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Abstract: In this work, a Lyapunov-based economic model predictive control (LEMPC) method
is developed to address economic optimality and closed-loop stability of nonlinear systems using
machine learning-based models to make predictions. Specifically, an ensemble of recurrent neural
network (RNN) models via a k-fold cross validation is first developed to capture process dynamics
in an operating region. Then, the LEMPC using an RNN ensemble is designed to maintain the
closed-loop state in a stability region and optimize process economic benefits simultaneously.
Parallel computing is employed to improve computational efficiency of real-time implementation
of LEMPC with an RNN ensemble. The proposed machine-learning-based LEMPC method is
demonstrated using a nonlinear chemical process example.

Keywords: economic model predictive control; recurrent neural networks; ensemble learning;
nonlinear systems; parallel computing

1. Introduction

Economic model predictive control (EMPC) that integrates optimization of process economics
with process control has attracted significant attention over the last decade (e.g., [1–3]). Unlike the
traditional two-layered real-time optimization (RTO) that continuously optimizes process set-points in
the upper level and applies a tracking model predictive controller or a proportional-integral-derivative
controller in the lower layer, EMPC operates the system in a time-varying fashion (off steady-state) by
dynamically optimizing an economic cost function accounting for stability constraints in one layer.
Many research works have been done on EMPC in terms of closed-loop stability, economic optimality,
model uncertainty and process operational safety (e.g., [4–6]). However, to achieve a desired
closed-loop performance under EMPC, it is acknowledged that a reliable process model that can
predict the future state evolution accurately is a key requirement. To that end, multiple linear
state-space models have been used within EMPC to capture the nonlinear dynamics in the operating
region in [7]. Additionally, a well-conditioned polynomial nonlinear state-space model has been used
in [8] to approximate the actual (first-principles) nonlinear process model (normally substituting of
the actual nonlinear process) for EMPC. Given the recent interest in machine learning modeling and
particularly its usage in solving nonlinear regression problems ([9,10]), in this work, we will derive a
nonlinear data-driven process model for EMPC by taking advantage of machine learning techniques.

Machine learning has been widely used in a variety of engineering problems such as classification,
pattern recognition, and numerical prediction. Among machine learning methods, neural networks
have shown great success in regression problems. With the rapid development of neural network
libraries and application programming interfaces e.g., Tensorflow [11], Caffe [12], Keras [13], etc.),
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building a neural network has presently become intuitive and straightforward. Additionally, neural
network-based modeling outperforms other data-driven modeling methods due to its ability to
implicitly detect complex nonlinearities and the availability of multiple training algorithms ([14]).
Neural network has undergone several phases in which different theoretical approaches led to
increasing understanding of its power and limitations. For example, in the 1980s, the first RNN
(i.e., Hopfield networks) was created for pattern recognition ([15]). At that time, implementing a neural
network with many layers for complex systems was a technical challenge [16]. Subsequently, deep
learning was proposed to alleviate the problems of vanishing gradient in RNNs, which provided
a new perspective to the machine learning field [17]. Compared to feedfoward neural networks,
RNN is able to memorize previous information in the network and thus, can be applied to model a
nonlinear dynamical system from time-series data. However, since the majority of research is focused
on validating the identified system, it is not clear how RNN models can be incorporated in EMPC with
guaranteed closed-loop stability.

In addition, ensemble learning, a machine learning paradigm that trains multiple models for
the same problem, is gaining increasing attention in recent years ([18,19]). By taking advantage
of multiple learning algorithms or various training datasets, ensemble learning provides better
predictive performance than a single machine learning model. However, the consequent challenge
for implementations of ensemble regression models in process control is how to solve the ensemble
of RNNs efficiently and in a timely fashion. Although reducing the computation time of neural
network training process is always an important research topic in machine learning community,
process engineers are more concerned about the real-time implementation of neural networks in
process control systems. To address computational implementation issues, parallel computing ([20]) is
employed to solve multiple RNN models simultaneously in EMPC.

Motivated by the above, a Lyapunov-based EMPC method using an ensemble of RNN models
is developed in this work. Specifically, in Section 2, the notation, the class of nonlinear systems
considered and the stabilizability assumptions are introduced. In Section 3, the class of RNN models
and the learning algorithm are provided. Then, ensemble learning is used to obtain multiple RNN
models based on a k-fold cross validation, while parallel computing is used to improve computational
efficiency. Subsequently, in Section 4, the Lyapunov-based EMPC that incorporates an RNN ensemble
is formulated to guarantee the boundedness of the state in the closed-loop stability region accounting
for sufficiently small modeling error, sampling time and bounded disturbances. In the last section,
the proposed LEMPC method is applied to a chemical process example to demonstrate its guaranteed
closed-loop stability and economic optimality properties.

2. Preliminaries

2.1. Notation

Throughout the manuscript, the operator |·| denotes the Euclidean norm of a vector. xT is used
to denote the transpose of x. The function f (·) is of class C1 if it is continuously differentiable in
its domain. The notation L f V(x) denotes the standard Lie derivative L f V(x) := ∂V(x)

∂x f (x). “\” is
used to denote the set subtraction, i.e., A\B := {x ∈ Rn | x ∈ A, x /∈ B}. A continuous function
α : [0, a)→ [0, ∞) is said to belong to class K if α(0) = 0 and it is strictly increasing.

2.2. Class of Systems

We consider the class of continuous-time nonlinear systems that is described by the following
system of first-order nonlinear ordinary differential equations:

ẋ = F(x, u, w) := f (x) + g(x)u + h(x)w, x(t0) = x0 (1)
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where the state vector is x ∈ Rn, the manipulated input vector is u ∈ Rm, and the disturbance vector
is w ∈ W with W := {w ∈ Rq | |w| ≤ wm, wm ≥ 0}. The control action constraint is defined by
u ∈ U := {umin

i ≤ ui ≤ umax
i , i = 1, ..., m} ⊂ Rm. It is assumed that f (·) : Rn → Rn, g(·) : Rn → Rn×m,

and h(·) : Rn → Rn×q are sufficiently smooth vector and matrix functions. Additionally, it is assumed
that the initial time t0 is zero (i.e., t0 = 0) and f (0) = 0. Therefore, a steady-state of the nominal system
of Equation (1) (i.e., w(t) ≡ 0) is at the origin.

A stabilizing control law u = Φ(x) ∈ U that renders the origin of the nominal system of
Equation (1) (i.e., w(t) ≡ 0) exponentially stable is assumed to exist, in the sense that there exists
a C1 Control Lyapunov function V(x) such that the following inequalities hold for all x in an open
neighborhood D around the origin:

c1|x|2 ≤ V(x) ≤ c2|x|2, (2a)

∂V(x)
∂x

F(x, Φ(x), 0) ≤ −c3|x|2, (2b)∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ c4|x| (2c)

where c1, c2, c3 and c4 are positive constants. F(x, u, w) is the nonlinear system of Equation (1).
Based on the universal Sontag control law ([21]), a candidate controller Φ(x) is given by the saturated
control law accounting for the input constraint u ∈ U.

The stability region for the closed-loop system of Equation (1) is characterized as a level set of
Lyapunov function V(x) within D where the time-derivative of the Lyapunov function V is negative.
Specifically, based on Equation (2), we can first find a region φu where V̇(x) is rendered negative
under the controller u = Φ(x) ∈ U: φu := {x ∈ Rn | V̇(x) = L f V + LgVu < −kV(x), u = Φ(x) ∈
U} ∪ {0}, with k > 0. Then the closed-loop stability region Ωρ is characterized as a subset in φu:
Ωρ := {x ∈ φu | V(x) ≤ ρ}, where ρ > 0. Since Ωρ ⊂ φu, it follows that Ωρ is a forward invariant
set. Additionally, the Lipschitz property of F(x, u, w) combined with the bounds on u and w implies
that there exist positive constants M, Lx, Lw, L

′
x, L

′
w such that the following inequalities hold for all

x, x′ ∈ D, u ∈ U, and w ∈W:

|F(x, u, w)| ≤ M (3a)

|F(x, u, w)− F(x′, u, 0)| ≤ Lx|x− x′|+ Lw|w| (3b)∣∣∣∣∂V(x)
∂x

F(x, u, w)− ∂V(x′)
∂x

F(x′, u, 0)
∣∣∣∣

≤ L
′
x|x− x′|+ L

′
w|w| (3c)

Remark 1. Since closed-loop stability is achieved for the nonlinear system of Equation (1) under the controller
u = Φ(x) ∈ U for all initial conditions x0 ∈ Ωρ ([4]), the dataset for training recurrent neural networks will
be generated within the closed-loop stability region Ωρ such that there exist feasible control actions u ∈ U for
the resulting recurrent neural network that captures the nonlinear dynamics in Ωρ.

3. Recurrent Neural Network

In this work, we develop a nonlinear recurrent neural network (RNN) model with the
following form:

˙̂x = Fnn(x̂, u) := Ax̂ + ΘTy (4)

where x̂ ∈ Rn is the RNN state vector and u ∈ Rm is the manipulated input vector. y =

[y1, ..., yn, yn+1, ..., ym+n] = [σ(x̂1), ..., σ(x̂n), u1, ..., um] ∈ Rn+m is a vector of both the network
state x̂ and the input u, where σ(·) is the nonlinear activation function (e.g., a sigmoid function
σ(x) = 1/(1+ e−x)). A is a diagonal matrix, i.e., A = diag{−a1, ...,−an} ∈ Rn×n, and Θ is a coefficient
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matrix Θ = [θ1, ..., θn] ∈ R(m+n)×n with θi = bi[wi1, ..., wi(m+n)], i = 1, ..., n. ai and bi are constants,
where ai is assumed to be positive such that each state x̂i is bounded-input bounded-state stable.
wij is the weight connecting the jth input to the ith neuron where i = 1, ..., n and j = 1, ..., (m + n).
Since the RNN model of Equation (4) is affine in the manipulated inputs u, the RNN model can also be
represented in a similar form of Equation (1) by ˙̂x = f̂ (x̂) + ĝ(x̂)u, where f̂ (·) and ĝ(·) are derived
from coefficients A and Θ in Equation (4). Similarly, f̂ (·) and ĝ(·) are assumed to be sufficiently
smooth vector and matrix functions of dimensions n× 1 and n×m, respectively.

It is shown in Figure 1 that RNNs possess a certain type of memory by introducing feedback loops
in the hidden layer such that the states information derived from earlier inputs remains in the network.
Additionally, if we unfold one of the RNN states in time as shown in Figure 1, the manipulated input
vector ut and the previous state vector xt−1 are fed into the current state xt with the weight matrix Θ,
where xt−1, xt, and xt+1 are all internal states of an RNN model.
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Figure 1. A recurrent neural network and its unfolded structure, where Θ is the weight matrix, x is the
state vector, u is the manipulated input vector and o is the output vector.

Due to the capability of capturing nonlinear dynamic behavior and the universal approximation
theorem ([22,23]) demonstrating that the RNN model with sufficient neurons is able to approximate
any dynamic nonlinear system on compact subsets of the state-space for finite time, the RNN model of
Equation (4) is used to approximate the continuous-time nonlinear system of Equation (1) in this work.

3.1. RNN Learning Algorithm

The RNN learning algorithm is developed to obtain the optimal weight matrix Θ∗, under which
the modeling error between the nominal system of Equation (1) (i.e., w(t) ≡ 0) and the the RNN model
of Equation (4) is minimized. The modeling error ν := F(x, u, 0)− Fnn(x̂, u) under Θ = Θ∗ is assumed
to be nonzero since the obtained RNN model may not perfectly approximate the nominal system of
Equation (1) due to insufficient number of nodes or layers. Additionally, the modeling error ν(t) is
bounded (i.e., |ν(t)| ≤ νm, νm > 0) since the RNN model of Equation (4) is developed based on the
dataset generated within Ωρ where x(t) and u(t) ∈ U are bounded. The weight vector θi of the RNN
model of Equation (4) is also bounded by |θi| ≤ θm, with θm > 0 to prevent the weights from drifting
to infinity. Throughout the manuscript, we will use x(t) to represent the state of the nonlinear system
of Equation (1) and x̂(t) to represent the state of the RNN model of Equation (4).
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According to the definition of the modeling error ν, the nominal system of Equation (1)
(i.e., w(t) ≡ 0) can be written in the following form:

ẋi = −aixi + θ∗Ti y + νi, i = 1, ..., n (5)

where the optimal weight vector θ∗i is obtained as follows:

θ∗i := arg min
|θi |≤θm

{
Nd

∑
k=1
|Fi(xk, uk, 0) + aixk − θT

i yk|} (6)

where Nd is the number of data samples used for training. Consider the state error e = x̂− x ∈ Rn.
Based on Equations (4) and (5), the time-derivative of the state error is derived as follows:

ėi = ˙̂xi − ẋi = −aiei + ζT
i y− νi, i = 1, ..., n (7)

where ζi = θi − θ∗i is the error between the current weight vector θi and the unknown optimal weight
vector θ∗i . The weight vector θ is updated by the following equation:

θ̇i = −ηiyei, i = 1, ..., n (8)

where the learning rate ηi is a positive real number. Based on the learning law of Equation (8),
the following theorem is established to demonstrate that the state error e remains bounded and is
constrained by the modeling error |ν|.

Theorem 1. Consider the RNN model of Equation (4) with the weights updating law of Equation (8). In the
presence of a nonzero modeling error ν, the state error ei and the weight error ζi are bounded, and there exist
λ ∈ R and µ > 0 such that the following inequality holds:

∫ t

0
|e(τ)|2dτ ≤ λ + µ

∫ t

0
|ν(τ)|2dτ (9)

Proof. We first define a Lyapunov function Ṽ = 1
2 ∑n

i=1(e
2
i + ζT

i η−1
i ζi) and prove the boundedness

of ei and ζi by showing that Ṽ is bounded. Specifically, using Equations (7) and (8) and the fact that
ζ̇i = θ̇i, the time-derivative of Ṽ is first derived as follows:

˙̃V =
n

∑
i=1

(ei ėi + η−1
i ζi ζ̇i)

=
n

∑
i=1

(−aie2
i − eiνi)

(10)

In the presence of modeling error νi 6= 0, it is observed that ˙̃V ≤ 0 does not hold for all times.
Therefore, let α := min{ai, 1/(λm), i = 1, ..., n} and β := ∑n

i=1(2θ2
m + ν2

m/2ai), where λm represents
the maximum eigenvalue of η−1

i . The following inequality is further derived based on Equation (10):

˙̃V =
n

∑
i=1

(− ai
2

e2
i −

1
2
|ζi|2) + (

1
2
|ζi|2 −

ai
2

e2
i − eiνi)

≤ −αṼ +
n

∑
i=1

(
1
2
|ζi|2 +

1
2ai

ν2
i )

(11)

Since the weight vector is bounded by |θi| ≤ θm, it is derived that 1
2 |ζi|2 ≤ 2θ2

m. According
to the definitions of α and β, it follows that ˙̃V ≤ −αṼ + β. Therefore, for all Ṽ ≥ V0 =
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β/α, ˙̃V ≤ 0 holds. This implies that Ṽ is bounded, and thus, ei and ζi are bounded as well.
Additionally, from Equation (10), it is readily shown that the following equations hold:

˙̃V =
n

∑
i=1

(− ai
2

e2
i −

ai
2

e2
i − eiνi)

=
n

∑
i=1

(− ai
2

e2
i − (

ai
2

e2
i + eiνi +

1
2ai

ν2
i ) +

1
2ai

ν2
i )

≤
n

∑
i=1

(− ai
2

e2
i +

1
2ai

ν2
i )

(12)

From Equation (12), Ṽ(t) is obtained as follows:

Ṽ(t) ≤ Ṽ(0) +
n

∑
i=1

(− ai
2

∫ t

0
ei(τ)

2dτ +
1

2ai

∫ t

0
νi(τ)

2dτ)

≤ Ṽ(0)− amin
2

∫ t

0
|e(τ)|2dτ +

1
2amin

∫ t

0
|ν(τ)|2dτ

(13)

where amin is the minimum value of ai, i = 1, ..., n. Let λ = 2
amin

supt≥0(Ṽ(0)− Ṽ(t)) and µ = 1/a2
min.

The following inequality is derived:

∫ t

0
|e(τ)|2dτ ≤ 2

amin
(Ṽ(0)− Ṽ(t)) +

1
a2

min

∫ t

0
|ν(τ)|2dτ

≤ λ + µ
∫ t

0
|ν(τ)|2dτ

(14)

The above inequality shows that the state error e is bounded and is proportional to the modeling
error |ν| between the RNN model of Equation (4) and the nominal system of Equation (1) (i.e., w(t) ≡ 0).
Furthermore, if there exists a constant C > 0 such that

∫ ∞
0 |ν(t)|

2dt is bounded (i.e.,
∫ ∞

0 |ν(t)|
2dt = C <

∞), then it follows that
∫ ∞

0 |e(t)|
2dt ≤ λ + µC < ∞. Therefore, e(t) converges to zero asymptotically

since e(t) is a uniformly continuous function implied by the boundedness of its derivative ė.

3.2. Ensemble of RNN Models

In this section, an RNN model is initially developed to approximate the nonlinear system of
Equation (1) within an operating region. Based on that, the ensemble learning using the aforementioned
RNN learning algorithm is used with a k-fold cross validation to improve prediction accuracy of RNN
models.

3.2.1. Development of RNN Models

The development of RNN models consists of two steps: data generation and training
process. In general, the dataset for training an RNN model is a collection of sampled data from
industrial processes, laboratory experiments, or simulations of a given system. There are many
high-quality training datasets, for example, the collection of databases from the UCI Machine Learning
Repository [24] that is widely used by the researchers in machine learning community. In this work,
we use the simulation data of the nominal system of Equation (1) (i.e., w(t) ≡ 0) as the training
and validation datasets for the RNN model of Equation (4). Specifically, to generate the dataset that
captures the system dynamics for x ∈ Ωρ and u ∈ U, open-loop simulations are first conducted for
initial conditions x0 ∈ Ωρ with the constrained input vector u ∈ U. It should be mentioned that
the continuous system of Equation (1) is simulated in a sample-and-hold fashion (i.e., the input is
a piecewise constant function, i.e., u(t) = u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆ and ∆ is the
sampling period). Then, the nominal system of Equation (1) is integrated via explicit Euler method
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with a sufficiently small integration time step hc < ∆. The dataset is generated with the following
steps: (1) The targeted region Ωρ and the range of inputs u ∈ U are first discretized with sufficiently
small intervals. (2) Open-loop simulations of the nominal system of Equation (1) are performed in a
sample-and-hold fashion with various initial states x0 ∈ Ωρ and inputs u ∈ U to obtain a large number
of state trajectories for a fixed length of time to sweep over all the values that (x, u) can take. It is
noted that data points are collected at every integration time step hc instead of every sampling step
∆ to obtain intermediate states as many as possible in order to approximate a continuous system of
Equation (1). (3) Then, the obtained state trajectories are separated into many time-series data samples
with the length of Pnn, which represents the prediction period for RNN models. In other words,
the RNN model is developed to predict future states over t ∈ [tk, tk + Pnn], where all the data points
between tk and tk + Pnn are treated as the internal states of the RNN model with the time interval of
hc (i.e., the time interval between two consecutive states xt−1 and xt for the unfolded RNN shown in
Figure 1 is equal to hc). (4) The dataset is partitioned into training, validation and testing datasets.

Next, the RNN model is developed based on the dataset generated from open-loop simulations
via an application program interface (API), i.e., Keras ([13]). To guarantee that the RNN model of
Equation (4) achieves good performance in a neighborhood around the origin and has the same
equilibrium point as the nonlinear system of Equation (1), the modeling error is further required to be
bounded by |ν| ≤ γ|x| ≤ νm during the training process. Before starting an RNN training process, the
number of layers and nodes used, the optimizer, and the type of loss function need to be specified at
the beginning. Specifically, in our work, the number of layers and nodes for RNNs are determined
through a grid search and the adaptive moment estimation method (i.e., Adam in Keras) is used as
RNN optimizer. The loss function is the mean absolute percentage error between predicted states x̂
and actual states x from training data. Additionally, to prevent RNNs from over-training, the early
stopping criteria is employed to terminate the training process before the maximum number of epochs
is reached if the following two conditions are satisfied: (1) The modeling error is below its threshold.
(2) The performance on the validation dataset stops improving.

Remark 2. It is noted that original data samples from open-loop simulations are shortened to a fixed length,
Pnn, in the step 3 of data generation above. Through this data preprocessing step, the dataset is applicable for
developing an RNN with the prediction period Pnn, which is chosen to be an integer multiple of the sampling
period ∆ such that the RNN model of Equation (4) is able to predict future states for at least one sampling period.
One of the advantages of introducing step 2 and step 3 is that a new dataset can be conveniently generated for an
RNN with a different prediction period Pnn while the original dataset in step 2 only needs to be created once.

Remark 3. Unlike feedforward neural networks (FNN) that take state measurement x(tk) and manipulated
inputs u(tk) at time t = tk to predict the state at t = tk + Pnn only, RNNs use all the intermediate states
between x(tk) and x(tk + Pnn) to predict the state trajectory over this prediction period. In other words, all the
internal states with the time step hc are used as one of the inputs (the other one is the manipulated input u)
to the RNN (shown in Figure 1) over t ∈ [tk, tk + Pnn] during the training process. Therefore, besides the final
predicted state x(tk + Pnn), all the internal states before can be predicted and exported (if needed) by RNNs.
Additionally, it is important to mention that since the time interval for RNN internal states is chosen to be
the sufficiently small integration time step hc that is used to simulate the continuous-time nonlinear system of
Equation (1), the obtained RNN model can be regarded as a good representation for the continuous-time RNN
model of Equation (4).

Remark 4. Data quality plays an important role in data-driven modeling techniques including RNN modeling.
In case a good RNN model is initially not available due to poor data quality, the RNN model can be improved via
on-line update through real-time process state measurements. Additionally, if the real-time process measurements
are of poor quality, for example, noisy measurements, a data preprocessing step can be employed before training
an RNN. Overall, creating a good dataset remains an important issue in RNN modeling; in the chemical reactor
example in Section 5 the data is generated from open-loop simulations.
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Remark 5. The RNN models considered in our work involve the use of nonlinear terms in the dynamic model
(this can be thought of as a nonlinear process gain k(x), multiplying the input), which allows capturing gain
sign change in the different regions in the operating state-space if it occurs. This issue does not occur in the
operating region of the chemical reactor example considered in Section 5. The reader may refer to [25] for an
approach to neural network modeling that captures gain change.

3.2.2. Ensemble Learning

Ensemble learning is a machine learning process that combines multiple learning algorithms to
obtain better prediction performance ([26]) in terms of reduced variability and improved generalization
performance. The reasons that ensemble regression models are able to improve prediction performance
are given in [10,26]. In this work, homogeneous ensemble regression models are constructed following
the RNN learning algorithm in Section 3.1 and a k-fold cross validation. Specifically, as shown in
Figure 2, the dataset is initially separated into k folds with the same size, where k− 1 folds are used for
training and the remaining one is used for validation. By choosing a different subset as the validation
dataset every time, a total number of k different RNNs can be obtained. Subsequently, the final
prediction results of an ensemble of RNN models is calculated using the stacking method that
averages the predictions of multiple RNN models. It is noted that besides the stacking method,
other ensemble-based algorithms such as Boosting and Bagging [19] can also be applied to improve
the overall prediction performance within the targeted operating region.

���
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Figure 2. An ensemble of k RNN models based on a k-fold cross validation.

3.2.3. Parallel Computing

Parallel computing is a type of computation in which the execution of multiple processes or of
the computational tasks are carried out simultaneously. Since the final prediction results in ensemble
learning are obtained by combining the results of individual RNN models that are independent
from each other, the computational tasks for all RNN models can be operated in parallel to improve
computational efficiency. The algorithm for parallel computation of an ensemble of k RNN models is
shown in Figure 3. The blocks on the left demonstrate the state prediction using parallel computing
and the dashed blocks on the right represent the actual nonlinear system of Equation (1) and the
model-based controller that will be discussed in the next section. Specifically, we first reserve k + 1
nodes, where node 0 is the host node and the rest are worker nodes. The host node is used to exchange
information while the worker nodes are mainly used for computation. Each worker node is assigned
with a corresponding RNN model for prediction. At time t = tk, the model-based controller receives
the state measurement x(tk) and sends it to the host node 0 along with the manipulated inputs ug(tk)

(i.e., the guess of control actions over the prediction horizon). The host node broadcasts x(tk) and
ug(tk) to all worker nodes such that all RNN models share the same input vector. Prediction of RNN
models are carried out in all worker nodes simultaneously. It is noted that a synchronization barrier is
placed before the ensemble combiner in node 0 to ensure that all the computation tasks in worker nodes
are completed. Lastly, the host node combines prediction results from multiple RNN models to obtain
predicted states over t ∈ [tk, tk + Pnn] and sends them to the model-based controller. The optimal
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control actions u∗(tk) is calculated by the optimizer solver in model-based controller by taking various
guesses of control actions ug(tk), and will be sent to the nonlinear process of Equation (1) to be applied
for the next sampling period. The above process is repeated as the horizon of the nonlinear process of
Equation (1) is rolled one sampling period forward each time.����������	�
����
������������������������������������	���	 ��� �������������������
����
�� ���
�! �����
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Figure 3. Algorithm for parallel computation of an ensemble of k RNN models, where x(tk) is the
state measurement, ug(tk) is the initial guess of manipulated inputs provided by the MPC optimizer,
and u∗(tk) is the optimal control action sent to the nonlinear process of Equation (1), respectively.

4. Lyapunov-Based EMPC Using Ensemble RNN Models

In this section, the Lyapunov-based economic MPC (LEMPC) that incorporates an ensemble of
RNN models to predict future states is developed for the nonlinear system of Equation (1). In the
following subsections, a Lyapunov-based controller using the RNN model of Equation (4) is first
used to characterize the closed-loop stability region in which the origin of the nonlinear system of
Equation (1) can be rendered exponentially stable. Then, the formulation of the LEMPC using an
ensemble of RNN models is given and Theorem 2 is established to demonstrate closed-loop stability
for all initial conditions in the closed-loop stability region.

4.1. Lyapunov-Based Control Using RNN Models

We assume that there exists a stabilizing feedback controller u = Φnn(x) ∈ U that can render the
origin of the RNN model of Equation (4) exponentially stable in an open neighborhood D̂ in the sense
that there exists a C1 Lyapunov function V̂(x) such that the following inequalities hold for all x in D̂:

ĉ1|x|2 ≤ V̂(x) ≤ ĉ2|x|2, (15a)

∂V̂(x)
∂x

Fnn(x, Φnn(x)) ≤ −ĉ3|x|2, (15b)∣∣∣∣∂V̂(x)
∂x

∣∣∣∣ ≤ ĉ4|x| (15c)
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where ĉ1, ĉ2, ĉ3 and ĉ4 are positive constants. Although the RNN model of Equation (4) is obtained
based on the dataset within the closed-loop stability region Ωρ for the nonlinear system of Equation (1),
it is noted that the existence a feasible control action u ∈ U that can render the origin of the RNN model
of Equation (4) exponentially stable is not guaranteed due to model mismatch. Therefore, based on
Equation (15), the closed-loop stability region is re-characterized for the RNN model of Equation (4)
accounting for the input constraints. Specifically, a Lyapunov-based controller based on the RNN model
is first developed using the universal Sontag control law ([21]) since the RNN model of Equation (4)
can be represented by ˙̂x = f̂ (x̂) + ĝ(x̂)u. Then, following the characterization method of Ωρ for the
nonlinear system of Equation (1), an open set from which the origin of the RNN model of Equation (4)
can be rendered exponentially stable under the controller u = Φnn(x) ∈ U is characterized as follows:

φ̂u := {x ∈ Rn | ˙̂V(x) < −kV̂(x), u = Φnn(x) ∈ U} ∪ {0}, where ˙̂V(x) = ∂V̂(x)
∂x Fnn(x, Φnn(x)) and

k > 0. The closed-loop stability region for the RNN model of Equation (4) is defined as the largest level
of V̂ inside φ̂u: Ωρ̂ := {x ∈ φ̂u | V̂(x) ≤ ρ̂}, where ρ̂ > 0. From now on, Ωρ̂ will be taken as the new
operating region for the closed-loop system of Equation (1) in the following sections. Additionally,
the Lipschitz property of Fnn(x, u) and the boundedness of u imply that there exist positive constants
Mnn and Lnn such that the following inequalities hold for all x, x′ ∈ Ωρ̂, u ∈ U:

|Fnn(x, u)| ≤ Mnn (16a)∣∣∣∣∂V̂(x)
∂x

Fnn(x, u)− ∂V̂(x′)
∂x

Fnn(x′, u)
∣∣∣∣

≤ Lnn|x− x′| (16b)

The following proposition is developed to demonstrate that the state of the nonlinear system
of Equation (1) can be driven towards the origin exponentially for all x0 ∈ Ωρ̂ under the stabilizing
controller u = Φnn(x) ∈ U designed for the RNN model of Equation (4) provided that the modeling
error is sufficiently.

Proposition 1. Consider the stabilizing controller u = Φnn(x) ∈ U that renders the origin of the RNN system
of Equation (4) exponentially stable for all x0 ∈ Ωρ̂. If there exists a positive real number γ that constrains
the modeling error |ν| = |F(x, u, 0)− Fnn(x, u)| ≤ γ|x| ≤ νm, ∀x ∈ Ωρ̂, u ∈ U and satisfies the following
inequality:

γ < ĉ3/ĉ4 (17)

then the origin of the nominal closed-loop system of Equation (1) under u = Φnn(x) ∈ U is also exponentially
stable for all x ∈ Ωρ̂.

Proof. We demonstrate the exponential stability of the origin of the nominal system of Equation (1)
under u = Φnn(x) ∈ U, ∀x ∈ Ωρ̂ by showing that there exists a positive real number k′ such

that ˙̂V(x) ≤ −k′|x|2 holds for all ∀x ∈ Ωρ̂, where ˙̂V(x) = ∂V̂(x)
∂x F(x, Φnn(x), 0). Based on

Equations (15b) and (15c), the time-derivative of V̂ is derived as follows:

˙̂V =
∂V̂(x)

∂x
F(x, Φnn(x), 0)

=
∂V̂(x)

∂x
(Fnn(x, Φnn(x)) + F(x, Φnn(x), 0)

− Fnn(x, Φnn(x)))

≤− ĉ3|x|2 + ĉ4|x|(F(x, Φnn(x), 0)− Fnn(x, Φnn(x)))

≤− ĉ3|x|2 + ĉ4γ|x|2

(18)

If γ satisfies Equation (17), then there exists a positive real number c̃3 = −ĉ3 + ĉ4γ > 0 such that
˙̂V ≤ −c̃3|x|2 ≤ 0 holds. Let k′ = c̃3 and this completes the proof that the closed-loop state of the
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nominal system of Equation (1) is driven to the origin in an exponential rate of convergence under
u = Φnn(x) ∈ U for all x0 ∈ Ωρ̂.

4.2. LEMPC Using an Ensemble of RNN Models

The Lyapunov-based economic MPC (LEMPC) design using an ensemble of RNN models is
represented by the following optimization problem:

J = max
u∈S(∆)

∫ tk+N

tk

le(x̃(t), u(t))dt (19a)

s.t. ˙̃x(t) =
1

Ne

Ne

∑
j=1

Fj
nn(x̃(t), u(t)) (19b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (19c)

x̃(tk) = x(tk) (19d)

V̂(x̃(t)) ≤ ρ̂e, ∀ t ∈ [tk, tk+N),

if x(tk) ∈ Ωρ̂e (19e)
˙̂V(x(tk), u) ≤ ˙̂V(x(tk), Φnn(x(tk)),

if x(tk) ∈ Ωρ̂\Ωρ̂e (19f)

where S(∆) is the set of piecewise constant functions with period ∆, x̃ is the predicted state trajectory,
Ne is the number of RNN models used in predicting future states, and N is the number of sampling
periods in the prediction horizon. We use ˙̂V(x, u) to represent the time-derivative of V̂, i.e., ˙̂V(x, u) =
∂V̂(x)

∂x (Fnn(x, u)). The optimization problem of Equation (19) is solved by optimizing the time integral
of the stage cost function le(x̃(t), u(t)) of Equation (19a) over the prediction horizon accounting for the
constraints of Equations (19b)–(19f). The constraint of Equation (19b) is the ensemble of RNN models
of Equation (4) that is used as the prediction model. Equation (19c) defines the input constraints
that are applied over the entire prediction horizon. Equation (19d) defines the initial condition x̃(tk)

of Equation (19b). The constraint of Equation (19e) maintains the closed-loop state predicted by
Equation (19b) in Ωρ̂e over the prediction horizon if the state x(tk) is inside Ωρ̂e . However, if x(tk)

leaves Ωρ̂e but still remains in Ωρ̂, the contractive constraint of Equation (19f) drives the state towards
the origin for the next sampling period such that the state will eventually enter Ωρ̂e within finite
sampling periods. By introducing a conservative region Ωρ̂e with ρ̂e < ρ̂ and the stability constraints
of Equations (19e) and (19f), it will be proved in Theorem 2 that for any initial condition x0 ∈ Ωρ̂,
the closed-loop state of the nonlinear system of Equation (1) is bounded in Ωρ̂ for all times. A schematic
of Ωρ̂ and Ωρ̂e is given by Figure 4, in which it is shown that the state trajectory starting inside Ωρ̂ is
bounded in Ωρ̂ under LEMPC.

The optimal input trajectory is calculated over the entire prediction horizon t ∈ [tk, tk+N) and is
denoted by u∗(t). However, only the control action u∗(tk) for the first sampling period in t ∈ [tk, tk+N)

is sent to the nonlinear system of Equation (1) to be applied over the next sampling period. Before we
demonstrate closed-loop stability for the nonlinear system of Equation (1) under the LEMPC of
Equation (19), the next two propositions are first derived to provide useful tools for proving closed-loop
stability in Theorem 2. Specifically, the following proposition provides an upper bound for the state
error in the presence of sufficiently small modeling error and bounded disturbances.
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Figure 4. A schematic representing the set φ̂u, the closed-loop stability region Ωρ̂, and the set Ωρ̂e .
Under the LEMPC of Equation (19), the closed-loop state trajectory is bounded in Ωρ̂ for all times for
any x0 ∈ Ωρ̂.

Proposition 2. Consider the solution x(t) of the nonlinear system ẋ = F(x, u, w) of Equation (1) in the
presence of bounded disturbances |w(t)| ≤ wm, and the solution x̂(t) of the RNN model ˙̂x = Fnn(x̂, u) of
Equation (4) with the same initial condition x0 = x̂0 ∈ Ωρ̂. If x(t), x̂(t) ∈ Ωρ̂, and the modeling error is
bounded (i.e., |ν(t)| = |ẋ− ˙̂x| ≤ νm) for all times, then there exists a positive constant κ and a class K function
fw(·) such that the following inequalities hold ∀x, x̂ ∈ Ωρ̂ and w(t) ∈W:

|x(t)−x̂(t)| ≤ fw(t) :=
Lwwm + νm

Lx
(eLxt − 1) (20a)

V̂(x) ≤ V̂(x̂) +
ĉ4
√

ρ̂
√

ĉ1
|x− x̂|+ κ|x− x̂|2 (20b)

Proof. Following the proof in [5,7], we define the state error vector by e(t) = x(t) − x̂(t).
The time-derivative of e(t) is obtained ∀x, x̂ ∈ Ωρ̂, u ∈ U and w(t) ∈W as follows:

|ė| = |F(x, u, w)− Fnn(x̂, u)|
≤ |F(x, u, w)− F(x̂, u, 0)|+ |F(x̂, u, 0)− Fnn(x̂, u)|
≤ Lx|e(t)|+ Lwwm + νm

(21)

where the last inequality is derived from Equation (3b) and the fact that |ν| ≤ νm. Since x(t) and
x̂(t) share the same initial condition, (i.e., e(0) = 0), the upper bound for |e(t)| is derived for all
x(t), x̂(t) ∈ Ωρ̂ and |w(t)| ≤ wm as follows:

|e(t)| = |x(t)− x̂(t)| ≤ Lwwm + νm

Lx
(eLxt − 1) (22)



Mathematics 2019, 7, 494 13 of 20

Subsequently, ∀x, x̂ ∈ Ωρ, Equation (20b) is derived based on the Taylor series expansion of V̂(x)
around x̂ as follows:

V̂(x) ≤ V̂(x̂) +
∂V̂(x̂)

∂x
|x− x̂|+ κ|x− x̂|2

≤ V̂(x̂) +
ĉ4
√

ρ̂
√

ĉ1
|x− x̂|+ κ|x− x̂|2

(23)

where κ is a positive real number, and the last inequality is derived using Equations (15a) and (15c).

The above proposition demonstrates that the error of state trajectories of the nonlinear system
of Equation (1) and the RNN model of Equation (4), starting from the same initial condition,
is bounded for finite time. The next proposition is developed to demonstrate that if x ∈ Ωρ̂\Ωρs ,
the stabilizing controller u = Φnn(x) ∈ U implemented in a sample-and-hold fashion is able to
maintain ˙̂V(x) negative such that the state will be driven towards the origin and ultimately enters a
small neighborhood around the origin (i.e., Ωρs ) in finite sampling steps.

Proposition 3. Consider the system of Equation (1) under the controller u = Φnn(x̂) ∈ U that meets
the conditions of Equation (15) and is implemented in a sample-and-hold fashion, i.e., u(t) = Φnn(x̂(tk)),
∀t ∈ [tk, tk+1), where tk+1 := tk + ∆. Let εw, εs > 0, ∆ > 0 and ρ̂ > ρ̂e > ρs > 0 satisfy

− ĉ3

ĉ2
ρs + Lnn Mnn∆ ≤ −εs (24a)

− c̃3

ĉ2
ρs + L

′
x M∆ + L

′
wwm ≤ −εw (24b)

ρ̂e > max{V̂(x̂(tk + ∆)) | x̂(tk) ∈ Ωρs , u ∈ U, w ∈W} (24c)

Then, for any x(tk) ∈ Ωρ̂\Ωρs , the following inequalities holds:

V̂(x̂(t)) ≤ V̂(x̂(tk)), ∀t ∈ [tk, tk+1) (25a)

V̂(x(t)) ≤ V̂(x(tk)), ∀t ∈ [tk, tk+1) (25b)

Proof. To show that the value of V̂ decreases along the trajectory x̂(t) of the RNN model of Equation (4)
over t ∈ [tk, tk+1), we calculate the time-derivative of V̂(x̂) based on x̂(t) as follows:

˙̂V(x̂(t)) =
∂V̂(x̂(t))

∂x̂
Fnn(x̂(t), Φnn(x̂(tk)))

=
∂V̂(x̂(tk))

∂x̂
Fnn(x̂(tk), Φnn(x̂(tk)))

+
∂V̂(x̂(t))

∂x̂
Fnn(x̂(t), Φnn(x̂(tk)))

− ∂V̂(x̂(tk))

∂x̂
Fnn(x̂(tk), Φnn(x̂(tk)))

(26)

Using Equations (15a) and (15b) and the Lipschitz condition of Equation (16), the following
inequalities are obtained:

˙̂V(x̂(t)) ≤− ĉ3

ĉ2
ρs +

∂V̂(x̂(t))
∂x̂

Fnn(x̂(t), Φnn(x̂(tk)))

− ∂V̂(x̂(tk))

∂x̂
Fnn(x̂(tk), Φnn(x̂(tk)))

≤− ĉ3

ĉ2
ρs + Lnn Mnn∆

(27)
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Therefore, ˙̂V(x̂(t)) ≤ −εs holds ∀x̂(tk) ∈ Ωρ̂\Ωρs and t ∈ [tk, tk+1) if Equation (24a) is satisfied.
By integrating the above inequality, it follows that V̂(x̂(t)) ≤ V̂(x̂(tk)) − ∆εs, ∀x̂(tk) ∈ Ωρ̂\Ωρs ,
t ∈ [tk, tk+1) (i.e., Equation (25a).

Next, to show that V̂(x(t)) ≤ V̂(x(tk)) holds for all t ∈ [tk, tk+1), the time-derivative of V̂(x) for
the nonlinear system of Equation (1) (i.e., ẋ = F(x, u, w)) in the presence of bounded disturbances
(i.e., |w(t)| ≤ wm) is derived as follows:

˙̂V(x(t)) =
∂V̂(x(t))

∂x
F(x(t), Φnn(x(tk)), w)

=
∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)), 0)

+
∂V̂(x(t))

∂x
F(x(t), Φnn(x(tk)), w)

− ∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)), 0)

(28)

Since Equation (18) shows that ∂V̂(x(tk))
∂x F(x(tk), Φnn(x(tk)), 0) ≤ −c̃3|x(tk)|2 holds for all x ∈ Ωρ̂,

the following inequality is obtained for all x(tk) ∈ Ωρ̂\Ωρs , t ∈ [tk, tk+1) using Equation (2a) and the
Lipschitz condition in Equation (3):

˙̂V(x(t)) ≤− c̃3

ĉ2
ρs + L

′
x|x(t)− x(tk)|+ L

′
w|w|

≤ − c̃3

ĉ2
ρs + L

′
x M∆ + L

′
wwm

(29)

Therefore, the following inequality is further derived for all x(tk) ∈ Ωρ̂\Ωρs and t ∈ [tk, tk+1) if
the condition of Equation (24b) is satisfied:

˙̂V(x(t)) ≤− εw (30)

Similarly, this implies that V̂(x(t)) ≤ V̂(x(tk)) − ∆εw, ∀x(tk) ∈ Ωρ̂\Ωρs , t ∈ [tk, tk+1).
Therefore, the state of the nonlinear system of Equation (1) will enter Ωρs in finite sampling periods
if x(tk) ∈ Ωρ̂\Ωρs . Additionally, if x(tk) ∈ Ωρs , in which Equations (29) and (30) do not hold,
Equation (24c) guarantees that the state will not leave Ωρ̂e in one sampling period for all u ∈ U and
w ∈W. If the state x(tk+1) leaves Ωρs but remains in Ωρ̂e , at the next sampling period t ∈ [tk+1, tk+2),
Equation (30) is satisfied again and the state will be driven towards the origin. Therefore, the state of
the nonlinear system of Equation (1) is bounded in Ωρ̂ for all times.

Based on Propositions 2 and 3, the following theorem is established to show recursive feasibility
of the LEMPC optimization problem of Equation (19), and the boundedness of the closed-loop state
within Ωρ̂ under the sample-and-hold implementation of the LEMPC.

Theorem 2. Consider the closed-loop system of Equation (1) under the sample-and-hold implementation of the
LEMPC of Equation (19) with the stabilizing controller Φnn(x) that satisfies Equation (15). Let ∆ > 0, εw > 0
and ρ̂ > ρ̂e > 0 satisfy Equation (24) and the following inequality:

ρ̂e ≤ ρ̂−
ĉ4
√

ρ̂
√

ĉ1
fw(∆)− κ( fw(∆))2 (31)

If x0 ∈ Ωρ̂ and the conditions of Propositions 2 and 3 are satisfied, then there always exists a feasible
solution for the optimization problem of Equation (19), and the closed-loop state x(t) is bounded in the closed-loop
stability region Ωρ̂, ∀t ≥ 0.
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Proof. The LEMPC of Equation (19) predicts future states by averaging the results of an ensemble
of RNN models in Equation (19b). Since each RNN model is trained to satisfy the modeling error
constraint and Equation (16), it is readily shown that the averaged results of an ensemble of multiple
RNN models also satisfy the above conditions, and thus, the results derived in Propositions 1–3 for a
single RNN model can be generalized to an RNN ensemble.

We first prove that the optimization problem of Equation (19) can be solved with recursive
feasibility for all x ∈ Ωρ̂. Specifically, if x(tk) ∈ Ωρ̂e , the control actions Φnn(x(tk+i)), i = 0, 1, ..., N − 1
satisfy the input constraint of Equation (19c) and the Lyapunov-based constraint of Equation (19e)
since it is shown in Equation (25a) that the states predicted by the RNN model of Equation (19b) remain
inside Ωρ̂e under the controller Φnn(x). Additionally, if x(tk) ∈ Ωρ̂\Ωρ̂e , the control action u(t) =

Φnn(x(tk)) ∈ U, t ∈ [tk, tk+1) satisfies the input constraint of Equation (19c) and the Lyapunov-based
constraint of Equation (19f) such that the state can be driven towards the origin during the next
sampling period. Therefore, the stabilizing controller u = Φnn(x) ∈ U provides a feasible solution
that satisfies all the constraints of the LEMPC optimization problem of Equation (19) if x(t) ∈ Ωρ̂ for
all times.

Next, we prove that for x0 ∈ Ωρ̂, the state of the closed-loop system of Equation (1) is bounded in
Ωρ̂ for all times. Specifically, if x(tk) ∈ Ωρ̂e , the predicted states x̂(t) of the RNN model of Equation (19b)
are maintained in Ωρ̂e under the constraint of Equation (19e). According to Proposition 2, the actual
state x(t), t ∈ [tk, tk+1) of the nonlinear system of Equation (1) is bounded by the following inequality:

V̂(x) ≤ V̂(x̂) +
ĉ4
√

ρ̂
√

ĉ1
|x− x̂|+ κ|x− x̂|2

≤ V̂(x̂) +
ĉ4
√

ρ̂
√

ĉ1
fw(∆) + κ( fw(∆))2

(32)

Therefore, if Ωρ̂e is chosen as a level set of V̂ that satisfies Equation (31), V̂(x) based on the
actual state x(t) is bounded in Ωρ̂ for all t ∈ [tk, tk+1). However, if x(tk) ∈ Ωρ̂\Ωρ̂e , the constraint
of Equation (19f) is activated such that the control action u decreases the value of V̂(x̂) based on the
states predicted by the RNN model of Equation (19b) within the next sampling period. According to
Equation (25b) in Proposition 3, the value of V̂ also decreases along the state trajectory of the actual
nonlinear system of Equation (1) over t ∈ [tk, tk+1). Therefore, it is concluded that for any initial
condition in Ωρ̂, the closed-loop state of the system of Equation (1) is bounded in Ωρ̂ for all times
under the LEMPC of Equation (19).

5. Application to a Chemical Process Example

A chemical process example is used to illustrate the application of LEMPC using an ensemble of
RNN models, under which the state of the closed-loop system is maintained within the stability region
in state-space for all times. We consider a well-mixed, non-isothermal continuous stirred tank reactor
(CSTR), in which an irreversible second-order exothermic reaction takes place. Specifically, the reaction
transforms a reactant A to a product B (A→ B). The inlet temperature, the inlet concentration of A,
and the feed volumetric flow rate of the reactor are T0, CA0 and F, respectively. Additionally, the CSTR
is equipped with a heating jacket to supply or remove heat at a rate Q. The following material and
energy balance equations are used to represent the CSTR dynamic model:

dCA
dt

=
F
V
(CA0 − CA)− k0e

−E
RT C2

A (33a)

dT
dt

=
F
V
(T0 − T) +

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(33b)

where V is the volume of the reacting liquid in the reactor, CA is the reactant A concentration in the
reactor, Q is the heat input rate and T is the temperature of the reactor. The feed volumetric flow rate
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and temperature are F and T0, respectively. The feed concentration of reactant A is CA0. The reacting
liquid has a constant heat capacity of Cp and density of ρL. k0 is the pre-exponential constant, ∆H is
the enthalpy of reaction, R is the ideal gas constant, and E is the activation energy. Process parameter
values are listed in Table 1.

Table 1. Parameter values of the CSTR.

T0 = 300 K F = 5 m3/h

V = 1 m3 E = 5× 104 kJ/kmol

k0 = 8.46× 106 m3/kmol h ∆H = −1.15× 104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 CA0s = 4 kmol/m3

Qs = 0.0 kJ/h CAs = 1.2 kmol/m3

Ts = 438 K

The CSTR is initially operated at the unstable steady-state (CAs, Ts) = (1.95 kmol/m3, 402 K),
and (CA0s Qs) = (4 kmol/m3, 0 kJ/h). In this example, the two manipulated inputs are the heat
input rate, ∆Q = Q−Qs, and the inlet concentration of species A, ∆CA0 = CA0 − CA0s , respectively.
Additionally, the manipulated inputs are subject to the following constraints: |∆Q| ≤ 5× 105 kJ/h and
|∆CA0| ≤ 3.5 kmol/m3. The states and the inputs of the system of Equation (33) are represented by
xT = [CA − CAs T − Ts] and uT = [∆CA0 ∆Q], respectively. Therefore, the unstable steady-state of the
system of Equation (33) is at the origin of the state-space, (i.e., (x∗s , u∗s ) = (0, 0)).

The control objective of the LEMPC of Equation (19) is to maximize the production rate of B in
the CSTR by manipulating the inlet concentration ∆CA0 and the heat input rate ∆Q, while maintaining
the closed-loop state trajectories in the stability region Ωρ̂ for all times under LEMPC. The objective
function of the LEMPC optimizes the production rate of B as follows:

le(x̃, u) = k0e−E/RTC2
A (34)

To simulate the dynamic model of Equation (33) numerically, the explicit Euler method is used with
an integration time step of hc = 10−4 h. The Python module of the IPOPT software package [27],
named PyIpopt, is used to solve the nonlinear optimization problem of the LEMPC of Equation (19)
with a sampling period ∆ = 10−2 h. Additionally, a Message Passing Interface (MPI) for the Python
programming language, named MPI4Py ([28]), is incorporated in the LEMPC optimization problem to
execute multiple RNN predictions of Equation (19b) concurrently in independent computing processes.

Extensive open-loop simulations for the CSTR system of Equation (33) are initially conducted to
generate the dataset for RNN models. The control Lyapunov function V̂(x) = xT Px is designed with
the following positive definite P matrix:

P =

[
1060 22
22 0.52

]
(35)

Two hidden recurrent layers consisting of 96 and 64 recurrent units, respectively, are used in the
RNN model. Additionally, a 10-fold cross validation are used to construct an ensemble of RNN models
for the LEMPC of Equation (19). The closed-loop stability region Ωρ̂ with ρ̂ = 368 and a subset Ωρ̂e with
ρ̂e = 320 for the CSTR system are characterized based on the obtained RNN models and the stabilizing
controller u = Φnn(x) ∈ U. To demonstrate the effectiveness of the proposed LEMPC of Equation (19),
a linear state-space model (i.e., ẋ = Ax + Bu with A = 100 × [−0.154 − 0.003; 5.19 0.138] and
B = [4.03 0; 1.23 0.004]) is also identified following the system identification method in [29], and is
added into the following performance comparison under the ensemble of RNN models and the
first-principles model of Equation (33).
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The open-loop simulation studies are first carried out for the first-principles model of
Equation (33), an RNN model ensemble, and the linear state-space model, respectively. The optimal
number of RNN models used in the ensemble is determined to be five from extensive simulation tests
due to its best performance in terms of closeness to the trajectories under the first-principles model.
As shown in Figure 5, starting from various initial conditions in Ωρ̂, the state trajectories under the
RNN model ensemble almost overlap those under the first-principles model using the same input
sequences, while the state trajectories under the linear state-space model show considerable deviation,
especially in the top and bottom regions of Ωρ̂. From Figure 5, it is demonstrated that the RNN model
ensemble is a good representation for the first-principles model of Equation (33) in that it successfully
captures the CSTR nonlinear dynamics everywhere in Ωρ̂.

Subsequently, the closed-loop simulation of the nominal CSTR system (i.e., w(t) ≡ 0) under
the first-principles model of Equation (33), the ensemble of RNN models, and the linear state-space
model, respectively, are shown in Figure 6. The following material constraint is used in the LEMPC of
Equation (19) to make the averaged reactant material available within the entire operating period tp to
be its steady-state value, CA0s (i.e., the averaged reactant material in deviation form, u1, is equal to 0).

1
tp

∫ tp

0
u1(τ)dτ = 0 kmol/m3 (36)

In Figure 6, it is shown that for the initial condition (0,0), the state trajectory under the ensemble
of RNN models is close to that under the first-principles model, and both state trajectories are bounded
in Ωρ̂e in the absence of disturbances. However, it is observed that the state trajectory under the
linear state-space model ultimately leaves Ωρ̂ due to its large model mismatch. This implies that
a more conservative set Ωρ̂e needs to be characterized for the state spaced model to guarantee the
boundedness of state in the stability region Ωρ̂.
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Figure 5. The state trajectories for the open-loop simulation using the first-principles model of
Equation (33), the ensemble of RNN models, and the linear state-space model, respectively for various
sets of inputs and initial conditions (marked as blue stars) x0 in the closed-loop stability region Ωρ̂.

Additionally, Figures 7 and 8 show the manipulated inputs profiles in deviation from the
steady-state values. It is shown that the manipulated inputs are bounded within the input constraints
for all times. Moreover, the material constraint of Equation (36) is satisfied as it is shown in Figure 7 that
the LEMPC using the first-principles model and the RNN model ensemble both consume the maximum
allowable ∆CA0 at the first few sampling steps, and thus have to lower the consumption of ∆CA0 near
the end of operating period. The LEMPC using the linear state-space model also satisfies the material
constraint, but shows persistent oscillation due to model mismatch. Additionally, in Figure 8, it is
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shown that the consumption of ∆Q under the RNN ensemble is close to that under the first-principles
model (both correspond to left y-axis) since their closed-loop trajectories shown in Figure 6 are similar.
However, ∆Q shows large oscillation under the LEMPC using the linear state-space model (right
y-axis) since the closed-loop trajectory in Figure 6 leaves Ωρ̂e , and thus, the contractive constraint of
Equation (19f) is activated frequently.

To demonstrate that the closed-loop system under LEMPC achieves high process economics than
the steady-state operation using the same amount reactant CA0, we calculate the accumulated economic
benefits LE =

∫ tp
0 le(x, u)dt over the entire operating period tp = 0.2 h, which are 2.04, 4.14, and 4.22 for

the steady-state operation, the LEMPC under an ensemble of RNN models, and the LEMPC under the
first-principles model, respectively. Therefore, it is demonstrated that both closed-loop stability and
economic optimality are achieved under the proposed LEMPC using an ensemble of RNN models.
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Figure 6. The state-space profiles for the closed-loop CSTR under the LEMPC using the following
models: the first-principles model (blue trajectory), the RNN model ensemble (red trajectory) and the
linear state-space model (yellow trajectory) for an initial condition (0, 0).
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Figure 7. Manipulated input profiles (u1 = ∆CA0) for the initial condition (0, 0) under the LEMPC
using the following models: the first-principles model (blue trajectory), the RNN model ensemble
(red trajectory) and the linear state-space model (yellow trajectory), where the dashed black horizontal
lines represent the upper and lower bounds for ∆CA0.
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Figure 8. Manipulated input profiles (u2 = ∆Q) for the initial condition (0, 0) under the LEMPC using
the following models: the first-principles model (blue trajectory corresponding to left y-axis), the RNN
model ensemble (red trajectory corresponding to left y-axis) and the linear state-space model (yellow
trajectory corresponding to right y− axis).

6. Conclusions

This work presented a new class of economic model predictive controllers that use an ensemble of
recurrent neural network models as the prediction model for nonlinear systems. Specifically, an RNN
ensemble was first developed based on the dataset of extensive open-loop simulations within the
operating region. Parallel computing was used to reduce the computation time of prediction by
multiple RNN models. Then, the LEMPC that incorporates RNN models and Lyapunov-based stability
constraints was formulated to stabilize a nonlinear process within the closed-loop stability region
while optimizing process economic benefits simultaneously. The proposed LEMPC using an RNN
ensemble was applied to a nonlinear chemical process example to demonstrate its economic optimality
and closed-loop stability.
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