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Abstract

:

For inventory models with unknown distribution demand, during shortages, researchers used the first and the second moments to derive an upper bound for the worst case, that is the min-max distribution-free procedure for inventory models. They applied an iterative method to generate a sequence to obtain the optimal order quantity. A researcher developed a three-sequence proof for the convergence of the order quantity sequence. We directly provide proof for the original order quantity sequence. Under our proof, we can construct an increasing sequence and a decreasing sequence that both converge to the optimal order quantity such that we can obtain the optimal solution within the predesigned threshold value.
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1. Introduction


In this paper, we directly prove that the iterative sequence proposed by Gallego [1] is convergent. Gallego [1] provided an upper bound to estimate the shortage during the lead time for stochastic demand inventory models, where the distribution of the demand is unknown but the first and the second moments are known. Gallego [1] focused on proving his upper bound as a good estimation without paying attention to the existence and uniqueness of the optimal solution. His new inventory model is complicated so that no closed formula for the optimal solution could be found. Moreover, his optimal solution is expressed by an implicit relation to imply a sequence solution. Additionally, Gallego [1] did not prove his sequence to converge toward its optimal solution. Since the publication of his approach, it has been cited 47 times. These papers can be classified into the following four categories:




	(a)

	
The construction of new inventory models: Qi et al. [2], Şen and Talebian [3], Wang et al. [4], Kumar and Goswami [5], Sarkar et al. [6], Yu and Zhai [7], Qin and Kar [8], Yu and Zhen [9], Moon et al. [10], Tajbakhsh [11], Gallego and ŞAhin [12], Perakis and Roeis [13], Ahmed et al. [14], Levin et al. [15], Mostard et al. [16], Alfares and Elmorra [17], Lin [18], Hariga and Ben-Daya [19], Talluri and Van Ryzin [20], and Gallego [21].




	(b)

	
The development of new solution procedures: Fu et al. [22], Postek et al. [23], Zhou et al. [24], Wu and Warsing [25], Popescu [26], Gallego et al. [27], Chung et al. [28], Puerto and Fernández [29], Tyworth and O’Neill [30], Moon and Choi [31], Moon and Yun [32], and Baganha et al. [33].




	(c)

	
The application to solve decision-making problems: Du et al. [34], Wright [35], Wang et al. [36], Das and Maiti [37], Puerto and Rodríguez-Chía [38], Fricker and Goodhart [39], Vairaktarakis [40], Hariga [41], Hariga and Ben-Daya [42], and Platt et al. [43].




	(d)

	
The improvement of existing solution approaches: Tuan [44], Lin [45], Ruiz-Torres and Mahmoodi [46], Hung et al. [47], Lin et al. [48], and Lin and Chu [49].









Papers in categories (a), (b) and (c) did not discuss the solution procedure of Gallego [1], and so papers in categories (a), (b) and (c) are beyond the realm of our discussion. Only publications in category (d) are in the scope of our discussion, therefore an outline of their results is provided. There are three papers, Moon and Gallego [50], Wu and Ouyang [51] and Tung et al. [52] that are worthy of mentioning even they did not cite Gallego [1] in their references. For distribution-free inventory models, Gallego [1] used order quantity Q and reorder point R as decision variables. On the other hand, Moon and Gallego [50] applied order quantity Q and safety factor k as decision variables. Wu and Ouyang [51] extended Moon and Gallego [50] with defective items and provided an iterative sequence solution approach. Moreover, Tung et al. [52] showed that the optimal solution for inventory models of Wu and Ouyang [51] exists and is unique. Lin and Chu [49] verified that the optimal solution may not occur on the boundary for inventory models with a service-level constraint. Lin et al. [48] showed the existence and uniqueness of the optimal solution for the first partial derivative system proposed by Gallego [1] and Moon and Gallego [50]. Lin et al. [48] also showed that the iterative sequence solution of Wu and Ouyang [51] cannot be executed. Hung et al. [47] proved that the minimum may not happen on the boundary for inventory models with a service-level constraint. Ruiz-Torres and Mahmoodi [46] used simulation to show that their findings are much closer to the target service level which reduces the total holding cost. Lin [45] constructed a three-sequence method to prove the convergence of the sequence derived by Gallego [1]. We can claim that up to now, Lin [45] is the only paper that had provided proof for the convergence problem of Gallego [1] and Moon and Gallego [50]. However, her approach is too tedious that contains three sequences. In this paper, we will present a direct derivation for the original sequence proposed by Gallego [1]. Tuan [44] studied the restriction proposed by Gallego [1] to find a more general condition such that the term by term examination in the iterative algorithm proposed by Gallego [1] becomes unnecessary. Tuan [44] also pointed out that the direct proof for the original sequence proposed by Gallego [1] for its convergence will be an interesting research topic in the future. Thus, it motivates us to simplify the three-sequence approach of Lin [45] back to the original sequence generated by the expression of Gallego [1].



From the above discussion, we know that none of the aforementioned papers directly discussed the convergence for the iterative method proposed by Gallego [1]. The purpose of this paper is directly to verify that Gallego’s iterative method is convergent.




2. Notation and Assumptions


To be compatible with Gallego [1], since our main concern is to prove the convergence of the sequence generated by Gallego [1], we adopted the same notation and assumptions of Gallego [1].



Notation




	
D= average demand per unit of time.



	
h= inventory carrying cost per item per unit of time.



	
K= the fixed ordering cost per order.



	
Q= order quantities per order.



	
R= reorder point.



	
π= unit shortage cost.



	
μ= mean of the lead time demand.



	
σ2= the variance of the lead time demand.








Assumptions




	
Backorder cost is proportional to the number of items back ordered and not to the time for which they are outstanding.



	
F is the cumulative distribution of the lead time demand. F has known finite first and second moments with mean μ and variance σ2 and then makes no assumptions on the distribution form of F.



	
The inventory model is continuously reviewed. Replenishments are made when the inventory level drops to the reorder point R.









3. Recap of Three Related Papers


We recall the objective function for the stochastic inventory model with distribution-free demand in Gallego [1] as follows


C(Q,Δ)=KDQ+h(Q2+Δ)+πD2Q(Δ2+σ2−Δ).



(1)







Remark 1.

In Lin et al. [48], they considered the same objective function, however, there was a typo in Lin et al. [48], and so the denominator of the third term in Equation (1) was typed as “Q” which should be revised to “2Q”.





Gallego [1] took the partial derivatives with respect to Q and ∆ then he canceled out ∆ to merge ∂∂QC(Q,Δ)=0 and ∂∂ΔC(Q,Δ)=0 into one Equation with a single variable, Q, to derive the next formula:


Q=2KDh+DπσhhQπD−hQ



(2)




under the condition πD≥2hQ.



Gallego [1] had mentioned that based on Equation (2) an iterative method will generate a convergent sequence which will converge to the optimal solution. However, up to now, except for Lin [45], none had discussed the convergence problem proposed by Gallego [1].



Lin et al. [48] pointed out that the restriction should be revised from πD≥2hQ to πD>2hQ, which they then used to prove that there is a unique root for the partial derivative system. However, they did not discuss theconvergence of the iterative method of Gallego [1].



Based on Moon and Gallego [50] and Tung et al. [52], Lin [45] developed three sequences: (ki), (Qi) and (di), with the initial point k0=0, and three relations:


Qn+1=(B1+B2(1+kn2−kn))1/2



(3)




with B1=2Dhδ[A+ci(Li−1−L)+∑j=1i−1cj(bj−aj)] and B2=Dσhδ(π+π0(1−β))L,


dn+1=12(1−β+D(π+π0(1−β))hQn+1(1−E(p)))



(4)




and


kn+1=dn+1−12dn+1−1,



(5)




with δ = 1 − 2E(p) +E(p2) +2(h1/h)E(p(1 − p)),where h1 is the holding cost for non-defective items, h is the holding cost for defective items, and p is the defective rate in an order lot. In Gallego [1], there are no defective items, then p = 0 to imply that (p) = 0, (p2) = 0 and E(p(1 − p)) = 0. Hence, δ = 1.



Lin [45] proved that (dn) and (kn) are increasing sequences and (Qn) is a decreasing sequence bounded below by zero, so (Qn) converges and then both (dn) and (kn) are convergent.




4. Our Improvement


The purpose of this paper is to provide proof that the following sequence


Qn+1=2KDh+DπσhhQnπD−hQn,



(6)




under the condition (Qn) proposed by Gallego [1] that (Qn) indeed converges, and the value it converges to is the optimal solution. Hence, we can derive the convergence of Gallego’s iterative method by the original sequence to simplify the three-sequence approach proposed by Lin [45]. We mention our main result in the following theorem.



Theorem 1.

The ordering quantity sequence, proposed by Gallego [1], converges to its interior optimal solution.





Proof of Theorem 1.

From the restriction of πD>2hQn, we know that


hQnDπ−hQn<1.



(7)







Using the restriction of πD>2hQn, we derive an upper bound for the sequence (Qn) as,


Qn<Dπ2h.



(8)







On the other hand, we know that there is a natural lower bound for (Qn) as,


0<Qn.



(9)







From Equation (6), we derive that,


Qn+12−Qn2=Dπσh(1(Dπ/hQn)−1−1(Dπ/hQn−1)−1).



(10)







By Equations (9) and (10), Qn+1>Qn is equivalent to:


DπhQn−1−1>DπhQn−1



(11)




that is,


Qn>Qn−1



(12)




to derive that (Qn) is increasing, if Q1>Q0.



Similarly, we know that Qn+1<Qn, if Q1<Q0 to imply that (Qn) is decreasing.



For a selected initial point Q0, there are three conditions: (a) Q0>Q1, (b) Q0<Q1, and (c) Q0=Q1 that may occur.



For condition (a), from Q1<Q0, (Qn) is a decreasing sequence bound below by zero so it converges to its greatest lower bound.



In the following, we will prove that the greatest lower bound is greater than zero. Owing to Qn>0 so we have limn→∞Qn≥0. By the way of contradiction, we assume that limn→∞Qn=0.



It implies that limn→∞Qn+1=0 and we compute the limit of Equation (6) for n→∞, then it yields that 0=2KDh which is a contradiction so our assumption of limn→∞Qn=0 is not valid. Hence, we obtain that limn→∞Qn>0.



Owing to limn→∞Qn satisfies Equation (2), limn→∞Qn is the optimal solution since Lin et al. [48] showed the existence and uniqueness of the optimal solution.



For condition (b), because Q0<Q1, (Qn) is an increasing sequence bound above by 2h(KD+πσ), therefore, it converges to its least upper bound. By the same reasoning for the decreasing sequence, limn→∞Qn is the optimal solution.



For condition (c), because Q0=Q1, this yields that (Qn) is a constant sequence so it converges to Q0 which satisfies Equation (2) so it is the optimal solution.



Now, we combine the above findings to derive that for all three conditions (Qn) converges. and converges to the optimal solution.



By an analytical approach with calculus, Lin et al. [48] have already proved that there is a unique solution for the interior minimum.



Because of the limit point, limn→∞Qn, satisfies the partial derivative system so it must be the optimal solution. Therefore, (Qn) converges to the optimal solution, for all three conditions. □






5. Numerical Examples


We will present two numerical examples to illustrate that the sequence of ordering quantity, (Qn), depending on the initial point, can be a decreasing sequence or an increasing sequence. However, Gallego [1] and Lin et al. [48] did not provide numerical examples in their paper, so that we refer to Lin [45] to decide the following data: K = 200, D = 600, h = 20, π = 50 and σ = 7 for our numerical examples. We know that πD/2h is an upper bound and 0 is a lower bound for the ordering quantity.



From Table 1, we construct a decreasing sequence that is a support for our analytical result as Q1<Q0, then we generate a decreasing sequence.



For our second numerical example with respect to condition (b), we assume that Q0=0 and using Equation (6) to derive the iterative sequence. The computation results are listed in the following Table 2.



From Table 2, we construct an increasing sequence that is numerical evidence for our analytical result as Q1>Q0 then we derive an increasing sequence.



From Table 1, the decreasing sequence, we derive that the limit is less than or equal to 123.039. From Table 2, the increasing sequence, we obtain that the limit is greater than or equal to 123.039. Hence, we find that the optimal order quantity, Q = 123.039 up to the third decimal place.



Let us recall the order quantity sequence derived by Lin [45], where Q1 = 271.444019, Q2 = 179.201796, Q3 = 171.872873, Q4 = 171.206597, Q5 = 171.145237, Q6 = 171.139579, Q7 = 171.139060, Q8 = 171.139014, and Q9 = 171.139014.



From the above sequence, usually researchers have observed that the sequence decreases very slowly until Q8 = Q9 such that they have accepted the optimal order quantity is 171.139014, up to the sixth decimal place.



We may hypothetically assume that Q10 = 170.142368, Q11 = 170.141352, Q12 = 170.141351, and Q13 = 170.141351, that is the decreasing rate becomes very slow from Q6 to Q9, and then decreased again from Q10 to Q13. Hence, only apply a decreasing sequence, researchers did not know where the optimal solution is.



On the other hand, we can construct two sequences: in Table 1, a decreasing sequence, and in Table 2, an increasing sequence, such that we can derive the limit, that is, the optimal order quantity without any doubts.



In [45], the numerical data is different from our results, because Lin [45] considered inventory models with partial back order. In Gallego [1] and this paper, shortages are fully back order.



In the following, we develop an algorithm to decide a sequence solution, denoted as QΔ, to approximate the optimal order quantity, Q∗, within the pre-designed threshold value. We assume that Q0=0 and Q1=πD/2h, and then for n=0, 1, 2,…,


Q2n+2=2KDh+DπσhhQ2nπD−hQ2n,



(13)




and


Q2n+3=2KDh+DπσhhQ2n+1πD−hQ2n+1



(14)







Owing to Q0=0<Q2=2KD/h, we derive that (Q2n) is an increasing sequence. Next, to check Q1>Q3, we need the following lemma.



Lemma 1.

For inventory models proposed by Gallego [1], we claim that,


8hK+4hπσ<π2D



(15)









Proof of Lemma 1.

If Q1=πD/2h, then we compute that,


4h2D(Q12−Q32)=π2D−(8hK+4hπσ).



(16)







With the data K = 200, D = 600, h = 20, π = 50 and σ = 7 from Lin [45], we derive that,


8hK+4hπσ=6×104,



(17)




and


π2D=15×107



(18)




such that the inequality in Equation (15) is reasonable. □





Based on our Lemma, we imply that Q1>Q3 and then (Q2n+1) is a decreasing sequence.



We construct our algorithm in the following.



Step 1: For a given threshold value, ε, we assume that Q0=0 and Q1=πD/2h.



Step 2: We check the distance between Q2n and Q2n+1, and assume


m=min{n:Q2n+1−Q2n<ε}



(19)







Step 3: Our approximated solution, denoted as QΔ, is defined as


QΔ=12(Q2m+Q2m+1).



(20)







We demonstrate our algorithm for a threshold value ε=10−6. We list the decreasing sequence (Q2n+1) in Table 3 and the increasing sequence (Q2n) in Table 4.



We compute Q1−Q0, Q3−Q2, …, Q13−Q12=9×10−6>ε, until Q15−Q14=0<ε such that we derive our approximated order quantity,


QΔ=12(Q14+Q15)=123.039452.



(21)







We consider the problem of what factor or parameters affect the speed of the convergence rate for the sequence generated by the iterative procedure proposed by Gallego [1].



We compute that:


Qn+22−Qn+12=πDσh(hQn+1πD−hQn+1−hQnπD−hQn)=πDσh(hQn+1πD−hQn+1+hQnπD−hQn)−1(hQn+1πD−hQn+1−hQnπD−hQn)=πDσh(hQn+1πD−hQn+1+hQnπD−hQn)−1(πDh(Qn+1−Qn)(πD−hQn+1)(πD−hQn)).



(22)







Based on Equation (22), when n is big enough, we derive that,


|Qn+2−Qn+1|≈π2D2σ4((πD−hQ∗)Q∗)1.5h0.5|Qn+1−Qn|.



(23)







First, we derive


π2D2σ4((πD−hQ∗)Q∗)1.5h0.5=0.056464.



(24)







Next, we refer to Table 4, and find that,


Q10−Q8Q8−Q6=0.056469,



(25)






Q12−Q10Q10−Q8=0.056464,



(26)




and


Q14−Q12Q12−Q10=0.056464.



(27)







If we compare Equations (24)–(27) to show that our estimation of the converge rate of Equation (24) is very accurate when n is big enough after five iterations.



To estimate which factor influences the converge rate, we consider πD−hQ∗≈πD, and then we simplify our result of Equation (24) as,


πD/hQ∗σ4Q∗=0.049685



(28)




with


(πD/hQ∗σ4Q∗)/π2D2σ4((πD−hQ∗)Q∗)1.5h0.5=0.049685/0.056464=0.88,



(29)




to indicate πD/hQ∗σ4Q∗ can interpret 88% of the converge rate such that we claim that the main factors for the convergence rate are (i) σ, (ii) (πD/h)/Q∗ and (iii) Q∗.



Finally, three related papers of Braglia et al. [53,54] and Castellano et al. [55] are worth mentioning.




6. Conclusions


Our paper provides a patchwork for the Gallego’s iterative method since its convergence has not yet been proven. Moreover, we showed that there are three possible conditions for convergence which is a generalization of Lin [45].
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Table 1. A decreasing sequence.






Table 1. A decreasing sequence.





	Q0
	Q1
	Q2
	Q3
	Q4
	Q5
	Q6
	Q7





	750
	150
	124.499
	123.122
	123.044
	123.040
	123.039
	123.039
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Table 2. An increasing sequence.






Table 2. An increasing sequence.





	Q0
	Q1
	Q2
	Q3
	Q4
	Q5
	Q6





	0
	109.545
	122.259
	122.995
	123.037
	123.039
	123.039
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Table 3. A decreasing sequence to the sixth decimal place.






Table 3. A decreasing sequence to the sixth decimal place.





	Q1
	Q3
	Q5
	Q7
	Q9
	Q11
	Q13
	Q15





	750
	150
	124.498996
	123.121659
	123.044093
	123.039467
	123.039453
	123.039452
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Table 4. An increasing sequence to the sixth decimal place.






Table 4. An increasing sequence to the sixth decimal place.





	Q0
	Q2
	Q4
	Q6
	Q8
	Q10
	Q12
	Q14





	0
	109.544512
	122.258644
	122.995305
	123.036959
	123.039311
	123.039444
	123.039452
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