generalize the results in [1] and classify quasi simple function germs
f : (Rn, 0)→ R, in local coordinates w = (x1, x2, . . . , xm, y1, y2, . . . , yn−m), on semi-borders being
submanifolds Γ of codimension m ≥ 2. Therefore, We will set Γ = ΓSm =

{
x1 = x2 = · · · = xm = 0

}
,

and the quasi semi-border equivalence will be also called the quasi m-boundary.
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The quasi singularities have very natural applications related to singularities of Lagrangian
projections (mappings). In fact, Arnold’s classical boundary class of functions, which depends on n
parameters, corresponds to projection of a pair consisting of an n dimensional Lagrangian submanifold
and a regular submanifold of dimension n − 1 that intersects the first component transversally
in complementary directions [4]. The quasi equivalence relation keeps information only on one
Lagrangian submanifold of the pair and on its intersection with the second component. Therefore,
the new relation is an appropriate model for applications when we deal with the notion of a Lagrangian
submanifold with a smooth boundary. Therefore, we will discuss in the current paper the connection
between the obtained simple classes and the singularities of Lagrangian projections in the presence of
a submanifold of codimension m via the quasi semi-border miniversal deformation of a function germ
f : (Rn, 0)→ (R, 0), which can be constructed in the standard way.

The technique of the classification, described in Lemma 2, is valid for smooth function germs,
and it is an important tool for reduction to the normal form. In fact, this lemma completes Arnold’s
description, which is given for power series only, and it can be proven by induction on function germs
of the Newton order of at least γ via similar methods to the standard ones, given in Sections 12.5–12.17
of [5]. Therefore, it is useful in cases not covered by the technique of Chapter 12 of [5], such as the case
when the principal part f0 is quasi homogeneous of specific degree d with indices corresponding to
fixed coordinates, while basic fields, which are tangent to the semi-border, are not quasi homogeneous.

The paper is organized as follows. In Section 2, we introduce the main definitions of the pseudo
and quasi semi-border equivalence relations, and also, we obtain auxiliary results on the quasi
reduction for arbitrary semi-borders. In Section 3, we obtain the classifications of simple quasi
m-boundary germs, described in the following:

Theorem 1. Let f : (Rn, 0)→ R, be a simple germ with respect to the quasi m-boundary equivalence relation.
Then, f is stably quasi m-boundary equivalent to one of the following simple classes:

Notation Normal Form Restrictions Codimension

Ak x2
2 ± xk+1

1 + x2 k ≥ 1 m + k

Dk x2
1x2 ± xk−1

2 + x2 k ≥ 4 m + k

E6 x3
1 ± x4

2 + x2 – m + 6

E7 x3
1 + x2x3

2 + x2 – m + 7

E8 x3
1 + x5

2 + x2 – m + 8

Hp,k
m
∑

i=1
±(xi ± ypi

1 )2 ± yk
1 k > pm ≥ · · · ≥ p1 ≥ 2

m
∑

i=1
pi + k− 1

p = (p1, p2, . . . , pm)

In Section 4, we discuss the main application of the quasi equivalence, and we describe the
classifications of Lagrangian projections with a submanifold of codimension m ≥ 2, in the following:

Theorem 2.

1. A pair (L, Γ), consisting of a Lagrangian submanifold and a semi-border, is stable if and only if its arbitrary
generating family is versal with respect to the quasi semi-border equivalence and up to the addition of
functions in parameters.

2. Let (L, Γ) be a pair of a stable and simple Lagrangian submanifold with an m-boundary. Then, it is
symplectically equivalent to the projection determined by a generating family that is a quasi m-boundary
versal deformation of one of the classes from the above theorem with respect to the quasi m-border equivalence
and up to the addition of functions in parameters.
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Finally, in Section 5, we give a detailed discussion and conclusions, including the contribution of
the paper and possible further applications.

2. Pseudo and Quasi Semi-Border Equivalence Relations

Consider a coordinate space Rn with an algebraic variety Γ in it. The variety will be called
a semi-border, and it will usually be a cylinder; we therefore split the coordinates on Rn into
y = (y1, y2, . . . , yn−m), which accommodate cylindrical directions for Γ and x = (x1, x2, . . . , xm) in
which the equations h1(x) = 0, h2(x) = 0, . . . , hs(x) = 0 of Γ are written. Sometimes, the notation
w = (x, y) will be used for the whole set of coordinates on Rn, if the distinction between x and y is
not significant.

We consider germs of C∞ functions f : (Rn, 0)→ R, in local coordinates w as above. We denote
by Cw the ring of all such germs at the origin and byMw the maximal ideal in Cw.

Definition 1. [3] Two functions f0, f1 : Rn → R are called pseudo semi-border equivalent if there exists a
diffeomorphism θ : Rn → Rn such that f1 ◦ θ = f0, and if a critical point c of the function f0 belongs to the
border Γ, then θ(c) also belongs to Γ, and vice versa, if c is a critical point of f1 and belongs to Γ, then θ−1(c)
also belongs to Γ.

A similar definition can be introduced for germs of functions.

Remark 1.

1. The general statements below are valid for certain types of varieties. In particular, the variety Γ should
be a stratified set, satisfying the Whitney Condition A. In addition, it is assumed in Definition 1 that if a
critical point c is contained in a certain stratum of Γ, then its image θ(c) must be contained in the same
stratum. This means that the diffeomorphism does not need to preserve the variety, but it needs to shift the
critical points along the components of the variety.

2. The pseudo semi-border equivalence will be just called the pseudo border if the variety is a hypersurface.
3. In contrast to the standard equivalence relation, the pseudo semi-border equivalence is not a group action

due to the constraints on the set of admissible diffeomorphisms.

Definition 2. [4] A vector field ζ on (Rn, 0) is said to be logarithmic for the germ (Γ, 0) if, when considered
as a derivation ζ : Cw → Cw, g 7→ ζg, we have ζg ∈ I(Γ) for all g ∈ Cw where ζg = dg(ζ) and
I(Γ) = {ϕ ∈ Cw : ϕ(w) = 0, ∀ w ∈ V}. The Cw-module of such vector fields is denoted by Derlog(Γ),
that is:

Derlog(Γ) =
{

ζ =
n

∑
i=1

ẇ
∂

∂wi
∈ Cw : ζg ∈ I(Γ), ∀ g ∈ I(Γ)

}
,

and it is called the stationary algebra of (Γ, 0).

Remark 2. If ζ ∈ Derlog(Γ), then ζ preserves Γ and, hence, is tangent to it. Moreover, Derlog(Γ) is the Lie
algebra of the group of diffeomorphisms of (Rn, 0) preserving (Γ, 0).

Assume a smooth family ft of function germs are pseudo semi-border equivalent to the function
germ f0, ft ◦ θt = f0, t ∈ [0, 1], with respect to a smooth family θt : (Rn, 0)→ (Rn, 0) of germs of
diffeomorphisms such that θ0 = id and t ∈ [0, 1]. If we differentiate this relation with respect to t,
we get the homological equation:

− ∂ ft

∂t
=

m

∑
i=1

∂ ft

∂xi
Ẋi(t) +

n−m

∑
j=1

∂ ft

∂yj
Ẏj(t), (1)
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where all ∂ ft
∂wi

and the components of the vector field vt =
m
∑

i=1
Ẋi(t) ∂

∂xi
+

n−m
∑

j=1
Ẏj(t) ∂

∂yj
are evaluated

at θt(w). Moreover, if we denote by Rad{It} the radical of the gradient ideal It of the function ft,
then following [1–3,6], we have:

Lemma 1. The components of vt satisfy the following:

Ẋi = ẋi + Rad{It}, Ẏj = ẏi ∈ Cw

where
m
∑

i=1
ẋi

∂
∂xi

+
n−m
∑

j=1
ẏj

∂
∂yj
∈ Derlog(Γ).

Remark 3.

1. The details of the proof of Lemma 1 can be found in [6].
2. If for a given function ∂ ft

∂t in Equation (1), we can find a decomposition in the right side form, then the
vector field vt in the (w, t)-space can be integrated to generate the phase flow θt. Of course, we need to be
sure that the germs of diffeomorphisms are defined on some neighborhood of the base point. This is usually
achieved if the vector field vanishes at the base point. This method is called Moser’s homotopy method.

3. Due to the bad behavior of the radical of an ideal depending on a parameter (see [3]), we will put extra
constraints on the pseudo equivalence relation. In particular, we exchange Rad{It} by the ideal It in the
equivalence definition. The new relation, described explicitly in the following definition, will be called the
quasi semi-border equivalence.

Definition 3. Two functions f0, f1 : Rn → R will be called quasi semi-border equivalent if they are pseudo
semi-border equivalent and there are a family of functions ft and a piece-wise smooth family of diffeomorphisms
θt : Rn → Rn both depending continuously on parameter t ∈ [0, 1] such that the following are satisfied:

1. θ0 = id,
2. ft ◦ θt = f0, and
3. the components of the vector field vt generating θt on each segment of smoothness have the forms:

Ẋi(t) = ẋi + It, Ẏj(t) = ẏi ∈ Cw.

Remark 4.

1. Each one of the vector fields vt and their phase flow θt will be called admissible with respect to the family ft.
2. The tangent space to the quasi semi-border equivalence class of f , denoted by TQΓ f , has the

following description:

TQΓ f =

{ m

∑
i=1

∂ f
∂xi

(
ẋi +

n

∑
k=1

∂ f
∂wk

Ai,k
)
+

n−m

∑
j=1

∂ f
∂yj

ẏj, Ai,k ∈ Cw

}
.

Due to the inclusion I2
0 ⊂ TQΓ f ⊂ I0, where I0 is the gradient ideal of f , we have:

Property 1. A function germ f has a finite codimension with respect to the quasi semi-border equivalence if and
only if f has a finite codimension with respect to the right equivalence.

Property 2. If a function germ f has a finite (right) multiplicity for any semi-border, then f has finite quasi
semi-border multiplicity. In other words, the quasi semi-border tangent space has finite codimension over R in
the space Cw of all germs.
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Let I = { ∂ f
∂wi
} be the gradient ideal of f . As f has a finite right multiplicity, then its local algebra

Q = Cw/I = R{ρ0 = 1, ρ1(w), . . . , ρk(w)}, for some smooth functions ρi(w), is finitely generated
over R.

This means that for any function germ ϕ(w), there is a decomposition of the form:

ϕ(w) =
n

∑
i

∂ f
∂wi

Ai(w) +
k

∑
j=0

cjρj(w).

where cj are constants and Ai(w) are smooth function germs.
Now, for any Ai, we can write:

Ai =
n

∑
s

∂ f
∂wi

Ysi +
k

∑
m=0

βmiρm.

This yields:

ϕ(w) =
n

∑
i,s=1

∂ f
∂wi

∂ f
∂ws

Ysi +
n

∑
i=0

k

∑
m=1

∂ f
∂wi

ρmβmi +
k

∑
j=0

cjρj.

Notice that the square of the gradient ideal I2 =
n
∑

i,s=1

∂ f
∂wi

∂ f
∂ws

Ysi belongs to the quasi semi-border

tangent space TQΓ f . Therefore, we see that

Cw/TQΓ f ⊂ Cw/I2 = R{1, ρ1, . . . , ρk, ∂ f
∂w1

ρs, . . . , ∂ f
∂wn

ρs, . . . } where s = 0, . . . , k. This completes
the proof.

Definition 4. Two function germs are stably quasi semi-border equivalent if they become quasi equivalent after
the addition of nondegenerate quadratic forms in a suitable number of the variables yi.

Analogous to [5], a function germ is called simple with respect to the quasi semi-border equivalence
if its neighborhood contains only a finite number of quasi classes.

For an arbitrary semi-border Γ, the quasi classification of function germs with critical points lying
outside Γ coincides with the standard classes Ak, Dk, E6, E7, and E8. Furthermore, the definition implies
that all functions with non-critical points are equivalent. Therefore, we classify only the remaining
case of function germs having critical base points on the strata of the semi-border.

2.1. Basic Techniques of the Classification

Moser’s homotopy method is the main tool that will be used to establish quasi semi-border
equivalence between function germs. In addition, we will be using the following technique, which
is similar to Lemma 8.1 in [2] and Lemma 2.10 in [3]. It will be used to establish quasi semi-border
equivalence between function germs.

Consider a fixed and convenient Newton diagram ∆ ⊂ Zn
≥0. Denote by Sγ the ideals of function

germs of the Newton order of at least γ with the appropriate scaling factor and γ ≥ 0. Then, Sγ equips
Cw with the Newton filtration S0 = Cw and Sδ ⊃ Sγ such that δ < γ [5].

Let f = f0 + f∗ be a decomposition of a function germ f into its principal part f0 of the Newton
degree N and higher order terms f∗. We assume that f0 has a finite codimension with respect to the
right equivalence.

Lemma 2. Consider a monomial basis of the linear space Cw/TQΓ f0 . Let e1(w), e2(w), . . . , es(w) be all its
elements of Newton degrees higher than N.

Suppose that for any ϕ ∈ Sγ \ S>γ, γ > N:



Mathematics 2019, 7, 495 6 of 16

1. There is an admissible vector field ẇ =
m
∑

i=1
Ẋi

∂
∂xi

+
n−m
∑

j=1
Ẏj

∂
∂yj

for f0, that is,

Ẋi = ẋi +
n

∑
k=1

∂ f
∂wk

Ai,k and Ẏj = ẏi

such that:

ϕ =
m

∑
i=1

∂ f0

∂xi
Ẋi +

n−m

∑
j=1

∂ f0

∂yi
Ẏi + ϕ̂ +

s

∑
i=1

ciei(w),

where ϕ̂ ∈ S>γ and ci ∈ R.
2. Moreover, for any δ, N < δ < γ, and any ψ ∈ Sδ, the expression:

E(ψ, ϕ) =
m

∑
i=1

∂ψ

∂xi

[
Ẋi +

n

∑
k=1

Ai,k
∂ψ

∂wk

]
+ 2

m

∑
i=1

∂ f0

∂xi

[
n

∑
k=1

Ai,k
∂ψ

∂wk

]
+

n−m

∑
j=1

∂ψ

∂yj
Ẏj

belongs to Sγ.

Then, any germ f = f0 + f∗ is quasi semi-border equivalent to a germ f0 +
s
∑

i=1
aiei, where ai ∈ R.

Remark 5. The quasi reduction of functions with the Newton principal part f0 of infinite right equivalence
codimension can be treated using the standard Arnold’s approaches.

2.2. Prenormal Forms of Quasi Classes

In many case,s we can find a prenormal for a function germ with respect to the quasi equivalence
for an arbitrary semi-borders. In fact, all results in the current subsection are analogous to the ones
described for borders in [3], since their proofs depend only on the square of the gradient ideal of
the function.

Let f : (Rn, 0)→ (R, 0) be a function germ of the form

f (x, y) = f2(x, y) + f3(x, y),

where f2 is a quadratic form in x and y, and f3 ∈ M3
x,y.

Lemma 3. Let f : (Rn, 0)→ (R, 0) be a function germ at the origin. Assume f2 is a non-degenerate quadratic

form in local coordinates x only. Then, f is quasi semi-border equivalent to
m
∑

i=1
±x2

i + f̃3(x, y) where f̃3 ∈ M3
x,y.

Moreover, if f is a germ in local coordinates x only, then f is quasi semi-border equivalent to
m
∑

i=1
±x2

i .

Proof. Note that the gradient ideal of f coincides with the maximal ideal in Cw. Therefore,
the admissible vector fields are those with components vanishing at the origin. It follows that the phase
flows generated by such fields are all families of diffeomorphisms that preserve the origin. Hence,
the Lemma can be proven using the standard Morse lemma.

Denote by f ∗(y) the restriction of f on {x = 0}. Let r and r∗ be the rank of the second differential
d2

0 f and d2
0 f ∗ at the origin, respectively, and set c = n−m− r∗.

Lemma 4. (Stabilization) The function germ f (x, y) is quasi semi-border equivalent to a germ
r∗

∑
i=1
±y2

i + g(x, ỹ), where ỹ ∈ Rc and g∗ ∈ M3
ỹ. For quasi semi-border equivalent germs f , the respective

reduced germs g are quasi semi-border equivalent.
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Assume f : (Rn, 0)→ R is a function germ having an isolated critical point at the origin, and let
I0 be its gradient ideal. Then,

Lemma 5. The germ f is quasi semi-border equivalent to gt(w) = f (w) + th(w) where h(w) ∈ I2
0 , for each

t ∈ [0, 1] on the condition that the rank r of the second differential d2
0gt is constant.

Suppose that s is a non-negative integer, satisfying the constraint s ≤ r − r∗. Let f̃ = f̃2 + f̃3,
where f̃3 ∈ M3

x,ỹ with ỹ ∈ Rc−s and f̃2 be a quadratic form in x only. Then, Lemmas 4 and 5 infer
the following.

Lemma 6. The function germ f (x, y) is quasi semi-border equivalent to
r∗+s
∑

i=1
±y2

i + f̃ (x, ỹ). Moreover,

two germs f and g are quasi semi-border equivalent if the corresponding reduced germs f̃ and g̃ are quasi
semi-border equivalent.

Remark 6. The proofs of Lemma 4, Lemma 5, and Lemma 6 are identical to those of Lemma
2.13, Lemma 2.14, and Lemma 2.15 in [3], respectively, replacing the coordinates x = (x1, x2) by
x = (x1, . . . , xm). In fact, the admissible vector fields that are used in the proofs there are independent
of the Cw-module Derlog(Γ) of vector fields preserving the cuspidal edge and depend only on the
gradient ideal of a family of functions.

Lemmas 3 and 6 imply the following.

Lemma 7. Let f : (Rn, 0) → R be a function germ with an isolated critical point at the origin, and let
κ = n − r be the corank of the second differential d2

0 f at the origin. Then, f is quasi stably semi-border
equivalent to one of the following germs.

κ Notation Normal Form Restrictions

0 F00

m

∑
i=1
±x2

i

1
F10 f̃2(x) + f̃3(x) rank

(
d2

0 f̃2

)
= m− 1, f̃3 ∈ M3

x

F11

m

∑
i=1
±x2

i + f̃3(x, y1) f̃3 ∈ M3
x,y1

, y1 ∈ R

≥ 2

Fκ0 f̃2(x) + f̃3 rank
(

d2
0 f̃2

)
= m− κ, f̃3 ∈ M3

x

Fκ(µ−1) f̃2(x) + f̃3(x, ỹ) rank
(

d2
0 f̃2

)
= m− (µ− 1), f̃3 ∈ M3

x,ỹ,

ỹ = (y1, y2, . . . , yµ−1)

Fκκ

m

∑
i=1
±x2

i + f̃3(x, ỹ) f̃3 ∈ M3
x,ỹ, ỹ = (y1, y2, . . . , yκ)

3. Classifications of Simple Functions

We start this section by recalling the classification of simple singularities with respect to the quasi
boundary equivalence relation from [1]. After that, we classify simple quasi semi-border singularities
when Γ is a submanifold of codimension m, which will be also called the m-boundary, and we set
Γ = ΓSm =

{
x1 = x2 = · · · = xm = 0

}
where m ≥ 1, (The cases when m = 1 and m = 2 are shown in

Figure 1b and Figure 2a respectively) giving details of the proofs of the main results.

Remark 7.

1. The case when the semi-border is a smooth hypersurface (ΓS1) was discussed in [1].
2. The quasi semi-border equivalence will be also called the quasi m-boundary for the respective type of ΓSm.
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3. All results are given for permutations of x1, x2, . . . and xm.

3.1. Simple Quasi Boundary

The classification of simple quasi boundary singularities is described in the following.

Theorem 3. [1] On the boundary ΓS1 =
{

x1 = 0
}

, any simple quasi boundary singularity class is a class of
the stabilization of one of the following two-variable germs:

Notation Normal Form Restrictions Codimension

Bk ±y2
1 ± xk

1 k ≥ 2 k

Fp,k ±(x1 ± yp
1 )

2 ± yk
1 k > p ≥ 2 p + k− 1

x
1

y
1

(a) {x1 = 0} ⊂ R2.

y
1

x
1

y
2

(b) {x1 = 0} ⊂ R3.
Figure 1. The one-boundary.

x
2

x
1

(a) {x1 = x2 = 0} ⊂ R2.

x
1

y
1

x
2

(b) {x1 = x2 = 0} ⊂ R3.
Figure 2. The two-boundary.

Remark 8.

1. The classes Bk can be written in the form ±(x1 ± y1)
2 ± yk

1, and hence, it can be included in the series
Fp,k as F1,k.

2. Corank one germs are either simple, hence they are quasi boundary equivalent to one of the germs in the
above theorem, or they belong to a subset of infinite codimension in the space of all germs.

3. All germs with the quadratic part of corank greater than one are non-simple.
4. The uni-modal class S̃5 : y3

1 + x3
1 + ax2

1y1, a ∈ R \ { −3
3√4
} is the only fencing singularity that is adjacent

to F2,3.
5. The graph of low codimension adjacencies is as follows:
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B2 ← B3 ← B4 ← B5 ← B6 ← . . .
↑ ↑ ↑ ↑

F2,3 ← F2,4 ← F2,5 ← F2,6 ← . . .
↑ ↑ ↑ ↑
S̃5 F3,4 ← F3,5 ← F3,6 ← . . .

↑ ↑
. . . . . . . . .

3.2. Simple Quasi m-Boundary Classes

Up to permutations of the coordinates xi, classification of simple quasi m-boundary singularities
is described in the following.

Theorem 4. Let f : (Rn, 0)→ R, be a simple germ with respect to the quasi m-boundary equivalence relation.
Then, f is stably quasi m-boundary equivalent to one of the following simple classes:

Notation Normal Form Restrictions Codimension

Ak x2
2 ± xk+1

1 + x2 k ≥ 1 m + k

Dk x2
1x2 ± xk−1

2 + x2 k ≥ 4 m + k

E6 x3
1 ± x4

2 + x2 – m + 6

E7 x3
1 + x2x3

2 + x2 – m + 7

E8 x3
1 + x5

2 + x2 – m + 8

Hp,k
m
∑

i=1
±(xi ± ypi

1 )2 ± yk
1 k > pm ≥ · · · ≥ p1 ≥ 2

m
∑

i=1
pi + k− 1

p = (p1, p2, . . . , pm)

Remark 9.

1. In Theorem 4, x2 =
m
∑

i=3
±x2

i .

2. The classes Ak can be written equivalently in the forms
m
∑

i=1
±(xi ± y1)

2 ± yk+1
1 , and hence, they can be

included in the series Hp,k+1 as H1m,k+1 , where 1m = (1, 1, . . . , 1).
3. The graph of adjacencies of simple quasi m-boundary classes in low codimension is as follows:

A1 ← A2 ← A3 ← A4 ← A5 ← . . .
↑
D4 ← D5 ← D4 ← . . .
↑
E6
↑
E7
↑
E8

Furthermore,
Ak ← Hp,k+1 ← Hp,k+2

↑
Hp+1,k+1

where p + 1 = (p1, . . . , pi + 1, . . . , pm), with k ≥ 1 and 1 ≤ i ≤ m. Moreover, if m = 2, then:
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D4
↑
E6 ← P8
↑
E7 ← X9
↑
E8 ← J10

4. The fencing class with respect to the quasi two-boundary equivalence relation is a stabilization of
the following:

Notation Class Restrictions Codimension

P8 x3
1 + x3

2 + y3
1 + ax1x2y1 a3 + 27 6= 0 10

X9 x4
1 + x4

2 + ax2
1x2

2 a2 6= 4 11

J10 x3
1 + x6

2 + ax1x2 4a3 + 27 6= 0 12

To prove Theorem 4, we use the results of Section 2.2 and the following auxiliary results.
We start by describing the stationary algebra of ΓSm.

Property 3. If ζ ∈ Derlog(ΓSm), then ζ has the following formula:

m

∑
i=1

( m

∑
j=1

xj Aij

) ∂

∂xi
+

n−m

∑
j=1

Ej
∂

∂yj
, Aij, Ej ∈ Cw.

Proof. The formulas are obtained by direct calculations, using Definition 2.

Corollary 1. The tangent space TQ(ΓSm) f to the quasi semi-border equivalence class of the germ f has the
following description:

TQΓ f := TQ
(
ΓSm

)
f =

{ m

∑
i=1

∂ f
∂xi

( m

∑
j=1

xj Aij +
n

∑
l=1

∂ f
∂wl

Bil

)
+

n−m

∑
j=1

∂ f
∂yj

Ej, Aij, Bil , Ei ∈ Cw

}
.

Lemma 8. The classifications of function germs in the local coordinates x only with respect to the quasi
m-boundary and the standard right equivalence relations coincide.

Proof. Indeed, if f is a function germ with a critical point at the origin in the local coordinates
x only, then TQ

(
ΓSm

)
f coincides with the ideal generated by ∂ f

∂xi
, i= 1,2,. . . ,m over Mx, that is

TQ
(
ΓSm

)
f =

{ m
∑

i=1

∂ f
∂xi

Ai, Ai ∈ Mx

}
. Notice that vector fields with components from Mx are all

vector fields vanishing at the origin. Therefore, any family of diffeomorphisms preserving the origin is
admissible, and hence, the result follows.

Moreover, for an arbitrary semi-border, we have the following.

Lemma 9. Let f (x, y1) = f2(x) + f3(x, y1), where f2 in a non-degenerate quadratic form in x only and
f3 ∈ M3

x,y1
, y1 ∈ R. Then, f is quasi semi-border equivalent to:

f̃ (x, y1) =
m

∑
i=1

[±x2
i + xiφi(y1)] + φ(y1), where φi ∈ M2

y1
and φ ∈ M3

y1
.
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Proof. By Lemma 8, we can use the standard right equivalence and the versality theorem to obtain a
prenormal form of f (x, y1) with respect to the quasi semi-border equivalence. Notice that the germ f
can be considered as a deformation depending on a parameter y1 with variables x. On the other hand,
Lemma 3 implies that we may write:

f (x, y1) =
m

∑
i=1
±x2

i + f3(x, y1).

Set f0 =
m

∑
i=1
±x2

i , and notice that TQ
(
Γ
)

f0
coincide with the square of the gradient ideal of f0. By the

versality theorem, we may consider the germ:

f̃ (x, Λ0, Λ1, . . . , Λm) =
m

∑
i=1
±x2

i + xiΛi + Λ0,

where Λi are constants, as a mini-versal deformation of f0. This means that f (x, y1) is induced from
f̃ (x, Λi, Λ), and hence, f can be reduced to the form:

m

∑
i=1

[±x2
i + xiφi(y1)] + φ(y1),

where φi ∈ M2
y1

and φ ∈ M3
y1

, as required.

Finally, we have:

Lemma 10. If κ ≥ 3 or κ = 2 and f is stably m-boundary equivalent to either
F21 : f̃2(x) + f̃3(x, y1), where rank

(
d2

0 f̃2

)
= m− 1, f̃3 ∈ M3

x,y1
, y1 ∈ R, or

F22 :
m

∑
i=1
±x2

i + f̃3(x, ỹ) where f̃3 ∈ M3
x,ỹ, ỹ = (y1, y2),

then f is non-simple with respect to the quasi m-boundary equivalence relation.

Proof. Suppose that κ = 3. Then, Lemma 6 implies that f is stably m-boundary equivalent to one of
the following:
0. F30 : f̃2(x) + f̃3, where rank

(
d2

0 f̃2

)
= m− 3, f̃3 ∈ M3

x, or

1. F31 : f̃2(x) + f̃3(x, y1), where rank
(

d2
0 f̃2

)
= m− 2, f̃3 ∈ M3

x,y1
, y1 ∈ R, or

2. F32 : f̃2(x) + f̃3(x, ỹ), where rank
(

d2
0 f̃2

)
= m− 1, f̃3 ∈ M3

x,ỹ, ỹ = (y1, y2), or

3. F33 :
m

∑
i=1
±x2

i + f̃3(x, ỹ), where f̃3 ∈ M3
x,ỹ, ỹ = (y1, y2, y3).

Consider the germ F30. By Lemma 8, we see that F30 is non-simple.
In the next case, consider the germ F31. Note that F31 deforms to:

F̃31 =
m−3

∑
i=1

( m

∑
j=1

ai,jxj

)2
+
( m

∑
j=1

am−2,jxj + δy1

)2
+ f̃3, ai,j ∈ R, δ 6= 0.

According to Lemma 6, F̃31 is stably m-boundary equivalent to f̃2(x) + f̃3, where f̃3 ∈ M3
x and

rank
(

d2
0 f̃2

)
= m− 3, which we have already shown to be non-simple. By a similar argument, we can

show that F32 is adjacent to F31 and F33 is adjacent to F32, and hence, the result follows.
The remaining cases of function germs with κ > 3 are adjacent to a function germ having κ = 3.

Therefore, they must be non-simple.
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Now, let κ = 2 and f be stably m-boundary equivalent F21. Then, up to permutations of the

coordinates x1, x2, . . . xm, the germ F21 can be reduced to the form g =
m−1

∑
i=1
±x2

i + g3(x, y1), where g3 ∈

M3
x,y1

, y1 ∈ R. The quadratic and cubic terms in TQ
(
ΓSm

)
g forma subspace of dimension less than

the dimension of the space of all quadratic and cubic forms in the variables x and y1. This means that
the germ F21 is non-simple. Finally, the germ F22 is adjacent to F21, which we have already shown to be
non-simple, and hence, the result follows.

Proof of Theorem 4

Lemma 6 implies that any function germ is quasi m-boundary to a germ of the form
f (x, y) = f2(x) + f3(x, y), where f2 is a quadratic form in x only and f3 ∈ Mx,y. We distinguish
the following.

• If f is a function germ in x only, then Lemma 8 implies that f is quasi m-boundary equivalent to

g(xm, xm−1) + x, where x =
m−2

∑
i=1
±x2

i , and g belongs to one of Arnold’s simple classes (ADE).

• Let n > m. Then, Lemma 7 and Lemma 10 imply that f is simple if f2 is the non-degenerate
quadratic form and κ = 1, in which case, by Lemma 9, f is stably quasi m-boundary equivalent to

f̃ (x, y1) =
m

∑
i=1

[
± x2

i + xiφi(y1)
]
+ φ(y1), where φi ∈ M2

y1
and φ ∈ M3

y1
. Considering the lowest

non-zero terms in φi and φ, and using Lemma 2, one can easily show that f̃ is reduced to one of
the following forms:

1.
m

∑
i=1
±x2

i ± yk
1, k ≥ 3, which can be written equivalently as:

Hp,k :
m

∑
i=1
±(xi ± yk−1

1 )2 ± yk
1, where p = (p1, p2, . . . , pm), pi = k− 1, for all i.

2.
m

∑
i=1

(
± x2

i ± xiyk
1
)
, k ≥ 2, which is also quasi m-boundary equivalent to:

Hp,2k :
m

∑
i=1
±(xi ± yk

1)
2 ± y2k

1 , where p = (p1, p2, . . . , pm), pi = k, for all i.

3.
m

∑
i=1
±x2

i +
s

∑
i=1
±xiyk

1 +
m

∑
i=s+1

±xiy
pi
1 , 2 ≤ k < ps+1 ≤ ps+2 ≤ · · · ≤ pm < 2k, which can be

written equivalently as:

Hp,2k :
m

∑
i=1
±(xi ± ypi

1 )2 ± y2k
1 , where p = (p1, p2, . . . , pm), pi = k, i = 1, 2, . . . , s.

4.
m

∑
i=1

(
± x2

i ± xiy
pi
1
)
± yk

1, k-odd with k ≥ 5 and k−1
2 < p1 ≤ p2 ≤ · · · ≤ pm < k− 1 or

equivalently to:

Hp,k :
m

∑
i=1
±(xi ± ypi

1 )2 ± yk
1, where p = (p1, p2, . . . , pm).
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A general formula for all simple quasi m-boundary classes contained in f̃ is:

Hp,k :
m

∑
i=1
±(xi ± ypi

1 )2 ± yk
1,

where p = (p1, p2, . . . , pm) and k > p1 ≥ p2 ≥ · · · ≥ pm ≥ 2. This finishes the proof of
the theorem.

4. Application to Lagrangian Semi-Border Singularities

We start the section by describing the versal deformations of the simple quasi m-boundary
classes, which will be used later. Then, we apply the quasi m-boundary equivalence relation,
with m ≥ 2 (the case of m = 1 was discussed in [1]), to determine the singularities of stable Lagrangian
submanifolds having distinguished smooth isotropic varieties. Standard notions and basic definitions
concerning versal deformations and Lagrangian singularities can be found in [5].

4.1. Versal Deformations of m-Boundary Classes

A quasi semi-border miniversal deformation of a function germ f : (Rn, 0) → (R, 0) may be
constructed in the standard way as:

F(x, y, λ) = f (x, y) +
τ−1

∑
i=0

λiei(x, y) ,

where λi ∈ R and e0, . . . , eτ−1 ∈ Cx,y project to a basis of Cw/TQΓ f .

Property 4. Miniversal deformations of simple quasi m-boundary classes are as follows:

Singularity Miniversal Deformation Restrictions

Ak ±xk+1
1 ± x2

2 + x2 + λ0 +
m
∑

i=1
λixi +

k
∑

j=2
µjx

j
1 k ≥ 1

Dk x2
1x2 ± xk−1

2 + x2 + λ0 +
m
∑

i=1
λixi + µ1x2

1 + µ2x2x1 +
k−2
∑

j=2
µjx

j
2 k ≥ 4

E6 x3
1 ± x4

2 + x2 + λ0 +
m
∑

i=1
λixi + µ0x2

1 + x1
( 2

∑
j=1

µjx
j
2
)
+

4
∑

j=3
µjx

j−1
2 –

E7 x3
1 + x1x3

2 + x2 + λ0 +
m
∑

i=1
λixi +

2
∑

j=1
µjx

j
1x2−j

2 +
5
∑

j=3
µjx

j−1
2 –

E8 x3
1 + x5

2 + x2 + λ0 +
m
∑

i=1
λixi + µ0x2

1 + x1
( 3

∑
j=1

µjx
j
2
)
+

6
∑

j=4
µjx

j−2
2 –

Hp,k
m
∑

i=1
±(xi ± ypi

1 )2 ± yk
1 + λ0 +

m
∑

i=1
xi(

pi−1
∑

j=0
λi,jy

j
1) +

k−2
∑

l=1
µlyl

l k > pm ≥ · · · ≥ p1 ≥ 2

4.2. Lagrangian Submanifolds with Smooth Varieties

The standard notions on symplectic geometry and Lagrangian singularities can be found in [5].
We begin by recalling the basic definitions. Then, we construct the notion of Lagrangian submanifolds
with semi-borders.
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Consider the standard cotangent bundle π : M = T∗Rn → Rn, (p, q) 7→ q. Then, a germ of an
n-dimensional Lagrangian submanifold Ln can be given by a generating family F(w, q) in variables
w ∈ Rk with parameters q ∈ Rn as follows:

L =

{
(p, q) ∈ Rn ×Rn : ∃w ∈ Rk,

∂F
∂wi

= 0, p =
∂F
∂q

}
,

on the condition that the matrix
(

∂2F
∂wi∂wj

∂2F
∂wi∂qj

)
has rank n.

Definition 5. [5] Two family germs Fi(w, q), w ∈ Rk, q ∈ Rn, i = 1, 2, at the origin are calledR+-equivalent
if there exists a diffeomorphism Φ : (w, q) 7→ (W(w, q), Q(q)) and a smooth function Θ of the parameters q
such that F2(w, q) = (F1 ◦Φ)(w, q) + Θ(q).

Recall that the classification of Lagrangian singularities is related to the classification of families
of functions. In particular, if F(w, λ) is a generating family such that the family member Fλ has a
non-Morse critical point, then the set of values of the parameters λ corresponds to the caustic Σ(L) of
a Lagrangian projection of a Lagrangian submanifold L. On the other hand, a Lagrangian projection
is stable with respect to symplectomorphisms preserving the fibration structure if its respective
generating family is versal with respect to theR+-equivalence group.

Following the applications of quasi boundary, quasi corner, and quasi cusp equivalence relations
considered in [1–3], respectively, we introduce the following.

Definition 6. A pair (L, Γ) consisting of a Lagrangian submanifold Ln in an ambient symplectic space M and
an (n−m)-dimensional isotropic (algebraic) variety Γ ⊂ L with n > m ≥ 1is called a Lagrangian submanifold
with a semi-border Γ.

Definition 7. The Lagrange projection of two Lagrangian submanifolds with semi-borders (Li, Γi), i = 1, 2,
is called Lagrange equivalent if there exists a symplectomorphism of the ambient space M, preserving the
π-bundle structure and taking one pair to the other.

The concepts of the stability and simplicity of Lagrangian submanifolds with semi-borders can be
defined analogously to the standard notions.

Note that, in a neighborhood of a base point and up to a Lagrange equivalence, the projection of
tangent space to L is regular onto the fiber of π. Hence, we can take the coordinates p as coordinates w
on the fibers of the source space of the respective generating family. Moreover, a generating family is
defined up toR+-equivalence. Therefore, if we have two Lagrange equivalent pairs (Li, Γi), then we
can choose a generating family for one pair in coordinates (p, q) and the generating family for the
other pair in the new coordinates (P̃(p), q̃(q) such that the projection of Γ1 and Γ2 to the p-coordinate
and P̃-coordinate subspaces, respectively, coincides.

Rename the coordinates p by w and q by λ. Let gij(w) = 0 be the collection of polynomial
equations, which defines the semi-border Γi, i = 1, 2. Then, the pairs (Li, Γi) are given by the generating
families Fi(w, λ) such that the semi-border corresponds to the critical points of Fi with respect to
variables w lying on the set

{
gij(w) = 0

}
. This construction implies that if two pairs (Li, Γi), i = 1, 2

are Lagrange equivalent, then the corresponding generating families Fi are pseudo semi-border
equivalence, up to the addition of functions that depend on the parameters. The equivalence of
generating families will be called the quasi semi-border +-equivalence.

Moreover, if the semi-border is an (n − m)-dimensional submanifold Γ = ΓSm, then the
following holds.
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Property 5. Let (Lt, Γt), t ∈ [0, 1], be a family of equivalent pairs of Lagrangian submanifolds with a
semi-border. Then, the respective generating families are quasi semi-border equivalent, up to the addition of
functions that depend on the parameters.

The classification of simple quasi m-boundary classes and Proposition 5 infer the following result.

Theorem 5.

1. A pair (L, Γ), consisting of a Lagrangian submanifold and a semi-border, is stable if and only if its arbitrary
generating family is versal with respect to the quasi semi-border equivalence and up to the addition of
functions in the parameters.

2. Let (L, Γ) be a pair of stable and simple Lagrangian submanifolds with the m-boundary. Then, it is
symplectically equivalent to the projection determined by a generating family that is a quasi m-boundary
versal deformation, listed in Proposition 4, and up to the addition of functions in parameters.

Proof. For the first part, suppose that a germ (L0, Γ0) is stable. Then, any germ (L̃, Γ̃) close to (L0, Γ0)

is Lagrange equivalent to it.
Assume we have a family (Lt, Γt) of deformations of (L0, Γ0), with t ∈ [0, 1]. Furthermore,

assume that there is a family of diffeomorphisms θt : T∗Rn → T∗Rn that preserves Lagrange fibration
π : T∗Rn → Rn, (p, q) 7→ q and the standard symplectic form ω and maps (Lt, Γt) to (L0, Γ0).

Consider families depending on t of the respective generating families Gt(w, q) of (Lt, Γt)

with t ∈ [0, 1] and G0 being a generating family of the pair (L0, Γ0). By Proposition 5, all the Gt

are quasi semi-border +-equivalent. Therefore, there is a family of diffeomorphisms of the form
Φt : (w, q) 7→ (w̃t(w, q), Qt(q)) and a family Ψt of smooth functions depending on parameters q such
that Gt ◦ Φt = G0 + Ψt. Moreover, the critical points sets

{
∂Gt
∂w = 0

}
correspond to the Lagrangian

submanifolds Lt. This means that G0 is versal with respect to quasi semi-border +-equivalence,
as required.

For the converse, we reverse the above argument.
The second claim of the theorem is a direct result of classifying function germs via the quasi

m-boundary equivalence.

5. Conclusions

Quasi semi-border singularities have very natural applications, despite the rather artificial
nature of the definitions. For example, the behavior of critical points of a function can be shown
by their discriminants (for example, its global extremum) inside and on a certain domain with a
semi-border. In the current paper, we have seen that the singularities of the projection to the base space
of Lagrangian submanifolds Ln equipped with isotropic variety Γ in it (called a Lagrangian submanifold
with a semi-border) are closely related to quasi semi-border singularities of functions. In fact, isotropic
varieties are exactly the initial dataset with some inequality constraints in various models appearing in
many singularity theory applications, variational problems, and differential equations.

An important example of a Lagrangian submanifold with a regular boundary or a corner is
presented by a set of Hamilton vector field trajectories issued from an initial set being an isotropic
submanifold subset determined by some inequalities. This construction is needed for various settings
in geometry and physics. For example, given an initial hypersurface H with a boundary H1 in
Euclidean space, the envelope of the family of normals to H forms the ordinary caustics and the union
of normals to H at the points of H1 forms the second component of the caustic of the projection of the
respective Lagrange submanifold with a boundary. Other motivations to study the singularities of
Lagrange projections with boundaries were mentioned in [7]. More complicated semi-borders appear
in various applications in physics. For example, the Lagrangian manifold with a corner is the solution
of the Hamilton–Jacobi equation with the initial data embedded into the cotangent bundle of the
configuration space as a manifold with a boundary or a corner [4].
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On the other hand, and in contrast to the standard classes, the quasi semi-border bifurcation
diagrams of function germ deformation consist of two components. The first one is the ordinary
discriminant, which correspond to all critical points of the deformation. The second component is
the subset of the first one, which corresponds to the critical point on the semi-border (it satisfies
extra equations that define the semi-border). Therefore, the components have different dimensions.
The caustics of the quasi semi-border deformation function also consist of two strata (or more).
The first one is the ordinary caustics, and the other stratum is the projection (to the base of the reduced
deformation) of the subset of the bifurcation diagrams, which corresponds to the other stratum
(of lower dimension). However, their dimensions are equal.

Further work that goes beyond the present paper might be related to describing the bifurcation
diagrams and caustics, as well as applications of our classes to the above-mentioned example.

We hope to investigate other possible useful examples of classifications of functions and mappings
that are rougher than the standard ones and that are defined by some conditions on jets of functions
or mappings, as they can help us to explore the geometry beyond standard simple classes in many
singularity theory problems and applications.
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