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Abstract: In this paper, we introduce the (C, Ψ∗, G) class of contraction mappings using C-class
functions and some improved control functions for a pair of set valued mappings as well as a pair of
single-valued mappings, and prove common fixed point theorems for such mappings in a metric
space endowed with a graph. Our results unify and generalize many important fixed point results
existing in literature. As an application of our main result, we have derived fixed point theorems for
a pair of α-admissible set valued mappings in a metric space.

Keywords: fixed point; common fixed point; directed graph; edge preserving; transitivity property

MSC: 47H10; 54H25

1. Introduction and Preliminaries

In [1], Ran and Reurings proved the existence of fixed points for single-valued mappings in
partially ordered metric spaces, and their results were extended by Neito and Lopez [2]. However, it
became clear that the concept of a graph gives a better vision of fixed points instead of partial ordering,
and the first attempt in this direction was done by Jachymsky [3]. He defined the Banach G- contraction
for single-valued mapping, which was later extended by Beg et al. [4] for the multivalued mappings.
After these, there was a lot of work done in the direction of fixed points in metric spaces endowed
with graphs, see [5–14].

In 1973, Geraghty [15] defined Θ as the class of functions θ : [0, ∞)→ [0, 1) such that

θ(tn)→ 1⇒ tn → 0, (1)

and also showed generalizations of the Banach-Neumann contractive mapping principle.
We now recall the following class of functions:
Ψ denotes the class of all continuous and non-decreasing functions ψ : [0, ∞)→ [0, ∞), such that:

• ψ(t) = 0 if, and only if t = 0.

Φ denotes the class of all lower semi-continuous functions φ : [0, ∞)→ [0, ∞), such that:

• φ(t) = 0 if, and only if t = 0.
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For more results on contraction principles involving the above said control functions, we refer the
reader to [16–18].

In [19], the family of C-class functions were introduced as follows: F : [0, ∞)2 → R belongs to the
C-class functions if:

• F is continuous,
• F(s, t) ≤ s,
• F(s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0, ∞).

In [20], Samet et al. introduced the concept of α-admissible mappings, and proved fixed point
theorems for α-ψ contractive-type mappings, which paved a way to prove new results and generalise
existing results in the fixed point theory. For some recent results on fixed point theorems of α-admissible
mappings, the reader may refer to [21–24].

In this work, we utilised the C-class functions to give modified versions of contraction principles
involving Ψ class functions and Φ class functions in the sense that we have relaxed the condition
α(t) = 0 if, and only if t = 0 in the Ψ and Φ class functions to α(t) = 0⇒ t = 0. As an application, we
have also deduced some common fixed point theorems for a pair of α-admissible mappings.

Throughout this work, (XG, dG) will denote the metric space endowed with a directed graph G
with V(G) = XG and ∆ ⊆ E(G), where V(G) denotes the set of vertices, E(G) denotes the set of edges
of the graph G and ∆ = {(xG, xG) : xG ∈ X}.

Definition 1. [3] (XG, dG) is said to have property A if xn → xG and (xn, xn+1) ∈ E(G) implies (xn, xG) ∈
E(G), for all sequences {xn}n∈N in XG.

Definition 2. [16] The pair ( f , g) of self mappings of XG is g-edge preserving in G, if

(gx, gy) ∈ E(G)⇒ ( f x, f y) ∈ E(G). (2)

Definition 3. [11] E(G) satisfies transitivity property if, and only if for all x, y, z ∈ XG, (x, z) ∈ E(G) and
(z, y) ∈ E(G) implies (x, y) ∈ E(G).

Let mappings S, T : XG → CL(XG) be given. We will make use of the following notations:

• COFIX{S, T} = {u ∈ XG : u ∈ Su
⋂

Tu} is the set of all common fixed points of S and T
• FIX{T} = {u ∈ XG : u ∈ Tu} is the set of all fixed points of T.

2. Main Results

Let Θ∗ be the set of all continuous functions θ : [0, ∞)→ [0, 1).
Ψ∗ be the set of all continuous and non decreasing functions ψ : [0, ∞)→ [0, ∞), such that:

• ψ(t) = 0⇒ t = 0.

Let Φ∗ be the set of all lower semi-continuous functions φ : [0, ∞)→ [0, ∞), such that:

• φ(t) = 0⇒ t = 0.

Definition 4. Let S, T : XG → CB(XG) be two given mappings. We say that the pair (S, T) belongs to
the class of (C, Ψ∗, G) contractions if, and only if for all xG, yG ∈ XG with (xG, yG) ∈ E(G), the following
conditions are satisfied:

(4.1) For uG ∈ SxG, there exists vG ∈ TyG such that (uG, vG) ∈ E(G)

(4.2) For uG ∈ TxG, there exists vG ∈ SyG such that (uG, vG) ∈ E(G)

(4.3) there exists F ∈ C, ψ ∈ Ψ∗, such that
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ψ(H(SxG, TyG)) ≤ F(ψ(M(xG, yG)), M(xG, yG)) and
ψ(H(TxG, SyG)) ≤ F(ψ(M(xG, yG)), M(xG, yG))

where

M(xG, yG) = max
{

dG(xG, yG), dG(SxG, xG), dG(TyG, yG),
dG(yG, SxG) + dG(xG, TyG)

2

}
Theorem 1. Let (XG, dG) be complete and S, T : XG → CB(XG) satisfy the following:

(1.1) There exists xG0, xG1 ∈ XG such that xG1 ∈ TxG0
⋃

SxG0 and (xG0, xG1) ∈ E(G),
(1.2) E(G) satisfy transitivity property,
(1.3) (S, T) ∈ (C, Ψ∗, G) for some F ∈ C∗ and ψ ∈ Ψ∗ .

Then COFIX{S, T} 6= φ .

Proof. By condition (1.1), suppose xG0 ∈ XG, and xG1 ∈ S(xG0). By condition (4.1), we can find
xG2 ∈ T(xG1) with (xG1, xG2) ∈ E(G) and

ψ(dG(xG1, xG2)) ≤ ψ(H(S(xG0), T(xG1))) ≤ F(ψ(M(xG0, xG1)), φ(M(xG0, xG1)))

Now again by condition (4.2), for xG2 ∈ T(xG1), there exists xG3 ∈ S(xG2) with (xG2, xG3) ∈
E(G) and

ψ(dG(xG2, xG3)) ≤ ψ(H(TxG1, SxG2))

≤ F(ψ(M(xG1, xG2)), M(xG1, xG2)).

Continuing inductively, we construct the sequence {xGn} recursively as for n ≥ 0, as

xG2n+1 ∈ S(xG2n), xG2n ∈ T(xG2n−1) (3)

as well as (xGn, xGn+1) ∈ E(G). Our first task is to establish that COFIX{S, T} 6= φ. Note that if
M(xGm, xGn) = 0 for any n,m ∈ N then

M(xGm, xGn) = max
{

dG(xGm, xGn), dG(SxGm, xGm), dG(TxGn, xGn),

dG(xGn, SxGm) + dG(xGm, TxGn)

2

}
= 0

which shows that xGm = xGn ∈ COFIX{S, T}, and our first task will be complete. So let
M(xGm, xGn) 6= 0 for any n, m ∈ N. Then, by definition of ψ, ψ(M(xGn−1, xGn)) 6= 0.

If n is odd, we have

ψ(dG(xGn, xGn+1)) ≤ ψ(H(SxGn−1, TxGn))

≤ F(ψ(M(xGn−1, xGn)), M(xGn−1, xGn)) (4)

Since ψ(M(xGn−1, xGn)) 6= 0, we have

F(ψ(M(xGn−1, xGn)), M(xGn−1, xGn)) < ψ(M(xGn−1, xGn))

Then, by (4), we get

ψ(dG(xGn, xGn+1)) < ψ(M(xGn−1, xGn)) (5)
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where

M(xGn−1, xGn) = max
{

dG(xGn−1, xGn), dG(SxGn−1, xGn−1), dG(TxGn, xGn),

dG(xGn, SxGn−1) + dG(xGn−1, TxGn)

2

}
≤ max

{
dG(xGn−1, xGn), dG(xGn, xGn−1), dG(xGn+1, xGn),

dG(xGn, xGn) + dG(xGn−1, xGn+1)

2

}
≤ max

{
dG(xGn−1, xGn), dG(xGn+1, xGn),

dG(xGn−1, xGn+1)

2

}
≤ max

{
dG(xGn−1, xGn), dG(xGn+1, xGn),

dG(xGn−1, xGn) + dG(xGn, xGn+1)

2

}
≤ max{dG(xGn−1, xGn), dG(xGn, xGn+1)}

If dG(xGn+1, xGn) > dG(xGn−1, xGn), then M(xGn−1, xGn) ≤ dG(xGn+1, xGn). Then (5) gives

ψ(dG(xGn, xGn+1)) < ψ(dG(xGn, xGn+1))

a contradiction. So, we have

dG(xGn, xGn+1) ≤ dG(xGn−1, xGn) (6)

For an even number n, a similar argument leads to inequality (6). Thus, {dG(xn+1, xGn)} is a
monotonically non-increasing sequence which is bounded below, and thereby,

lim
n→∞

dG(xGn, xGn+1) = lim
n→∞

M(xGn−1, xGn) = r ≥ 0.

Assume that r > 0, so that ψ(r) > 0. Taking lim inf on both sides of the inequality (5), we obtain

ψ(r) < ψ(r)

a contradiction. Hence r = 0. Consequently, we have

lim
n→∞

dG(xGn, xGn+1) = 0. (7)

Next, we prove that {xGn} is a Cauchy sequence. By (7), it is enough if we show that the
subsequence {xG2n} is a Cauchy sequence. Suppose, if possible, {xG2n} is not a Cauchy sequence.
Then, there exists ε > 0 and subsequences {xG2m(k)} and {xG2n(k)}, such that n(k) is the smallest index
for which n(k) > m(k) > k, dG(xG2m(k), xG2n(k)) ≥ ε. That is,

dG(xG2m(k), xG2n(k)−2) < ε (8)

Now, we have

ε ≤ dG(xG2m(k), xG2n(k))

≤ dG(xG2m(k), xG2n(k)−2) + dG(xG2n(k)−2, xG2n(k)−1) + dG(xG2n(k)−1, xG2n(k))

< ε + dG(xG2n(k)−2, xG2n(k)−1) + dG(xG2n(k)−1, xG2n(k))
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AS k→ ∞, we get

lim
k→∞

dG(xG2m(k), xG2n(k)) = ε (9)

Also, we have

|dG(xG2m(k), xG2n(k)+1)− dG(xG2m(k), xG2n(k))| ≤ dG(xG2n(k), xG2n(k)+1)

and |dG(xG2m(k)−1, xG2n(k))− dG(xG2m(k), xG2n(k))| ≤ dG(xG2m(k), x2m(k)−1).

Letting k→ ∞ and using (7) and (9), we get

lim
k→∞

dG(xG2m(k)−1, xG2n(k)) = lim
k→∞

dG(xG2m(k), xG2n(k)+1) = ε. (10)

From

|dG(xG2m(k)−1, xG2n(k)+1)− dG(xG2m(k)−1, xG2n(k))| ≤ dG(xG2n(k), xG2n(k)+1)

and making use of (7) and (10), we get

lim
k→∞

dG(xG2m(k)−1, xG2n(k)+1) = ε (11)

Also, from the definition of M and from (7) and (9)–(11), we have

lim
k→∞

M(xG2m(k)−1, xG2n(k)) = ε (12)

Also by the transitivity property of G, we have (xG2m(k)−1, xG2n(k)) ∈ E(G). Thus, we have

ψ(dG(xG2m(k), xG2n(k)+1)) = ψ(H(TxG2m(k)−1, SxG2n(k)))

≤ F(ψ(M(xG2m(k)−1, xG2n(k))), (M(xG2m(k)−1, xG2n(k)))

Letting k→ ∞ and making use of (10) and (11), the above inequality yields

ψ(ε) < ψ(ε)

a contradiction. Thus, {xGn} is a Cauchy sequence. By completeness of XG , we can find uG ∈ XG,
such that xGn → uG as n→ ∞.

We will now prove that uG ∈ COFIX{S, T}. Note that (xG2n+1, uG) ∈ E(G), and so

ψ(dG(xG2n+1, TuG)) ≤ ψ(H(SxG2n, TuG))

≤ F(ψ(M(xG2n, uG)), M(xG2n, uG)) (13)

where

M(xG2n, uG) = max
{

dG(xG2n, uG), dG(SxG2n, xG2n), dG(TuG, uG),

dG(xG2n, TuG) + dG(uG, SxG2n)

2

}
Note that as n → ∞, dG(SxG2n, xG2n) → 0, dG(uG, SxG2n) → 0, and so M(uG, xG2n) →

dG(TuG, uG) Now, if dG(TuG, uG) 6= 0, then from (13) as n→ ∞, we have

ψ(dG(TuG, uG) < ψ(dG(TuG, uG)),
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again, a contradiction. Thus, dG(TuG, uG) = 0, which implies that uG ∈ TuG, and since TuG is closed,
we have uG ∈ TuG.

Now again, we have M(uG, uG) = dG(uG, SuG), and if dG(uG, SuG) 6= 0, since (uG, uG) ∈ ∆ ⊂
E(G), we get

ψ(dG(SuG, uG)) ≤ ψ(H(SuG, TuG))

≤ F(ψ(M(uG, uG))M(uG, uG))

< ψ(dG(uG, SuG))

a contradiction, and thereby, dG(uG, SuG) = 0 or uG ∈ SuG. Hence, COFIX{S, T} 6= φ.

We will deduce the following important results from Theorem 1:

Corollary 1. Let (XG, dG) be complete and S, T : XG → CB(XG) satisfy conditions (4.1), condition (4.2),
condition (1.1), condition (1.2), and the following:

(1.1) For all xG, yG ∈ XG with (xG, yG) ∈ E(G)

ψ(H(SxG, TyG)) ≤ ψ(M(xG, yG))− φ(M(xG, yG)) and
ψ(H(TxG, SyG)) ≤ ψ(M(xG, yG))− φ(M(xG, yG))

where ψ ∈ Ψ∗, φ ∈ Φ∗ and M(xG, yG) is as in Definition 4. Then, COFIX{S, T} 6= φ.

Proof. Take F(r, t) = r− φ(t) in Theorem 1.

Corollary 2. Let (XG, dG) be complete and S, T : XG → CB(XG) satisfy the conditions (4.1), condition (4.2),
condition (1.1), condition (1.2), and the following:

(2.1) For all xG, yG ∈ XG with (xG, yG) ∈ E(G)

ψ(H(SxG, TyG)) ≤ θ(M(xG, yG))ψ(M(xG, yG)) and
ψ(H(TxG, SyG)) ≤ θ(M(xG, yG))ψ(M(xG, yG))

where ψ ∈ Ψ∗, θ ∈ Θ∗ and M(xG, yG) is as in Definition 4. COFIX{S, T} 6= φ .

Proof. Take F(r, t) = θ(t).r in Theorem 1.

Corollary 3. Let (XG, dG) be complete and S, T : XG → CB(XG) satisfy the conditions (4.1), (4.2), (1.1) and
(1.2), and the following:

(3.1) For all xG, yG ∈ XG with (xG, yG) ∈ E(G), there exist 0 < λ < 1, such that

H(SxG, TyG) ≤ λ(M(xG, yG)) and
H(TxG, SyG) ≤ λ(M(xG, yG))

where M(xG, yG) is as in Definition 4. Then COFIX{S, T} 6= φ .

Proof. For some k > 0, set k∗ = k(1− λ). Then,

H(SxG, TyG)) ≤ λ(M(xG, yG)) and
H(TxG, SyG) ≤ λ(M(xG, yG))

implies

H(SxG, TyG) ≤
k− k∗

k
(M(xG, yG)) and

H(TxG, SyG) ≤
k− k∗

k
(M(xG, yG))
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or

kH(SxG, TyG) + 1 ≤ kM(xG, yG) + 1− k∗M(xG, yG) and
kH(TxG, SyG) ≤ kM(xG, yG)− k∗M(xG, yG)

Now, let ψ(t) = kt + 1 and φ(t) = k∗(t). Then, the above inequality leads to

ψ(H(SxG, TyG)) ≤ ψ(M(xG, yG))− φ(M(xG, yG)) and
ψ(H(TxG, SyG)) ≤ ψ(M(xG, yG))− φ(M(xG, yG))

Thus, all conditions of Corollary 1 are satisfied, and hence, COFIX{S, T} 6= φ.

Corollary 4. Let (XG, dG) be complete and T : XG → CB(XG) satisfy the following:

(4.1) There exists xG0, xG1 ∈ XG, such that xG1 ∈ TxG0 and (xG0, xG1) ∈ E(G);
(4.2) For any u ∈ TxG, there exists w ∈ TyG, such that (u, w) ∈ E(G);
(4.3) E(G) satisfies the transitivity property;
(4.4) ψ(H(TxG, TyG)) ≤ ψ(dG(xG, yG))− φ(dG(xG, yG))

where ψ ∈ Ψ∗, φ ∈ Φ∗. Then, FIX{T} 6= φ.

Proof. Take S = T in Corollary 1.

Corollary 5. Let (XG, dG) be complete and T : XG → CB(XG) satisfy conditions (4.1)–(4.3), and
the following:

(5.1) ψ(H(TxG, TyG)) ≤ θ(dG(xG, yG))ψ(dG(xG, yG))

where ψ ∈ Ψ∗, θ ∈ Θ∗. Then, FIX{T} 6= φ.

Proof. Take F(r, t) = θ(t).r in Corollary 2.

Example 1. Let XG = {0,
1
2n : n ∈ N}, dG(xG, yG) = |xG − yG|, G = (V, E), with V(G) = XG and

E(G) = {(0, 0), (
1
2n ,

1
2n ), (

1
2n , 0)} and S, T : XG → CB(XG) be defined by

SxG =

{0}, if xG = 0

{ 1
2n+1 , 0}, if xG =

1
2n .

and

TxG =

{0}, if xG = 0

{ 1
2n+2 , 0}, if xG =

1
2n .

Define ψ, φ : [0, ∞) → [0, ∞) by ψ(t) = 2t + 1 and φ(t) =
t
4

for all t ∈ [0, ∞). Clearly, ψ(t) ∈ Ψ∗

(note that ψ /∈ Ψ) and φ(t) ∈ Φ∗.

• If xG =
1
2n and yG = 0 with (

1
2n , 0) ∈ E(G), then SxG = { 1

2n+1 , 0}, Sy = {0}, TxG =

{ 1
2n+2 , 0}, TyG = {0}, dG(xG, yG) =

1
2n , H(SxG, TyG) =

1
2n+1 , ψ(H(SxG, TyG)) =

1
2n +

1, M(xG, yG) =
1
2n , ψ(M(xG, yG)) =

1
2n−1 + 1, φ(M(xG, yG)) =

1
2n+2 and

ψ(H(SxG, TyG)) =
1
2n + 1 <

1
2n−1 + 1− 1

2n+2 = ψ(M(xG, yG))− φ(M(xG, yG)) for all n ∈ N.
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Also, for
1

2n+1 ∈ SxG, there exists 0 ∈ TyG, such that (
1

2n+1 , 0) ∈ E(G) and for 0 ∈ SxG, there

exists 0 ∈ TyG such that (0, 0) ∈ E(G).

For
1

2n+2 ∈ TxG, there exists 0 ∈ SyG such that (
1

2n+2 , 0) ∈ E(G) and for 0 ∈ TxG, there exists

0 ∈ SyG such that (0, 0) ∈ E(G).
• If xG = 0, yG = 0 with (0, 0) ∈ E(G), then SxG = {0} = SyG = TxG = TyG, 0 = dG(xG, yG) =

H(SxG, TyG) = M(xG, yG), ψ(H(SxG, TyG)) = ψ(M(xG, yG)) = 1, φ(M(xG, yG)) = 0 and

ψ(H(SxG, TyG)) = 1 = ψ(M(xG, yG))− φ(M(xG, yG)).

Also, for 0 ∈ SxG, there exists 0 ∈ TyG such that (0, 0) ∈ E(G) and for 0 ∈ SxG, there exists
0 ∈ TyG, such that (0, 0) ∈ E(G).
For 0 ∈ TxG, there exists 0 ∈ SyG, such that (0, 0) ∈ E(G) and for 0 ∈ TxG, there exists 0 ∈ SyG,
such that (0, 0) ∈ E(G)

• Also, if xG =
1
2n , yG =

1
2n with (

1
2n ,

1
2n ) ∈ E(G), then SxG = { 1

2n+1 , 0} = SyG, TxG =

{ 1
2n+2 , 0} = TyG, dG(xG, yG) = 0, H(SxG, TyG) =

1
2n+2 , ψ(H(SxG, TyG)) =

1
2n+1 +

1, M(xG, yG) =
1

2n+1 , ψ(M(xG, yG)) =
1
2n + 1, φ(M(xG, yG)) =

1
2n+3 and

ψ(H(SxG, TyG)) =
1

2n+1 + 1 <
1
2n + 1− 1

2n+3 = ψ(M(xG, yG))− φ(M(xG, yG)) for all n ∈ N.

Also, for
1

2n+1 ∈ SxG, there exists 0 ∈ TyG, such that (
1

2n+1 , 0) ∈ E(G) and for 0 ∈ SxG, there

exists 0 ∈ TyG, such that (0, 0) ∈ E(G).

For
1

2n+2 ∈ TxG, there exists 0 ∈ SyG, such that (
1

2n+2 , 0) ∈ E(G) and for 0 ∈ TxG, there exists

0 ∈ SyG, such that (0, 0) ∈ E(G).

Thus, we see that for all xG, yG ∈ XG with (xG, yG) ∈ E(G)

ψ(H(SxG, TyG)) ≤ ψ(M(xG, yG))− φ(M(xG, yG)) for all xG, yG ∈ XG.

Also, for uG ∈ SxG, there exists vG ∈ Ty such that (uG, vG) ∈ E(G) and for uG ∈ TxG, there exists
vG ∈ Sy, such that (uG, vG) ∈ E(G). Hence, the pair (S, T) ∈ (C, Ψ∗, G) with F(r, t) = r− φ(t). Thus,
all conditions of Theorem 1 are satisfied, and COFIX{S, T} = {0}.

Remark 1. Corollary 3 (and hence, Corollary 1 and Theorem 1) are proper extensions and generalisations of
Theorem 3.1 of [4] and Theorem 4.2 of [8].

Remark 2. Note that in Example 1, the graph G is a directed graph and not connected, and so Theorem 3.1

of [4] cannot be applied to neither of the mappings S or T. Also note that (
1
2n ,

1
2n ) ∈ E(G), H(S

1
2n , T

1
2n ) =

1
2n+2 > 0 = dG(

1
2n ,

1
2n ) and hence a simple extension of Theorem 3.1 of [4] and Theorem 4.2 of [8] to two

mappings cannot be applied. However, we see that the mappings S and T satisfy the conditions of Corollary 3,
and so Corollary 3 also ensures the existence of a common fixed point of S and T.

Remark 3. In Theorem 1, if the directed graph G is replaced with an undirected graph G′ with E(G′) =

E(G)
⋃

E(G−1), then Condition (4.3) in Definition 4 can be replaced with only one inequality:

ψ(H(SxG, TyG)) ≤ F(ψ(M(xG, yG)), M(xG, yG))

Similar arguments follow in Corollaries 1–3 also.
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Definition 5. Let f , g : XG → XG. We say that the pair ( f , g) belongs to the class of Jungck type (C, Ψ∗, G)

contractions if

(5.1) f is g− edge preserving in G.
(5.2) For all xG, yG ∈ XG with (gxG, gyG) ∈ E(G)

ψ(dG( f xG, f yG)) ≤ F(ψ(M(gxG, gyG)), M(gxG, gyG)), f or some ψ ∈ Ψ∗, F ∈ C (14)

M(gxG, gyG) = max{dG(gxG, gyG), dG(gxG, f xG), dG(gyG, f yG),
dG(gxG, f yG) + dG(gyG, f xG)

2
}.

Let mappings f , g : XG → XG be given. We will make use of the following notations:

• XG( f , g) : {u ∈ XG : (gu, f u) ∈ E(G)},
• C( f , g) : {u ∈ XG : f u = gu} is the set of all coincidence points of mappings f and g,
• Cm( f , g) : {u ∈ XG : f u = gu = u} is the set of all common fixed points of mappings f and (g).
• CS(X, d) : Collection of all Cauchy sequences in the metric space (X, d).

Lemma 1. Let f and g satisfy the following:

(1.1) xG, yG ∈ C( f , g) implies gxG = gyG

(2.1) ( f , g) is compatible

Then, Cm( f , g) 6= φ.

Proof. Let xG ∈ C( f , g) and gxG = w. Then, since (f, g) is compatible, gw = ggxG = g f xG =

f gxG = f w, or in other words, w ∈ C( f , g). By Lemma (1), gw = gxG = w, which, in turn, shows that
w ∈ Cm( f , g).

Theorem 2. Let d
′
G and dG be any two metrics defined on XG, and (XG, d

′
G) is complete. Suppose f , g : XG →

XG satisfy the following:

(2.1) ( f , g) ∈ Jungck type (C, Ψ∗, G) with respect to dG

(2.2) g is continuous and g(XG) is closed with respect to d
′
G

(2.3) f (XG) ⊆ g(XG)

(2.4) E(G) satis f ies the transitivity property
(2.5) i f dG ≥ d

′
G, then f : (XG, dG)→ (XG, d

′
G) is g− Cauchy

(2.6) f is G− continuous with respect to d
′
G, f and g are d

′
G − compatible.

Then,

XG( f , g) 6= φ iff C( f , g) 6= φ

Proof. Suppose that C( f , g) 6= φ. Let u ∈ C( f , g). Then, (gu, f u) = (gu, gu) ∈ ∆ ⊂ E(G) and so
u ∈ XG( f , g); that is, XG( f , g) 6= φ.

Suppose now, XG( f , g) 6= φ. Let xG0,∈ XG, such that (gxG0, f xG0) ∈ E(G). Now, since F(XG) ⊆
g(XG), using condition (5.1) we can construct sequence {xGn} in XG, such that

gxGn = f xGn−1, (gxGn−1, gxGn) ∈ E(G)
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for all n ∈ N. It is easy to see that if M(xGm, xGn) = 0 for any m, n ∈ N,, then xGm, xGn ∈ C( f , g) and
the proof is done. So we assume that for all m, n ∈ N, M(xGm, xGn) 6= 0. Then,

ψ(dG(gxGn+1, gxn+2)) = ψ(dG( f xGn, f xGn+1))

≤ F(ψ(M(gxGn, gxGn+1)), M(gxGn, gxGn+1)) (15)

< ψ(M(gxGn, gxGn+1))

We also have

M(gxGn, gxGn+1) = max
{

dG(gxGn, gxGn+1), dG(gxGn, f xGn), dG(gxGn+1, f xGn+1),

dG(gxGn, f xGn+1) + dG(gxGn+1, f xGn)

2

}
= max

{
dG(gxGn, gxGn+1), dG(gxGn+1, gxn+2),

dG(gxGn, gxn+2)

2

}
≤ max{dG(gxGn, gxGn+1), dG(gxGn, gxn+2)}

If M(gxGn, gxGn+1) = dG(gxGn+1, gxn+2), then by (15), we obtain that

ψ(dG(gxGn+1, gxn+2)) < ψ(dG(gxGn+1, gxn+2))

a contradiction. Hence,

M(gxGn, gxGn+1) = dG(gxGn, gxGn+1)

Substituting in (15), we get t ψ(dG(gxGn+1, gxn+2)) < ψ(dG(gxGn, gxGn+1)). So by the definition
of ψ, we have

dG(gxGn+1, gxn+2) ≤ dG(gxGn, gxGn+1), ∀n ∈ N

Hence, the sequence {dG(gxGn, gxGn+1)} is non-negative and non-increasing, and thereby we
can find r ≥ 0, such that limn→∞ dG(gxGn, gxGn+1) = r. We claim that r = 0. Suppose, on the contrary,
that r > 0. Letting n→ ∞ in (15), we obtain

ψ(r) ≤ F(ψ(r), r) < ψ(r)

a contradiction. Thus,

lim
n→∞

dG(gxGn, gxGn+1) = 0. (16)

We will show that {gxGn} ∈ CS(XG, dG). Suppose {gxGn} /∈ CS(XG, dG) and for ε > 0, k ∈ N,
let n(k) ∈ N be the smallest integer with n(k) > m(k) ≥ k and

dG(gxGn(k), gxGm(k)) ≥ ε

dG(gxGn(k)−1, gxGm(k)) < ε.

Then, we have

ε ≤ dG(gxGm(k), gxGn(k))

≤ dG(gxGm(k), gxGn(k)−1) + dG(gxGn(k)−1, gxGn(k))

< ε + dG(gxGn(k)−1, gxGn(k))
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Using (16) in the above inequality, we get

lim
k→∞

dG(gxGm(k), gxGn(k)) = ε > 0.

By condition (2.4) we get (gxGm(k), gxGn(k)) ∈ E(G). Thus, we have

ψ(dG(gxGm(k)+1, gxGn(k)+1)) = ψ(dG( f xGm(k), f xGn(k)))

≤ F(ψ(M(gxGm(k), gxGn(k))), M(gxGm(k), gxGn(k))) (17)

where

M(gxGm(k), gxGn(k)) = max
{

dG(gxGm(k), gxGn(k)), dG(gxGm(k), f xGm(k)), dG(gxGn(k), f xGn(k)),

dG(gxGm(k), f xGn(k)) + dG(gxGn(k), f xGm(k))

2

}
= max

{
dG(gxGm(k), gxGn(k)), dG(gxGm(k), gxm(k)+1), dG(gxGn(k), gxn(k)+1),

dG(gxGm(k), gxGn(k)+1) + dG(gxGn(k), gxm(k)+1)

2

}
Letting k→ ∞, we obtain

lim
k→∞

M(gxGm(k), gxGn(k)) = ε

By inequality (17), we get
ψ(ε) < ψ(ε)

a contradiction. So {gxGn} ∈ CS(XG, dG).
We will show that {gxGn} ∈ CS(XG, d

′
G). If dG ≥ d

′
G, it is trivial. Thus, suppose dG ≥ d

′
G. Let

ε > 0. Since {gxGn ∈ CS(XG, dG)}, by condition (2.5) we see that { f xGn} ∈ CS(XG, d
′
G). Then, there

exists N0 ∈ N with

d
′
G(gxGn+1, gxm+1) = d

′
G( f xGn, f xm) < ε

whenever n, m ≥ N0. So {gxGn} ∈ CS(XG, d
′
G) .

Since g(XG) is d
′
G - closed and (XG, d

′
G) is complete, there exists uG = gxG ∈ g(XG), such that

lim
n→∞

gxGn = lim
n→∞

f xGn = uG.

By d
′
G - compatibility of f and g, we have

lim
n→∞

d
′
G(g f xGn, f gxGn) = 0 (18)

Then,

d
′
G(guG, f uG) ≤ d

′
G(guG, g f xGn) + d

′
G(g f xGn, f gxGn) + d

′
G( f gxGn, f uG)

Letting n → ∞ and using (18), the continuity of g, and the G- continuity of f , it follows that
d
′
G(guG, f uG) = 0, which implies that guG = f uG. So uG ∈ C( f , g) and the proof is complete.

If dG = d
′
G, we have the following

Theorem 3. Let (XG, dG) be complete and f , g : XG → XG satisfy the following:
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(3.1) ( f , g) ∈ Jungck type (C, Ψ∗, G)

(3.2) g is continuous and g(XG) is closed
(3.3) F(XG) ⊂ g(XG)

(3.4) E(G) satisfies the transitivity property
(3.5) (a) f is G-continuous and f and g are dG-compatible or

(b) (XG, dG, G) has property A.

Then,

XG( f , g) 6= φ iff C( f , g) 6= φ.

Proof. Proceeding as in the proof of Theorem 2, we see that if C( f , g) 6= φ then XG( f , g) 6= φ and
if XG( f , g) 6= φ then {gxGn} ∈ CS(XG, dG) Now since g(XG) is closed in XG, there exists uG ∈ XG,
such that

lim
n→∞

gxGn = guG = lim
n→∞

f xGn. (19)

We will show that uG ∈ C( f , g). Suppose uG /∈ C( f , g). Then dG( f uG, guG) > 0. Note that if
M(xGm, uG) = 0 for any m ∈ N,, then xGm, uG ∈ C( f , g) and the proof is done. So we assume that for
all m ∈ N, M(xGm, uG) 6= 0. If condition (3.5a) is satisfied, then proof follows from a similar argument
as in Theorem 2. If condition (3.5b) is satisfied, then (gxGn, gu) ∈ E(G) for each n ∈ N. Thus, we have

dG(guG f uG) ≤ dG(guG, f xGn(k)) + dG( f xGn(k), f uG)

which implies that

dG(guG, f uG)− dG(guG, f xGn(k)) ≤ dG( f xGn(k), f uG)

Since ψ is non-decreasing, we get

ψ(dG(guG, f uG)− dG(guG, f xGn(k))) ≤ ψ(dG( f xGn(k), f uG))

≤ F(ψ(M(gxGn(k), guG)), M(gxGn(k), guG)) (20)

where

M(gxGn(k), guG) = max
{

dG(gxGn(k), guG), dG(gxGn(k), f xGn(k)), dG(guG, f uG),

dG(gxGn(k), f uG) + dG(guG, f xGn(k)))

2

}
Using (19), we obtain

lim
k→∞

M(gxGn(k), guG) = dG(guG, f uG) > 0.

Thus, taking k → ∞ in (20), we get ψ(dG(guG, f uG)) < ψ(dG(guG, f uG)), a contradiction.
Therefore, f uG = guG and so C( f , g) 6= φ.

Theorem 4. Suppose f and g satisfy condition (2.1)–(2.6), condition (2.6) and the following:

(4.1) If xG, yG ∈ C( f , g) and gxG 6= gyG, then (gxG, gyG) ∈ E(G).

If XG( f , g) 6= φ, then Cm( f , g) 6= φ.
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Proof. By Theorem 2 C( f , g) 6= φ. Let xG, yG ∈ C( f , g) and suppose gxG 6= gyG so that
M(gxG, gyG) 6= 0. By assumption (K), (gxG, gyG) ∈ E(G), and we have

ψ(dG( f xG, f yG)) ≤ F(ψ(M(gxG, gyG)), M(gxG, gyG))

< ψ(M(gxG, gyG))

= ψ(dG( f xG, f yG))

(21)

which is a contradiction. Therefore, gxG = gyG. Now by Lemma 1, Cm( f , g) 6= φ.

Corollary 6. Let d
′
G and dG be any two metrics defined on XG, and (XG, d

′
G) is complete. Suppose f , g :

XG → XG satisfy conditions (5.1) and Theorem (2.1) to Theorem (2.5), and the following: for some ψ ∈ Ψ∗,
φ ∈ Φ∗ and all xG, yG ∈ XG with (gxG, gyG) ∈ E(G)

ψ(dG( f xG, f yG)) ≤ ψ(M(gxG, gyG))− φ(M(gxG, gyG)) (22)

Then,

XG( f , g) 6= φ iff C( f , g) 6= φ

Corollary 7. Let d
′
G and dG be any two metrics defined on XG and (XG, d

′
G) is complete. Suppose f , g : XG →

XG satisfy conditions (5.1) and condition (2.1) to condition (2.5) and the following: for some ψ ∈ Ψ∗, θ ∈ Θ∗

and all xG, yG ∈ XG with (gxG, gyG) ∈ E(G)

ψ(dG( f xG, f yG)) ≤ θ(M(gxG, gyG))ψ(M(gxG, gyG)) (23)

Then,

XG( f , g) 6= φ iff C( f , g) 6= φ

Let XG = [0, ∞) and dG, d
′
G : XG × XG → [0, ∞) be defined by

dG(xG, yG) =

0 if xG = yG

max
{

xG, yG

}
otherwise

d
′
G(xG, yG) = |xG − yG| (24)

Then clearly, dG ≥ d
′
G. We define

E(G) = {(xG, yG) : xG = yG or xG, yG ∈ [0,
1
2
] with xG ≤ yG}

Consider the mappings f : XG → XG and g : XG → XG, defined by

f xG =


4x4

G, if 0 ≤ xG ≤
1
2

2x2
G, if xG >

1
2

gxG =


2x2

G, if 0 ≤ xG ≤
1
2

8x4
G, if xG >

1
2

(25)

for all xG ∈ XG.
Let ψ : [0, ∞)→ [0, ∞) be defined by

ψ(t) = 2t
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and θ : [0, ∞)→ [0, 1) be defined by

θ(t) =


t, if 0 ≤ t ≤ 1

2
1

2t + 1
, t >

1
2

and F ∈ C be given by

F(r, t) = θ(t).r

We will show that the pair ( f , g) is a (F, ψ, G) contraction.
Let (gxG, gyG) ∈ E(G). If gxG = gyG (which is possible only if xG = yG = 0), then f xG = gyG = 0

and so ( f xG, f yG) ∈ E(G). If (gxG, gyG) ∈ E(G) with gxG, gyG ∈ [0,
1
2
] and gxG ≤ gyG, then we

obtain xG, yG ∈ [0,
1
2
], xG ≤ yG and then x4

G, y4
G ∈ [0,

1
2
], f xG = 4x4

G ≤ 4y4
G = f yG, and thus

( f xG, f y) ∈ E(G). Thus, the pair ( f , g) is g-edge preserving in G.
Now, let xG, yG ∈ XG and (gxG, gyG) ∈ E(G). From the argument given above, if gxG = gyG, then
ψ(dG( f xG, f yG)) = 0 and ( f , g) satisfy the condition condition (5.2). If (gxG, gyG) ∈ E(G) with

gxG, gyG ∈ [0,
1
2
] and gxG ≤ gyG, then

ψ(dG( f xG, f yG) = 8yG
4

≤ 2yG
2

≤ yG.2yG

≤ max{xG, yG}.2 max{xG, yG}
= θ(dG(xG, yG))ψ(dG(xG, yG))

≤ θ(M(gxG, gyG))ψ(M(gxG, gyG))

and so ( f , g) satisfy the condition condition (5.1).
We will show that g and f are d

′
- compatible. Let {xGn} be a sequence in XG, such that

lim
n→∞

gxGn = lim
n→∞

f xGn = u

Note that

d
′
(g f xGn, f gxGn) = 32xG

8
N → 0 as n→ ∞.

Clearly, f : (XG, d)→ (XG, d
′
) is G-continuous, and consequently, all the conditions of Theorem 2

are satisfied. Also note that 0,
1
2
∈ C( f , g), g0 6= g(

1
2
), and (g0, g(

1
2
) ∈ E(G), and thus condition

Theorem (4.1) of Theorem 4 is satisfied. Consequently, {0,
1
2
} ⊂ XG( f , g)

⋂
C( f , g)

⋂
Cm( f , g).

3. Applications

In this section, as an application of our results, we will give some fixed point results for a pair of
set valued α-admissible contraction mappings in a metric space.
Throughout this section, (X, d) is any metric space, S, T : X → CB(X) two given mappings, and
α : X× X → [0, ∞).

Definition 6. We say that the pair (S, T) is α-admissible if, and only if for all x, y ∈ X with α(x, y) ≥ 1, the
following conditions hold:
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(6.1) For u ∈ Sx, there exists v ∈ Ty, such that α(u, v) ≥ 1.
(6.2) For u ∈ Tx, there exists v ∈ Sy, such that α(u, v) ≥ 1.

Theorem 5. Suppose the following conditions hold:

(5.1) There exists x0, x1 ∈ X such that x1 ∈ Tx0
⋃

Sx0 and α(x0, x1) ≥ 1,
(5.2) α is a triangular function,
(5.3) The pair (S, T) is α-admissible,
(5.4) there exists F ∈ C, ψ ∈ Ψ∗, such that for all x, y ∈ X with α(x, y) ≥ 1

ψ(H(Sx, Ty)) ≤ F(ψ(M(x, y)), M(x, y)) and
ψ(H(Tx, Sy)) ≤ F(ψ(M(x, y)), M(x, y))

where

M(x, y) = max
{

d(x, y), d(Sx, x), dG(Ty, y),
d(y, Sx) + d(x, Ty)

2

}
Then COFIX{S, T} is a singleton set.

Proof. Consider the graph G on (X, d), defined by V(G) = X and E(G) = (x, y) ∈ X× X : α(x, y) ≥
1). It is easy to see that the functions S and T satisfy all conditions of Theorem 1, and hence,
COFIX{S, T} is a singleton set.

Similarly, we have the following results:

Theorem 6. Suppose conditions Theorem (5.1), Theorem (6.1), Theorem (6.3), and the following hold:

(6.1) for all x, y ∈ X with α(x, y) ≥ 1
ψ(H(Sx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)) and
ψ(H(Tx, Sy)) ≤ ψ(M(x, y))− φ(M(x, y))

where ψ ∈ Ψ∗, φ ∈ Φ∗ and M(x, y) is as in Theorem 5. Then COFIX{S, T} 6= φ.

Theorem 7. Suppose conditions Theorem (5.1), Theorem (6.1), Theorem (5.3), and the following hold:

(7.1) for all x, y ∈ X with α(x, y) ≥ 1
ψ(H(Sx, Ty)) ≤ θ(M(x, y))ψ(M(x, y)) and
ψ(H(Tx, Sy)) ≤ θ(M(x, y))ψ(M(x, y))

where ψ ∈ Ψ∗, φ ∈ Φ∗ and M(x, y) is as in Theorem 5. Then, COFIX{S, T} 6= φ.

Example 2. Let XG = [0, ∞) ⊆ R, and let the metrics dG, d
′
G : XG × XG → [0, ∞) be defined by

dG(xG, yG) = max
{

xG, yG

}
d
′
(xG, yG) = L|xG − yG|

(26)

for all xG, yG ∈ XG, respectively, where L is a constant real number, such that L ∈ (1, ∞). It is easy to see that
d < d

′
. Now, E(G) is given by

E(G) = {(xG, yG) : xG = yG or xG, yG ∈ [0, 1] with xG ≤ yG} (27)

Consider the mappings f : XG → XG and g : XG → XG defined by

f x = ln

(
1 +

x2
G
2

)
, gx = x2

G (28)
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for all xG ∈ XG, respectively.
Let ψ, φ : [0, ∞)→ [0, ∞) be defined by

ψ(t) =

{
t, if 0 ≤ t ≤ 1

t2, if t > 1
(29)

φ(t) =


t2

2
, if 0 ≤ t ≤ 2

1
2

, otherwiset > 1
(30)

Next, let (gx, gy) ∈ E(G) if xG = yG. Then, ( f x, f y) ∈ E(G), and if (gx, gy) ∈ E(G) with gx ≤ gy,

then we obtain gx = x2
G, gy = y2

G ∈ [0, 1] and x2
G = gx ≤ gy = y2

G, and we have f x = ln(1 +
x2

G
2
) ≤

ln(1 +
y2

G
2
) = f y and f xG, f y ∈ [0, 1]. This implies that ( f xG, f y) ∈ E(G).

Since d < d
′
, we need to prove that the function f : (XG, d)→ (XG, d

′
) is a g-Cauchy sequence in XG.

Let ε > 0, and let {xGn} be a sequence in XG such that {gxGn} is a Cauchy sequence in (XG, d). Then, there
exists k ∈ N, such that for all n, m ≥ k, dG(gxGn, gxm) <

ε

L
. Then, we have

d
′
( f xGn, f xm) = L| f xGn − f xm|

= L
∣∣∣∣ln(1 +

(xGn)
2

2

)
− ln

(
1 +

(xm)2

2

)∣∣∣∣
= L

∣∣∣∣∣∣∣∣ln
1 +

(xm)2

2

1 +
(xGn)

2

2

∣∣∣∣∣∣∣∣
= L

∣∣∣∣∣∣∣∣ln
1 +

(xm)2

2
− (xGn)

2

2
)

1 +
(xGn)

2

2


∣∣∣∣∣∣∣∣

≤ L
[

ln
(

1 + | (xGn)
2

2
− (xM)2

2
|
)]

≤ L

2 ln(1 +
1
2
|(xGn)

2 − (xm)2|)

|(xGn)
2 − (xm)2| |(xGn)

2 − (xm)
2|


< L|(xGn)

2 − (xm)
2|

= LdG(gxGn, gxm)

< L · ε

L
= ε.

This implies that f : (XG, d)→ (XG, d
′
) is a g- Cauchy on XG.

It can easily be shown that f : (XG, d) → (XG, d
′
) is G-continuous. As a result, we will only need to prove

that g and f are d
′
-compatible. Let {xGn} be a sequence in XG, such that

lim
n→∞

gxGn = lim
n→∞

f xGn = u (31)

Then, we have ln(1 + u/2) = a and so it follows that u = 0. Now, we have

d
′
(g f xGn, f gxGn) = L

∣∣∣∣∣ln
(

1 +
(xGn)

2

2

)2

− ln
(

1 +
(xGn)

4

2

)2
∣∣∣∣∣→ 0 (32)



Mathematics 2019, 7, 482 17 of 19

as n→ ∞. It is easy to see that there exists a point u ∈ XG, such that (gu, f u) ∈ E(G), and thus XG( f , g) 6= φ.
Consequently, all the conditions of Theorem 2 are satisfied.

Example 3. Let XG = [0, ∞) ⊆ R and let the metrics dG, d
′
G : XG × XG → [0, ∞) be defined by

dG(xG, yG) = max
{

xG, yG

}
d
′
G(xG, yG) = L. max

{
xG, yG

} (33)

for all xG, yG ∈ XG and some L ∈ (1, ∞). Then clearly, dG < d
′
G. We define

E(G) = {(xG, yG) : xG = yG or xG, yG ∈ [0, 1]with xG ≤ yG}

Consider the mappings f : XG → XG and g : XG → XG defined by

f xG =

{
x4

G, if 0 ≤ xG ≤ 1

x2
G, if xG > 1

gxG =

{
2x2

G, if 0 ≤ xG ≤ 1

2x4
G, if xG > 1

(34)

for all xG ∈ XG.
Let ψ : [0, ∞)→ [0, ∞) be defined by

ψ(t) = 2t

and, θ : [0, ∞)→ [0, 1) be defined by

θ(t) =

t, if 0 ≤ t < 1
1

t + 1
, t ≥ 1

Next, if (gxG, gyG) ∈ E(G) and xG = yG then ( f xG, f yG) ∈ E(G) and if (gxG, gyG) ∈ E(G) with

gxG ≤ gyG, then we obtain xG, yG ∈ [0,
1√
2

, xG ≤ yG and then x4
G, y4

G ∈ [0,
1
4

, f xG = x4
G ≤ y4

G = f yG,

and thus ( f xG, f y) ∈ E(G).
Since dG < d

′
G, we need to prove that the function f : (XG, d)→ (XG, d

′
) is a g-Cauchy sequence in XG.

Let ε > 0, and let {xGn} be a sequence in XG such that {gxGn} is a Cauchy sequence in (XG, d). Then, there
exists k ∈ N such that, for all n, m ≥ k, dG(gxGn, gxm) <

ε

L
. Then, we have

d
′
G( f xGn, f xGm) = L max

{
f xGn, f xGm

}
We will consider the following cases:
Case 1 : xGn, xGm ∈ [0, 1]. Then, we have

d
′
G( f xGn, f xm) = L max

{
xG

4
n, xG

4
m

}
≤ L max

{
2xG

2
n, 2xG

2
m

}
= L max

{
gxGn, gxGm

}
= L.dG(gxGn, gxGm) < L.

ε

L
= ε

Case 2 : xGn, xGm ∈ (0, ∞. Then, we have

d
′
G( f xGn, f xm) = L max

{
xG

2
n, xG

2
m

}
≤ L max

{
2xG

4
n, 2xG

4
m

}
= L max

{
gxGn, gxGm

}
= L.dG(gxGn, gxGm) < L.

ε

L
= ε
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Case 3 : xGn ∈ [0, 1], xGm ∈ (1, ∞). Then, we have

d
′
G( f xGn, f xm) = L max

{
xG

4
n, xG

2
m

}
≤ L max

{
2xG

2
n, 2xG

4
m

}
= L max

{
gxGn, gxGm

}
= L.dG(gxGn, gxGm) < L.

ε

L
= ε

Case 1 : xGn ∈ (0, ∞), xGn ∈ [0, 1]. Then, we have

d
′
G( f xGn, f xm) = L max

{
xG

2
n, xG

4
m

}
≤ L max

{
2xG

4
n, 2xG

2
m

}
= L max

{
gxGn, gxGm

}
= L.dG(gxGn, gxGm) < L.

ε

L
= ε

Thus, f : (XG, d)→ (XG, d
′
) is a g-Cauchy on XG.

It can be easily shown that f : (XG, d) → (XG, d
′
) is G-continuous. We will show that g and f are d

′

compatible. Let {xGn} be a sequence in XG, such that

lim
n→∞

gxGn = lim
n→∞

f xGn = u

Then, we have ln(1 + u/2) = a, and so it follows that u = 0. Now, we have

d
′
(g f xGn, f gxGn) = L

∣∣∣∣∣ln
(

1 +
(xGn)

2

2

)2

− ln
(

1 +
(xGn)

4

2

)2
∣∣∣∣∣→ 0 (35)

as n→ ∞. It is easy to see that there exists a point u ∈ XG such that (gu, f u) ∈ E(G), and thus XG( f , g) 6= φ.
Consequently, all the conditions of Theorem 2 are satisfied.
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