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Abstract

:

Given a graph G with n vertices and l edges, the load distribution of a coloring q: V → {red, blue} is defined as dq = (rq, bq), in which rq is the number of edges with at least one end-vertex colored red and bq is the number of edges with at least one end-vertex colored blue. The minimum load coloring problem (MLCP) is to find a coloring q such that the maximum load, lq = 1/l × max{rq, bq}, is minimized. This problem has been proved to be NP-complete. This paper proposes a memetic algorithm for MLCP based on an improved K-OPT local search and an evolutionary operation. Furthermore, a data splitting operation is executed to expand the data amount of global search, and a disturbance operation is employed to improve the search ability of the algorithm. Experiments are carried out on the benchmark DIMACS to compare the searching results from memetic algorithm and the proposed algorithms. The experimental results show that a greater number of best results for the graphs can be found by the memetic algorithm, which can improve the best known results of MLCP.
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1. Introduction


The minimum load coloring problem (MLCP) of the graph, discussed in this paper, was introduced by Nitin Ahuja et al. [1]. This problem is described as follows: a graph G = (V, E) is given, in which V is a set of n vertices, and E is a set of l edges. The load of a k-coloring φ: V → {1, 2, 3,…,k} is defined as


1/l×maxi∈{1,2,3…,k}|{e∈E|φ−1(i)∩e≠∅}|,








the maximum fraction of edges with at least one end-point in color i, where the maximum is taken over all i ∈ {1,2,3,…,k}. The aim of the minimum load coloring problem is to minimize the load over all k-colorings.



This paper is dedicated to the NP-complete minimum load coloring problem [1]. We focus on coloring the vertices with the colors of red and blue. A graph G = (V, E) is given, in which V is a set of n vertices, and E is a set of l edges. The load distribution of a coloring q: V → {red, blue} is defined as dq = (rq, bq), in which rq is the number of edges with at least one end-vertex colored red, and bq is the number of edges with at least one end-vertex colored blue. The objective of MLCP is to find a coloring q such that the maximum load, lq = 1/l × max{rq, bq}, is minimized. MLCP can be applied to solve the wavelength division multiplexing (WDM) problem of network communication, and build the WDM network and complex power network [1,2,3].



This paper proposes an effective memetic algorithm for the minimum load coloring problem, which relies on four key components. Firstly, an improved K-OPT local search procedure, combining a tabu search strategy and a vertices addition strategy, is especially designed for MLCP to explore the search space and escape from the local optima. Secondly, a data splitting operation is used to expand the amount of data in the search space, which enables the memetic algorithm to explore in a larger search space. Thirdly, to find better global results, through randomly changing the current search patterns a disturbance operation is employed to improve the probability of escaping from the local optima. Finally, a population evolution mechanism is devised to determine how the better solution is inserted into the population.



We evaluate the performance of memetic algorithm on 59 well-known graphs from benchmark DIMACS coloring competitions. The computational results show that the search ability of memetic algorithm is better than those of simulated annealing algorithm, greedy algorithm, artificial bee colony algorithm [4] and variable neighborhood search algorithm [5]. In particular, it improves the best known results of 16 graphs in known literature algorithms.



The paper is organized as follows. Section 2 describes the related work of heuristic algorithms. Section 3 describes the general framework and the components of memetic algorithm, including the population initialization, the data splitting operation, the improved K-OPT local search procedure of individuals, the evolutionary operation and the disturbance operation. Section 4 describes the design process of simulated annealing algorithm. Section 5 describes the design process of greedy algorithm. Section 6 describes the experimental results. Section 7 describes the conclusion of the paper.




2. Related Work


In [6,7], the parameterized and approximation algorithms are proposed to solve the load coloring problem, and theoretically prove their capability in finding the best solution. On the other hand, considering the theoretical intractability of MLCP, several heuristic algorithms are proposed to find the best solutions. Heuristic algorithms use rules based on previous experience to solve a combinatorial optimization problem at the cost of acceptable time and space, and, at the same time, comparatively better results can be obtained. The heuristic algorithms used here include an artificial bee colony algorithm [4], a tabu search algorithm [5] and a variable neighborhood search algorithm [5] to solve MLCP.



Furthermore, to find the best solutions of the other combinatorial optimization problems, several heuristic algorithms are employed, such as a variable neighborhood search algorithm [8,9], a tabu search algorithm [10,11,12,13], a simulated annealing algorithm [14,15,16,17], and a greedy algorithm [18].



Local search algorithm, as an important heuristic algorithm, has been improved and evolved into many updated forms, such as a variable depth search algorithm [19], a reactive local search algorithm [20], an iterated local search algorithm [21], and a phased local search algorithm [22].



Memetic algorithm [23,24] is an optimization algorithm which combines population-based global search and individual-based local heuristic search, whose application is found in solving combinatorial optimization problems. Memetic algorithm is also proposed to solve the minimum sum coloring problem of graphs [24].




3. A Memetic Algorithm for MLCP


In this paper, we propose an efficient memetic algorithm to solve MLCP of graphs. In our algorithm, there are several important design parts.




	(1)

	
Construct the population for the global search.




	(2)

	
Search heuristically the individuals to find better solutions.




	(3)

	
Evolve the population to find better solutions.









Memetic algorithm is summarized in Memetic_D_O_MLCP (Algorithm 1). After population initialization, the algorithm randomly generates a population X consisting of p individuals (Algorithm 1, Line 2, Section 3.2). Then, the memetic algorithm repeats a series of generations (limited to a stop condition) to explore the search space defined by the set of all proper 2-colorings (Section 3.1). For each generation, by data splitting operation, the population X is expanded to population Z with twice as much as the data amount (Algorithm 1, Line 5, Section 3.3). An improved K- OPT local search is carried out for each individual Zj (0 ≤ j < |Z|) of the population Z to find the best solution of MLCP (Algorithm 1, Line 8, Section 3.4). If the improved solution has a better value, it is then used to update the best solution found so far (Algorithm 1, Lines 9-10). Finally, an evolutionary operation is conducted in population Z to get a replaced one instead of population X (Algorithm 1, Line 14, Section 3.5). To further improve the search ability of the algorithm and find better solutions, we add a disturbance operation into the memetic algorithm (Algorithm 1, Line 15, Section 3.6).





	Algorithm 1 Memetic_D_O_MLCP (G, m, p, b, k, X, Z).



	Require:



	G: G = (V, E), |V| = n, |E| = l



	m: initial number of red vertices in graph G



	p: number of individuals in the population



	b, k: control parameters of disturbance operation



	X: set that stores the population



	Z: set that stores the extended population of X, |Z| = 2 × |X|



	Output: s1, the best solution found by the algorithm



	f(s1), the value of the objective function



	begin



	1 d1 ← 0, d2 ← 0; /* control variables of disturbance operation, Section 3.6 */



	2 Init_population(X, m, p); /* generates population X consisting of p individuals, Section 3.2 */



	3 Wbest ← 0;



	4 repeat



	5 Z ← Data_spliting(X); /* population X is extended to population Z with twice as much the data amount, Section 3.3 */



	6 j ← 0;



	7 while j < 2×p do



	8   W ← New_K-OPT_MLCP (G, Zj, T, L);



	     /* a heuristic search is carried out for individual Zj, (T is tabu table and L is tabu tenure value, Section 3.4) */



	9   if f (W) > Wbest then



	10   Wbest ← f (W), s1 ←W;



	11  end if



	12  j ← j + 1;



	13 end while



	14 X ← Evolution_population (Z, X); /* Section 3.5 */



	15 (s1, Wbest, d1, d2) ←Disturbance_operation(X, b, k, d1, d2, Wbest); /* Section 3.6 */



	16 until stop condition is met;



	17 return s1, Wbest;



	end






3.1. Search Space and Objective Function


In [1], the following description is considered to be MLCP’s equivalent problem. A graph G = (V, E) is given, in which V is a set of n vertices, and E is a set of l edges. (Vred, Vblue) is a two-color load coloring bipartition scheme of V, in which Vred is the set of vertices which are red, and Vblue is the set of vertices which are blue, here V = Vred∪Vblue. The aim is to find the maximum value of min{|Er(Vred)|, |Er(Vblue)|} from all bipartition schemes of (Vred, Vblue) such that lq can minimize. The maximum value is the minimum two-color load problem solution of graph G. Here, Er(Vred) is the set of edges with both end-points in Vred, and Er(Vblue) is the set of edges with both end-points in Vblue.



The algorithm conducts a searching within the bipartition scheme (Vred, Vblue), here |Vred|⊂V, Vblue = V\Vred, when |Er(Vred)| ≈ |Er(Vblue)|, (Vred, Vblue) is the solution of the MLCP found by the algorithm. The search space S of the algorithm is defined as follows:


S={(Vred,Vblue)|Vred⊂V,Vblue=V\Vred|}.



(1)







The objective function is as follows:


{f((Vred,Vblue))=min{|Er(Vred)|,|Er(Vblue)|}Er(Vred)={(v,w)|∀(v,w)∈E,v∈Vred,w∈Vred}Er(Vblue)={(v,w)|∀(v,w)∈E,v∈Vblue,w∈Vblue}.



(2)







We define the best solution of the MLCP as follows:


fb((Vred,Vblue))=max1≤j≤t{f((Vred,Vblue)j)}.



(3)







Here, t is the number of all solutions that can be found by the algorithm in graph G, and (Vred, Vblue)j is the jth solution of the MLCP found by the algorithm.



Suppose a graph G = (V, E) is given in Figure 1. Let |V| = 6, |E| = 8, and then the best solution for MLCP of graph G is shown in Figure 2, and its best value is 2.




3.2. Initial Population


The algorithm randomly generates population X consisting of p individuals. For the given graph G = (V, E), in which V is a set containing n vertices, and E is a set containing l edges, m vertices are chosen at random from V to construct set Vred (m is the initial number of the red vertices); and the remaining vertices are used to construct set Vblue, that is, |Vred| = m, Vblue = V\Vred. Sets Vred and Vblue are seen as a bipartition scheme (Vred, Vblue), which is also treated as an individual in population X. In this way, p individuals are generated at random initially, and population X is thus constructed, |X| = p.




3.3. Data Splitting Operation


To avoid the defect of the local optima, we expand the data amount of population X, hence we get an expanded scope of data search. We use two data splitting strategies to split a bipartition scheme into two. Thus, by using the first data splitting strategy each individual Xi (0 ≤ i < p) in population X generates an individual Z2×i, and by using the second data splitting strategy each individual Xi (0 ≤ i < p) generates an individual Z2×i+1. By doing this, p individuals in population X are divided into 2 × p individuals, and the enlarged population Z is constructed (|X| = p, |Z| = 2 × p). Figure 3 shows the population expansion, where the red arrow indicates the effects of the first data splitting strategy and the blue arrow the effects of the second data splitting strategy.



The first data splitting strategy of bipartition scheme (Vred, Vblue) is an important part of memetic algorithm, which consists of five steps.



First step: Degree set Degreered of all vertices in sub-graph G1(Vred) is calculated.



Second step: Find the minimum degree vertex, v, from Degreered. If there is more than one vertex with the same minimum degree, randomly select a vertex among them.



Third step: Degree set Degreeblue of all vertices in sub-graph G2(Vblue) is calculated.



Fourth step: Find the minimum degree vertex, w, from Degreeblue. If there is more than one vertex with the same minimum degree, randomly select a vertex among them.



Fifth step: A new bipartition scheme (V‘red, V‘blue) is generated by exchanging the vertices v and w in sets Vred and Vblue.



Suppose the number of red vertices is 4 in the given graph G = (V, E), V ={v0,v1, … ,v9}. We obtain a bipartition scheme (Vred, Vblue), as shown in Figure 4a, in which set Vred ={v0,v3,v8,v9}, Vblue ={v1,v2,v4,v5,v6,v7}, where the degree of vertex v9 in set Vred is the smallest, and that of vertex v4 in set Vblue is the smallest. After exchanging the two vertices, a new bipartition scheme (V‘red, V‘blue) is generated. The new bipartition scheme (V‘red, V‘blue) after splitting is: V‘red ={v0,v3,v4,v8}, V‘blue ={v1,v2,v5,v6,v7,v9}, as shown in Figure 4b.



The second data splitting strategy is described as follows: for a given bipartition scheme (Vred, Vblue), in which |Vred| = m, Vblue = V\Vred, randomly a vertex v in set Vred is chosen, and a vertex w in set Vblue is randomly chosen. Then, vertices v and w in set Vred and set Vblue are exchanged to generate a new bipartition scheme (V″red, V″blue).




3.4. Search for the Individuals


Memetic algorithm needs to carry out a heuristic search for each individual in the population by an effective and improved K-OPT local search algorithm designed.



We first obtain an individual Zj which is a (Vred, Vblue)j, ((Vred)j⊂V, (Vblue)j =V\(Vred)j, 0 ≤ j<|Z|). The local search algorithm is implemented to add as many selected vertices, acquired through our vertex adding strategy, as possible in set (Vblue)j to set (Vred)j, until the stop condition set by the algorithm is met. Thus, a new bipartition scheme (Vred, Vblue)’j is constructed. Generally speaking, in (Vred, Vblue)’j, |Er((V‘red)j)|is approximately equal to |Er((V‘blue)j)|. Then, the objective function value f ((Vred, Vblue)’j) is calculated using Equation (2). If f ((Vred, Vblue)’j) > f (s1), the memetic algorithm accepts the constructed bipartition as the new best solution. The improved K-OPT local search algorithm is implemented by the New_K-OPT_MLCP (Algorithm 2).



Our vertex adding strategy is described as follows:



We first need to define the following three vectors as the foundation on which the vertex adding strategy is constructed.




	
CCred: The current set of red vertices in graph G.



	
PAVred: The vertex set of possible additions, i.e., each vertex is connected to at least one vertex of CCred.


PAVred={v|v∈Vblue,∃w∈CCred,(v,w)∈E,Vblue=V\CCred}.



(4)







	
GPAVred: The degree set of vertices vi∈PAVred in sub-graph G‘(PAVred), where PAVred ⊆ Vblue.


{GPAVred[i]=degreeG′(PAVred)(vi)=|{a|∀a∈PAVred,(vi,a)∈E}|vi∈PAVred0≤i≤|PAVred|−1.



(5)












To avoid the local optima defect, the vertex adding strategy is employed in two phases: vertex addition phase (Algorithm 2, Lines 8–12) and vertex deletion phase (Algorithm 2, Lines 14–18).



In the vertex addition phase of CCred, we obtain PAVred from the current CCred, then select a vertex w from PAVred and move it from Vblue to CCred, and finally update PAVred. The vertex addition phase is repeatedly executed until PAVred = ∅ or |Er(CCred)| > |Er(Vblue)|.



In the vertex deletion phase of CCred, we select a vertex u from CCred, then delete the vertex u from CCred, and add it to Vblue. Go back to the vertex addition phase again to continue the execution until the set ending conditions are met.



The approach to select vertex w is first to obtain a GPAVred in sub-graph G’(PAVred), then to calculate the vertex selection probability value ρ(wi) of each vertex wi (0 ≤ i < |PAVred|) in PAVred, and finally to select vertex wi to maximize ρ(wi). If there are more than one vertex with the maximum value of ρ(wi), randomly select one.


{maxd=maxwi∈PAVred,0≤i<|PAVred|(degreeG′(PAVred)(wi))ρ(wi)=maxd+1−GPAVred[i]maxd+1wi∈PAVred0≤i<|PAVred|.



(6)







A vertex w is selected according to the following criterion:


f1(w)=max0≤i<|PAVred|(ρ(wi)).



(7)







We found that the larger the probability value ρ(wi) of vertex wi is, the smaller the degree value of vertex wi becomes.



The approach of vertex u selection is as follows: we assume that (CCred, Vblue)(j) is the bipartition scheme with no possible additions. We successively take the value of i from the range of 0 – (|CCred| − 1), and then in turn execute CCred(j)\{ui} as follows: delete vertex ui from CCred(j) successively to generate new bipartition schemes (CC‘red, V‘blue)i, i.e., (CC‘red)i ←CCred(j)\{ui}, (V‘blue)i ←Vblue(j)∪{ui}, ui∈CCred, 0 ≤ i <|CCred|, and finally obtain Ed((CC‘red, V‘blue)i).


{Ed((CCred′,Vblue′)i)=|{(x,y)|∀(x,y)∈E,x∈(CCred′)i,y∈(Vblue′)i}|(Vblue′)i=V\(CCred′)i0≤i<|CCred(j)|.



(8)







The maximum value maxdd is found from all the values of Ed, and the vertex selection probability value ρ2(ui) of vertex ui can be calculated:


{maxdd=max0≤i<|CCred(j)|(Ed((CCred′,Vblue′)i))ρ2(ui)=maxdd+1−Ed((CCred′,Vblue′)i)maxdd+1ui∈CCred(j)0≤i<|CCred(j)|



(9)







A vertex u is selected according to the following criterion:


f2(u)=maxui∈CCred(j),0≤i<|CCred(j)|(ρ2(ui)).



(10)







We found that the larger the probability value ρ2(ui) of vertex ui is, the smaller the corresponding Ed ((CC‘red, V‘blue)i) becomes. If there are more than one vertices with the maximum value of ρ2(ui), randomly select one.



At each generation, the variable gA stores the value of vertices number successfully added to the CCred for now, and the variable gmaxA stores the value of vertices number successfully added to the CCred during the previous generations. If gA > gmaxA, the incumbent CCred has more red vertices than the previous ones found by the local search algorithm. Then, gmaxA is updated with the value of gA and the incumbent CCred is stored to the set Abest (Algorithm 2, Line 12). In the vertex addition phase, the value of gA + 1 replaces that of gA (gA ← gA + 1) after a vertex is added. In the vertex deletion phase, the value of gA − 1 replaces that of gA (gA ← gA − 1) after a vertex is deleted.



At the completion of the inner loop statements, when gmaxA > 0, CCred, which has the greatest number of vertices, is stored in set Abest, then the incumbent CCred is updated with Abest. When gmaxA = 0, CCred, which has the greatest number of vertices, is stored in set Aprev; if the execution of the inner loop does not find any new set CCred that has more vertices, Aprev is adopted as CCred generated by the previous execution of the inner loop and will replace the incumbent CCred (Algorithm 2, Lines 22–28).



The algorithm’s search efficiency may be reduced because of the roundabout searching characteristics. To solve this problem, a restricting tabu table is added to the local search algorithm.



The tabu table can be presented by two-dimensional array or one-dimensional array. We adopt the one-dimensional array T, set the tabu tenure value as L, and store the iteration numbers of running the local search algorithm into the tabu table. When the algorithm runs reach iteration value c, and if (c − T[w]) < L or if (c −T[u]) < L, it means vertex w or u has been processed and the vertex should be re-selected. Otherwise, the current value c is stored in the tabu table, i.e.,T[w] ← c or T[u] ← c.





	Algorithm 2 New_K-OPT_MLCP (G, Zj, T, L).



	Require:



	Zj: the jth individual (Vred, Vblue)j, (Vred)j⊂V, (Vblue)j = V\(Vred)j



	T: tabu table



	L: tabu tenure value



	Output: s2, the solution found by local search algorithm



	begin



	1 (CCred, Vblue) ← (Vred, Vblue)j;



	2 according to CCred and Vblue, PAVred and GPAVred are obtained;



	3 repeat



	4 Aprev ← CCred, DA ← Aprev, PL ←{v0, v1, …… vn-1}, gA ← 0, gmaxA ← 0, c ← 0;



	5 repeat



	6   c ← c + 1;



	7   if |PAVred∩PL| > 0 and |Er(CCred)| < |Er(Vblue)| then



	8   select vertex w according to f1(w), if there are multiple vertices, select a vertex w randomly;



	9   if c − T[w] < L then select a non-tabu vertex w according to f1(w);



	10   T[w] ← c;



	11   CCred ← CCred∪{w}, Vblue ←Vblue\{w}, gA ← gA + 1, PL ← PL\{w};



	12   if gA > gmaxA then gmaxA ← gA, Abest ← CCred;



	13   else



	14   select vertex u according to f2(u), if there are multiple vertices, select a vertex u randomly;



	15   if c − T[u] < L then select a non-tabu vertex u according to f2(u);



	16   T[u] ← c;



	17   CCred ← CCred\{u}, Vblue ← Vblue∪{u}, gA ← gA−1, PL ← PL\{u};



	18   if u∈Aprev then DA ← DA\{u};



	19   end if



	20   based on CCred and Vblue, PAVred and GPAVred are updated;



	21  until |DA| = 0 or the cut-off time condition for CPU running is met;



	22  if gmaxA > 0 then



	23   CCred ← Abest;



	24   Vblue ← V\CCred;



	25  else



	26   CCred ← Aprev;



	27   Vblue ← V\CCred;



	28  end if



	29 until gmaxA ≤ 0 or the cut-off time condition for CPU running is met;



	30 (Vred, Vblue)j ← (CCred, Vblue);



	31 s2 ← (Vred, Vblue)j;



	32 return s2;



	end







3.5. Evolutionary Operation of Population


An evolutionary operation in the population X is needed to quickly find the best solution of MLCP. We sort the individuals Zj (0 ≤ j < 2×p) in population Z in ascending order according to the calculated value of objective function f* in Equation (11). Then, we replace the individuals X0 –Xp−1 of population X with the individuals Z0 –Zp−1 to complete the evolutionary operation.


f*((Vred,Vblue)j)=|{(a,b)|∀(a,b)∈E,a∈(Vred)j,b∈(Vblue)j}|,0≤j<2×p.



(11)







Evolution operation of the population is represented by Evolution_population (Algorithm 3).





	Algorithm 3 Evolution_population (Z, X).



	Require:



	Z: population, |Z| =2 × p



	Output: population X



	begin



	1 j ← 0;



	2 while j < 2 × p do



	3 R[j] ← f* ((Vred, Vblue)j);



	4 j ← j + 1;



	5 end while



	6 Individuals Z0 –Z2×p −1 of population Z are sorted in ascending order according to the value of set R;



	7 (X0–Xp −1) ←(Z0–Zp −1);



	8 return X;



	end







3.6. Disturbance Operation


To further improve the search ability of the algorithm and find better values, we add a disturbance operation into the memetic algorithm. This disturbance operation is executed k times.



When the number of iterations is b, disturbance operation begins and randomly selects an individual (Vred, Vblue)j (0 ≤ j < |X|) from population X, and chooses at random a vertex from set Vred and a vertex from set Vblue, then the two vertices are exchanged to generate a new (Vred, Vblue)’. Then, employ the New_K-OPT_MLCP algorithm to search in (Vred, Vblue)’; if a better solution of MLCP is found, the memetic algorithm will accept it.



The disturbance operation is represented by Disturbance_operation (Algorithm 4).





	Algorithm 4 Disturbance_operation(X, b, k, d1, d2, Wbest).



	Require:



	X: set that stores the population



	b, k: control parameters of disturbance operation



	d1, d2: control variables of disturbance operation



	Wbest: variable that stores the value of the objective function f(st), in which st is the current best solution of MLCP



	Output: s1, a better solution found by the local search algorithm



	  f(s1), the value of the objective function



	  d1, d2, values of the control variables



	begin



	1 d1 ← d1 + 1;



	2 if d1 = b then



	3 d2 ← d2 + 1;



	4 if d2 ≤ k then



	5   if d2 = 1 then



	6   randomly choose Xj from X and start disturbance to generate a new X‘j;



	7   W ← New_K-OPT_MLCP (G, X‘j, T, L);



	8   if f (W) > Wbest then s1 ← W, Wbest ← f (W);



	9   t ← X‘j ;



	10  else



	11   start disturbance t to generate a new t‘ ;



	12   W ← New_K-OPT_MLCP (G, t‘, T, L);



	13   if f (W) > Wbest then s1 ← W, Wbest ← f (W);



	14   t ← t‘;



	15  end if



	16  d1 ← d1 − 1



	17  else



	18  d1 ← 0, d2 ← 0;



	19  end if



	20 end if



	21 return s1, Wbest, d1, d2;



	end






In Memetic_D_O_MLCP algorithm, setting the value of b and k will determine the disturbance operation’s starting condition and the number of times of its execution. In Disturbance_operation algorithm, Lines 1, 3, 16, and 18 store the modified values of variables d1 and d2, which are the threshold values needed to start off a new disturbance operation.





4. Simulated Annealing Algorithm


Simulated annealing algorithm, a classical heuristic algorithm to solve combinatorial optimization problems, starts off from a higher initial temperature. With the decreasing of temperature parameters, the algorithm can randomly find the global best solution of problems instead of the local optima by combining the perturbations triggered by the probabilities.



For a given graph G, simulated annealing algorithm finds a coloring bipartition scheme (Vred, Vblue) of V which maximizes min{|Er(Vred)|, |Er(Vblue)|}. With parameters T0 (initial temperature value), α (cooling coefficient) and Tend (the end temperature value), first, the algorithm divides the vertex set V into two sets, i.e., Vred and Vblue (Vred = ∅, Vblue = V) and the initial value of the best solution of MLCP Cbest is set to 0. Next, a vertex is randomly selected in Vblue and moved from Vblue to Vred; here, |Vred| = 1, Vblue = V\Vred. Then, the algorithm repeats a series of generations to explore the search space defined by the set of all 2-colorings. At each generation, a vertex is randomly selected in Vblue and moved from Vblue to Vred. The additions will take place in the following three forms:



When 2 > |Vred| and 2 ≤ |Vblue|, a vertex is randomly selected in Vblue and moved from Vblue to Vred to generate a new coloring bipartition scheme (V‘red, V‘blue) and the new status is accepted.



When 2 > |Vblue| and 2 ≤ |Vred|, a vertex is randomly selected in Vred and moved from Vred to Vblue to generate a new coloring bipartition scheme (V‘red, V‘blue) and accepted as the new status.



When 2 ≤ |Vred| and 2 ≤ |Vblue|, a vertex is randomly selected from Vred and one randomly from Vblue, then the two vertices are exchanged to generate a new coloring bipartition scheme (V‘red, V‘blue), only when R1((V‘red, V‘blue)) ≥ R1((Vred, Vblue)), the scheme is accepted as a new status. Otherwise, the probability will decide whether to accept it as a new status or not.



Once the new status is accepted, if Cbest < R1 ((V‘red, V‘blue)), then the bipartition scheme (V‘red, V‘blue) is accepted as the best solution of MLCP.



At the end of each generation, the temperature T cools down until T ≤Tend according to T = T × α, where α∈(0,1). The algorithm runs iteratively as per the above steps until the stop condition is met.



The best solution found by the algorithm is Rb((Vred, Vblue)), i.e.,


{R1((Vred,Vblue)j)=min{|Er((Vred)j)|,|Er((Vblue)j)|}Rb((Vred,Vblue))=max0≤j<t{R1((Vred,Vblue)j)}.



(12)







Here, t is the number of all solutions that can be found by the simulated annealing algorithm in graph G, and (Vred, Vblue)j is the jth solution of MLCP.



The simulated annealing algorithm is represented by SA (Algorithm 5).





	Algorithm 5 SA(G, Vred, Vblue, T0, α, Tend).



	Require: G: G = (V, E), |V| = n, |E| = l



	Vred: a set of red vertices in graph G



	Vblue: a set of blue vertices in graph G



	T0: initial temperature value



	α: cooling coefficient



	Tend: end temperature value



	Output: s3, the best solution found by SA algorithm



	R1(s3), value of the objective function



	begin



	1 Cbest ← 0;



	2 repeat



	3 T ← T0;



	4 initialize Vred and Vblue, randomly select a vertex in Vblue and moved from Vblue to Vred;



	5 while T > Tend do



	6   if 2 > |Vred| and 2 ≤ |Vblue| then



	7   a vertex is randomly selected in Vblue and moved from Vblue to Vred to generate a new bipartition scheme (V‘red, V‘blue);



	8  (Vred, Vblue) ← (V‘red, V‘blue);



	9  if Cbest < R1((V‘red, V‘blue)) then Cbest ←R1((V‘red, V‘blue)), s3 ← (V‘red, V‘blue);



	10 else if 2 > |Vblue| and 2 ≤ |Vred| then



	11   a vertex is randomly selected in Vred and moved from Vred to Vblue to generate a new bipartition scheme (V‘red, V‘blue);



	12   (Vred, Vblue) ← (V‘red, V‘blue);



	13   if Cbest < R1 ((V‘red, V‘blue)) then Cbest ← R1 ((V‘red, V‘blue)), s3 ← (V‘red, V‘blue);



	14 else if 2 ≤ |Vred| and 2 ≤ |Vblue| then



	15   according to (Vred, Vblue), a vertex is randomly selected from Vred and a vertex randomly selected from Vblue;



	16   the two vertices are exchanged to generate a new bipartition scheme (V‘red, V‘blue);



	17   if R1 ((Vred, Vblue)) ≤ R1((V‘red, V‘blue)) then



	18   (Vred, Vblue) ← (V‘red, V‘blue);



	19   if Cbest < R1((V‘red, V‘blue)) then Cbest ← R1((V‘red, V‘blue)), s3 ← (V‘red, V‘blue);



	20   else if random number in (0, 1) < eR1((Vred’,Vblue’))−R1((Vred,Vblue))T then



	21   (Vred, Vblue) ← (V‘red, V‘blue);



	22  end if



	23 end if



	24 T ← T × α;



	25  end while



	26 until stop condition is met;



	27 return s3, Cbest;  /*Cbest is the value of the objective function R1(s3) */



	end







5. Greedy Algorithm


Greedy algorithm aims at making the optimal choice at each stage with the hope of finding a global best solution. For a given graph G, greedy algorithm finds a coloring bipartition scheme (Vred, Vblue) of V which maximizes min{|Er(Vred)|, |Er(Vblue)|}.



When a graph G = (V, E) is given, the algorithm divides vertex set V into two sets, i.e., Vred and Vblue (Vred = ∅, Vblue = V), and the initial value of the best solution of MLCP Cbest is set to 0. Next, a vertex is randomly selected in Vblue and moved from Vblue to Vred, here |Vred | = 1, Vblue = V\Vred. Then, the algorithm repeats a series of generations to explore the search space defined by the set of all 2-colorings. At each generation, based on sub-graph G‘(Vblue), choose a vertex w of the minimum degree (w∈Vblue); if there are more than one vertex with the same minimum degree, randomly select a vertex among them. Then, add the vertex from Vblue to Vred, that is: Vred ← Vred∪{w}, Vblue ← Vblue\{w}, thus a new bipartition scheme (V‘red, V‘blue) is generated, and, when R2((V‘red,V‘blue)) > Cbest, the scheme is accepted as the best solution. The generation will be repeated until |Er(Vred)| > |Er(Vblue)|.



The algorithm runs iteratively as per the above steps until the stop condition is met.



The best solution found by the algorithm is Rg((Vred,Vblue)), i.e.,


{R2((Vred,Vblue)j)=min{|Er((Vred)j)|,|Er((Vblue)j)|}Rg((Vred,Vblue))=max0≤j<t{R2((Vred,Vblue)j)}.



(13)







Here, t is the number of all solutions that can be found by the greedy algorithm in graph G, and (Vred, Vblue)j is the jth solution of MLCP.



The greedy algorithm is represented by Greedy (Algorithm 6).





	Algorithm 6 Greedy (G, Vred, Vblue).



	Require: G: G = (V, E), |V| = n, |E| = l



	Vred: a set of red vertices in graph G



	Vblue: a set of blue vertices in graph G



	Output: s4, the best solution found by greedy algorithm



	R2(s4), value of the objective function



	begin



	1 Cbest ←0;



	2 repeat



	3 Vred ←Ø, Vblue ← V;



	4 randomly select a vertex in Vblue and moved from Vblue to Vred;



	5 repeat



	6   (V’red, V’blue) ← (Vred, Vblue);



	7   if R2((V’red, V’blue)) > Cbest then s4 ← (V’red, V’blue), Cbest ← R2 ((V’red, V’blue));



	8    select a vertex w with the minimum degree from sub-graph G‘(Vblue), if there are multiple vertices, select a vertex w randomly;



	9    Vred ← Vred ∪ {w}, Vblue ← Vblue\{w};



	10  until |Er(Vred)| > |Er(Vblue)|;



	11 until stop condition is met;



	12 return s4, Cbest;  /* Cbest is the value of the objective function R2 (s4) */



	end







6. Experimental Results


All algorithms were programmed in C++, and run on a PC with Intel Pentium(R) G630 processor 2.70 GHz and 4 GB memory under Windows 7 (64 bits), and the test graphs adopted were the benchmark DIMACS proposed in [5]. We compared the search results by using memetic algorithm, simulated annealing algorithm, and greedy algorithm. Then, the results of memetic algorithm were compared with those obtained from using artificial bee colony algorithm [4], tabu search algorithm [5] and variable neighborhood search algorithm [5].



The first group of experiments was performed to adjust the key parameters and analyze their influence on Memetic_D_O_MLCP. As is known to all, the most important parameters in Memetic_D_O_MLCP implementations are the values of p and L, which determine the number of the individuals of the population and the tabu tenure value during the search process. To find the most suitable values of p and L for Memetic_D_O_MLCP approach to MLCP, we performed experiments with different values of p and L. Memetic_D_O_MLCP was run 10 times for each benchmark instance, and each test lasted 30 min.



The results of experiments are summarized in Table 1, organized as follows: in the first column, Inst the benchmark instance name is given, containing the vertices set V; and, in the second column, m is the initial number of red vertices in the benchmark graph. For each p∈{4, 12, 20} and L∈{10, 60, 90}, column Best contains the best values of MLCP solution found by the algorithm, while column Avg represents the average values of MLCP solution found by the algorithm. For each instance, the best values of Best and Avg are shown in italics. The analysis of the obtained results shows that values of p and L influence the solution quality. For example, the number of best values of Best is 5 for combination p = 12 and L = 90; Best 3 for p = 4, L = 90 and p = 20, L = 60; Best 2 for p = 4 and L = 10, p = 4 and L = 60, p = 12 and L = 60; Best 1 for p = 20 and L = 90; Best 0 for p = 12 and L = 10, p = 20 and L = 10. Meanwhile, the number of best values of Avg is 2 for combinations p = 12 and L = 90, p = 4 and L = 90; Avg 1 for p = 4 and L = 10, p = 4 and L = 60, p = 12 and L = 60, p = 20 and L = 10, p = 20 and L = 60, p = 20 and L = 90.



In Table 1, one observes that, for combination p = 12 and L = 90, the number of instances where the Memetic_D_O_MLCP achieved the best value for Best and Avg is 5 and 2, respectively. For all other combinations, these numbers are the biggest. Therefore, we used the combination in all other experiments.



The second groups of tests compared the search results of Memetic_D_O_MLCP, SA algorithm and Greedy algorithm, each having been run 20 times for each benchmark instance with the cut-off time of 30 min. In simulated annealing algorithm, the initial temperature T0 is set at 1000, the cooling coefficient α at 0.9999 and the end temperature Tend at 0.0001. The results of experiments are summarized in Table 2, organized as follows: in the second column, |V| is the number of vertices; and, in the third column, |E| is the number of edges. For each instance the best values of Best are shown in italics. Among 59 instances, the search results of Memetic_D_O_MLCP, SA algorithm and Greedy algorithm were the same in the instances myciel3.col, myciel4.col, queen5_5.col and queen6_6.col. Memetic_D_O_MLCP and Greedy algorithm could find equivalent best value of four instances (i.e., queen7_7.col, queen8_8.col, queen8_12.col, and queen9_9.col). In the remaining 51 instances, Memetic_D_O_MLCP could find the best results of 38 instances (accounting for 75%), and Greedy algorithm could find the best results of 13 instances (accounting for 25%). The experiments showed that Memetic_D_O_MLCP could find more instances of best values.



The third group of tests aimed at comparing the search results after each algorithm was run on four benchmark instances, namely myciel6.col, homer.col, mulsol.i.5.col and inithx.i.1.col, for the first one 100 s. The results that algorithms found were collected at an interval of 10 s. The running time was regarded as the X coordinate on the axis and the value of MLCP solution as the Y coordinate.



Figure 5 illustrates that Memetic_D_O_MLCP can find the best result at each time node.



The fourth group of tests compared the time each algorithm took to find the best results, each being run 20 times for 32 instances with the cut-off time of 30 min.



The results are summarized in Table 3. Compared with SA algorithm and Greedy algorithm, it took less time for Memetic_D_O_MLCP to find the best results for the 11 instances (shown in italics). Accounting for 34% in the total, these 11 instances were: fpsol2.i.2.col, huck.col, mulsol.i.3.col, mulsol.i.4.col, mulsol.i.5.col, myciel6.col, queen10_10.col, queen11_11.col, queen15_15.col, inithx.i.3.col, and zeroin.i.2.col. For six instances, namely david.col, DSJC125.9.col, games120.col, miles250.col, miles750.col, and jean.col, which accounted for 19% in the total, the time spent by Memetic_D_O_MLCP and Greedy algorithm showed little difference. Additionally, the former found better results than the latter. For the remaining 15 instances, although the time taken by Memetic_D_O_MLCP was longer than that by Greedy algorithm, as it consumed more time for executing the operations of data splitting, searching, evolution and disturbance, the results found by the former were better than those by the latter. Of all 32 instances, comparing with Memetic_D_O_MLCP, SA algorithm spent more time to find the best results; besides, the Best SA algorithm results were inferior.



The comparison between Memetic_D_O_MLCP and artificial bee colony (ABC) algorithm [4] is summarized in Table 4. For each instance, the best values of Best are shown in italics. Of all 21 instances proposed in [4], except that the search results of instances myciel3.col and myciel4.col were equivalent to that of artificial bee colony algorithm, Memetic_D_O_MLCP found better results (accounting for 90%) and improved the best-known result of instance myciel5.col.



Furthermore, we compared the search results from Memetic_D_O_MLCP, tabu search (Tabu) algorithm [5] and variable neighborhood search (VNS) algorithm [5]; the results are shown in Table 5 (the algorithms in the literature were run 20 times, each lasting 30 min for each benchmark instance). Memetic_D_O_MLCP could find the best results of 26 instances (shown in italics), in which the best results of 11 instances equaled those found by Tabu algorithm. Hence, Memetic_D_O_MLCP could improve the best-known results of the remaining 15 instances. Besides, of the 53 instances in Table 5, the best results of 22 instances found by Memetic_D_O_MLCP were better than those by Tabu algorithm, and the best results of 42 instances found by Memetic_D_O_MLCP were better than that of VNS algorithm.




7. Conclusions


In this paper, we propose a memetic algorithm (Memetic_D_O_MLCP) to deal with the minimum load coloring problem. The algorithm employs an improved K-OPT local search procedure with a combination of data splitting operation, disturbance operation and a population evolutionary operation to assure the quality of the search results and intensify the searching ability.



We assessed the performance of our algorithm on 59 well-known graphs from the benchmark DIMACS competitions. The algorithm could find the best results of 46 graphs. Compared with simulated annealing algorithm and greedy algorithm, which cover the best results for the tested instances, our algorithm was more competent.



In addition, we investigated the artificial bee colony algorithm, variable neighborhood search algorithm and tabu search algorithm proposed in the literature. We carried out comparative experiments between our algorithm and artificial bee colony algorithm using 21 benchmark graphs, and the experiments showed that the algorithm’s best results of 19 benchmark graphs were better than those of artificial bee colony algorithm, and the best-known result of one benchmark graph was improved by our algorithm. More experiments were conducted to compare our algorithm with tabu search algorithm and variable neighborhood search algorithm, and proved that the best-known results of 15 benchmark graphs were improved by our algorithm.



Finally, we showed that the proposed Memetic_D_O_MLCP approach significantly improved the classical heuristic search approach for the minimum load coloring problem.
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Figure 1. An instance of undirected graph G. 
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Figure 2. A best solution for MLCP of graph G. 
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Figure 3. Expanding population X to population Z. 
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Figure 4. Bipartition scheme splitting: (a) bipartition scheme before the splitting; and (b) bipartition scheme after the splitting. 
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Figure 5. Running curves of the Memetic_D_O_MLCP, SA and Greedy on benchmark instances. 
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Table 1. Experiments with parameters p and L.






Table 1. Experiments with parameters p and L.





	
Inst

	
m

	
p = 4

	
p = 12

	
p = 20




	
L = 10

	
L = 60

	
L = 90

	
L = 10

	
L = 60

	
L = 90

	
L = 10

	
L = 60

	
L = 90




	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg






	
fpsol2.i.1.col

	
|V|/5

	
3035

	
2844

	
3033

	
2857

	
3582

	
2928

	
3015

	
2840

	
3002

	
2845

	
3029

	
2837

	
3071

	
2929

	
2942

	
2727

	
2998

	
2843




	
fpsol2.i.2.col

	
|V|/5

	
2120

	
1965

	
2375

	
1953

	
2183

	
1860

	
2272

	
1972

	
2176

	
1944

	
2450

	
1969

	
2324

	
2016

	
2169

	
1932

	
2310

	
2038




	
fpsol2.i.3.col

	
|V|/5

	
2141

	
1930

	
2331

	
1931

	
2266

	
2048

	
2333

	
1960

	
2330

	
1930

	
2115

	
1900

	
1981

	
1817

	
2397

	
1986

	
2281

	
1951




	
DSJC125.1.col

	
|V|/5

	
255

	
252

	
254

	
252

	
254

	
251

	
254

	
252

	
255

	
252

	
255

	
252

	
254

	
252

	
255

	
253

	
254

	
252




	
DSJC125.5.col

	
|V|/5

	
1081

	
1072

	
1082

	
1067

	
1088

	
1078

	
1084

	
1076

	
1087

	
1080

	
1089

	
1080

	
1084

	
1078

	
1087

	
1072

	
1084

	
1074




	
queen15_15.col

	
|V|/5

	
1716

	
1699

	
1721

	
1678

	
1721

	
1694

	
1693

	
1650

	
1705

	
1692

	
1716

	
1681

	
1659

	
1632

	
1704

	
1638

	
1674

	
1641




	
queen16_16.col

	
|V|/5

	
2090

	
2050

	
2087

	
2049

	
2087

	
2055

	
2040

	
1976

	
2062

	
1994

	
2098

	
2026

	
2036

	
1990

	
2032

	
1995

	
2040

	
1996




	
mulsol.i.4.col

	
|V|/5

	
1704

	
1694

	
1704

	
1698

	
1704

	
1694

	
1701

	
1695

	
1704

	
1696

	
1704

	
1698

	
1700

	
1697

	
1704

	
1697

	
1704

	
1694











[image: Table]





Table 2. Test results of the Memetic_D_O_MLCP, SA, and Greedy on benchmark instances.
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Inst

	
|V|

	
|E|

	
Memetic_D_O_MLCP

	
SA

	
Greedy




	
m

	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg






	
anna.col

	
138

	
986

	
|V|/5

	
200

	
198

	
160

	
154

	
131

	
131




	
david.col

	
87

	
812

	
|V|/5

	
158

	
157

	
133

	
130

	
140

	
140




	
DSJC125.1.col

	
125

	
736

	
|V|/5

	
255

	
252

	
222

	
217

	
240

	
238




	
DSJC125.5.col

	
125

	
3891

	
|V|/5

	
1091

	
1083

	
1025

	
1021

	
1075

	
1067




	
DSJC125.9.col

	
125

	
6961

	
|V|/5

	
1798

	
1789

	
1761

	
1756

	
1776

	
1772




	
fpsol2.i.1.col

	
496

	
11654

	
|V|/5

	
3091

	
2896

	
3016

	
2982

	
2510

	
2502




	
fpsol2.i.2.col

	
451

	
8691

	
|V|/5

	
2290

	
2046

	
2267

	
2242

	
1707

	
1703




	
fpsol2.i.3.col

	
425

	
8688

	
|V|/5

	
2387

	
1996

	
2291

	
2247

	
1664

	
1664




	
games120.col

	
120

	
1276

	
|V|/5

	
288

	
281

	
215

	
209

	
284

	
284




	
homer.col

	
561

	
3258

	
10

	
662

	
655

	
450

	
441

	
492

	
489




	
huck.col

	
74

	
602

	
|V|/5

	
130

	
129

	
111

	
109

	
113

	
113




	
inithx.i.1.col

	
864

	
18707

	
10

	
6644

	
6153

	
4861

	
4773

	
6167

	
6050




	
inithx.i.2.col

	
645

	
13979

	
10

	
5622

	
5104

	
3641

	
3597

	
3571

	
3481




	
inithx.i.3.col

	
621

	
13969

	
10

	
5589

	
4756

	
3643

	
3593

	
3131

	
3111




	
jean.col

	
80

	
508

	
|V|/5

	
111

	
110

	
98

	
95

	
106

	
106




	
latin_square_10.col

	
900

	
307350

	
10

	
85161

	
85072

	
77006

	
75770

	
85185

	
85185




	
le450_5a.col

	
450

	
5714

	
10

	
1824

	
1801

	
1516

	
1495

	
1834

	
1827




	
le450_5b.col

	
450

	
5734

	
10

	
1820

	
1801

	
1512

	
1498

	
1843

	
1831




	
le450_5c.col

	
450

	
9803

	
10

	
2985

	
2951

	
2541

	
2530

	
3014

	
2995




	
le450_5d.col

	
450

	
9757

	
10

	
2943

	
2913

	
2542

	
2519

	
2972

	
2958




	
le450_15b.col

	
450

	
8169

	
10

	
2395

	
2355

	
2138

	
2120

	
2409

	
2398




	
le450_15c.col

	
450

	
16680

	
10

	
4530

	
4476

	
4294

	
4267

	
4560

	
4539




	
le450_15d.col

	
450

	
16750

	
10

	
4586

	
4542

	
4320

	
4289

	
4626

	
4609




	
le450_25a.col

	
450

	
8260

	
10

	
2467

	
2434

	
2183

	
2148

	
2466

	
2454




	
le450_25b.col

	
450

	
8263

	
10

	
2664

	
2606

	
2172

	
2149

	
2682

	
2658




	
le450_25c.col

	
450

	
17343

	
10

	
4711

	
4652

	
4457

	
4438

	
4728

	
4714




	
le450_25d.col

	
450

	
17425

	
10

	
4872

	
4807

	
4470

	
4449

	
4883

	
4875




	
miles250.col

	
128

	
774

	
|V|/5

	
185

	
184

	
145

	
137

	
183

	
183




	
miles500.col

	
128

	
2340

	
|V|/5

	
522

	
522

	
393

	
381

	
518

	
518




	
miles750.col

	
128

	
4226

	
|V|/5

	
870

	
870

	
673

	
638

	
849

	
849




	
miles1000.col

	
128

	
6432

	
|V|/5

	
1183

	
1180

	
954

	
921

	
1156

	
1156




	
miles1500.col

	
128

	
10396

	
|V|/5

	
1645

	
1616

	
1461

	
1421

	
1485

	
1484




	
mulsol.i.1.col

	
197

	
3925

	
|V|/5

	
1697

	
1690

	
1193

	
1152

	
1624

	
1624




	
mulsol.i.2.col

	
188

	
3885

	
|V|/5

	
1685

	
1682

	
1153

	
1117

	
1202

	
1189




	
mulsol.i.3.col

	
184

	
3916

	
|V|/5

	
1695

	
1692

	
1174

	
1131

	
1211

	
1174




	
mulsol.i.4.col

	
185

	
2946

	
|V|/5

	
1704

	
1701

	
1172

	
1134

	
1218

	
1195




	
mulsol.i.5.col

	
186

	
3973

	
|V|/5

	
1714

	
1713

	
1189

	
1144

	
1216

	
1210




	
myciel3.col

	
11

	
20

	
|V|/5

	
5

	
5

	
5

	
5

	
5

	
5




	
myciel4.col

	
23

	
71

	
|V|/5

	
21

	
21

	
21

	
21

	
21

	
21




	
myciel6.col

	
95

	
755

	
|V|/5

	
233

	
231

	
215

	
212

	
194

	
193




	
myciel7.col

	
191

	
2360

	
|V|/5

	
723

	
717

	
643

	
634

	
574

	
574




	
queen5_5.col

	
25

	
320

	
|V|/5

	
46

	
46

	
46

	
46

	
46

	
46




	
queen6_6.col

	
36

	
580

	
|V|/5

	
91

	
91

	
91

	
88

	
91

	
91




	
queen7_7.col

	
49

	
952

	
|V|/5

	
148

	
147

	
145

	
141

	
148

	
148




	
queen8_8.col

	
64

	
1456

	
|V|/5

	
236

	
232

	
219

	
214

	
236

	
228




	
queen8_12.col

	
96

	
2736

	
|V|/5

	
458

	
453

	
400

	
391

	
458

	
458




	
queen9_9.col

	
81

	
2112

	
|V|/5

	
340

	
336

	
308

	
304

	
340

	
334




	
queen10_10.col

	
100

	
2940

	
|V|/5

	
485

	
479

	
419

	
415

	
468

	
466




	
queen11_11.col

	
121

	
3960

	
|V|/5

	
644

	
643

	
563

	
556

	
633

	
633




	
queen12_12.col

	
144

	
5192

	
|V|/5

	
866

	
853

	
725

	
717

	
833

	
833




	
queen13_13.col

	
169

	
6656

	
|V|/5

	
1097

	
1093

	
918

	
909

	
1067

	
1067




	
queen14_14.col

	
196

	
8372

	
|V|/5

	
1407

	
1385

	
1148

	
1131

	
1346

	
1345




	
queen15_15.col

	
225

	
10360

	
|V|/5

	
1721

	
1706

	
1402

	
1376

	
1676

	
1675




	
queen16_16.col

	
256

	
12640

	
|V|/5

	
2107

	
2075

	
1668

	
1652

	
2051

	
2048




	
school1.col

	
385

	
19095

	
10

	
6633

	
6553

	
4951

	
4886

	
6644

	
6644




	
school1_nsh.col

	
352

	
14612

	
10

	
5545

	
5450

	
3838

	
3780

	
5548

	
5548




	
zeroin.i.1.col

	
211

	
4100

	
10

	
1210

	
1198

	
1113

	
1095

	
924

	
923




	
zeroin.i.2.col

	
211

	
3541

	
10

	
1135

	
1126

	
975

	
959

	
803

	
800




	
zeroin.i.3.col

	
206

	
3540

	
10

	
1134

	
1126

	
981

	
964

	
800

	
799
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Table 3. Running time of the Memetic_D_O_MLCP, SA and Greedy on benchmark instances.
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Inst

	
Memetic_D_O_MLCP

	
SA

	
Greedy




	
m

	
Best

	
Avg

	
Time(min)

	
Best

	
Avg

	
Time(min)

	
Best

	
Avg

	
Time(min)






	
anna.col

	
|V|/5

	
200

	
199

	
5.30

	
159

	
150

	
17.29

	
131

	
131

	
0.09




	
david.col

	
|V|/5

	
158

	
157

	
0.47

	
140

	
130

	
21.97

	
140

	
140

	
0.02




	
DSJC125.1.col

	
|V|/5

	
254

	
252

	
27.92

	
220

	
214

	
29.76

	
239

	
237

	
19.24




	
DSJC125.5.col

	
|V|/5

	
1086

	
1078

	
22.82

	
1026

	
1012

	
28.20

	
1075

	
1067

	
14.07




	
DSJC125.9.col

	
|V|/5

	
1797

	
1785

	
18.86

	
1757

	
1752

	
14.04

	
1782

	
1773

	
17.81




	
fpsol2.i.1.col

	
|V|/5

	
3073

	
2871

	
23.52

	
2984

	
2966

	
13.42

	
2510

	
2504

	
4.78




	
fpsol2.i.2.col

	
|V|/5

	
2274

	
1882

	
17.20

	
2250

	
2226

	
25.58

	
1707

	
1706

	
22.30




	
games120.col

	
|V|/5

	
288

	
280

	
1.05

	
216

	
205

	
29.74

	
284

	
284

	
0.05




	
huck.col

	
|V|/5

	
130

	
129

	
0.03

	
113

	
109

	
6.86

	
113

	
113

	
0.09




	
miles250.col

	
|V|/5

	
185

	
184

	
5.92

	
140

	
134

	
29.67

	
183

	
183

	
4.05




	
miles500.col

	
|V|/5

	
522

	
522

	
1.11

	
389

	
375

	
25.71

	
518

	
518

	
< 0.01




	
miles750.col

	
|V|/5

	
870

	
870

	
1.72

	
644

	
618

	
17.17

	
849

	
849

	
0.07




	
miles1000.col

	
|V|/5

	
1186

	
1178

	
18.53

	
938

	
892

	
24.83

	
1156

	
1156

	
0.22




	
miles1500.col

	
|V|/5

	
1619

	
1613

	
27.56

	
1453

	
1411

	
15.90

	
1485

	
1485

	
2.36




	
mulsol.i.1.col

	
|V|/5

	
1695

	
1689

	
20.94

	
1164

	
1089

	
28.06

	
1624

	
1624

	
0.29




	
mulsol.i.2.col

	
|V|/5

	
1685

	
1680

	
26.63

	
1157

	
1065

	
22.97

	
1202

	
1188

	
8.10




	
mulsol.i.3.col

	
|V|/5

	
1693

	
1687

	
22.76

	
1147

	
1112

	
23.56

	
1209

	
1183

	
25.14




	
mulsol.i.4.col

	
|V|/5

	
1704

	
1694

	
25.22

	
1139

	
1091

	
29.25

	
1218

	
1186

	
28.08




	
mulsol.i.5.col

	
|V|/5

	
1714

	
1705

	
23.77

	
1165

	
1093

	
20.23

	
1214

	
1207

	
28.68




	
jean.col

	
|V|/5

	
111

	
110

	
0.13

	
97

	
93

	
18.93

	
106

	
106

	
0.02




	
myciel6.col

	
|V|/5

	
232

	
231

	
20.01

	
213

	
211

	
19.19

	
194

	
192

	
26.07




	
myciel7.col

	
|V|/5

	
719

	
710

	
18.73

	
631

	
624

	
27.23

	
574

	
574

	
3.68




	
queen10_10.col

	
|V|/5

	
485

	
478

	
1.42

	
418

	
410

	
10.08

	
468

	
466

	
21.61




	
queen11_11.col

	
|V|/5

	
644

	
643

	
2.56

	
554

	
539

	
21.94

	
640

	
633

	
12.95




	
queen12_12.col

	
|V|/5

	
866

	
853

	
5.32

	
721

	
703

	
22.64

	
833

	
833

	
0.07




	
queen13_13.col

	
|V|/5

	
1097

	
1093

	
25.21

	
907

	
884

	
21.66

	
1067

	
1067

	
2.98




	
queen15_15.col

	
|V|/5

	
1697

	
1675

	
21.65

	
1377

	
1357

	
29.27

	
1676

	
1675

	
26.07




	
inithx.i.1.col

	
10

	
6622

	
5982

	
23.36

	
4774

	
4696

	
11.55

	
6169

	
6044

	
1.45




	
inithx.i.3.col

	
10

	
5362

	
4123

	
22.89

	
3616

	
3569

	
9.58

	
3151

	
3117

	
22.93




	
zeroin.i.1.col

	
10

	
1207

	
1189

	
12.76

	
1111

	
1083

	
19.77

	
924

	
923

	
5.78




	
zeroin.i.2.col

	
10

	
1131

	
1124

	
18.46

	
967

	
939

	
21.43

	
802

	
799

	
26.64




	
zeroin.i.3.col

	
10

	
1131

	
1125

	
28.96

	
959

	
937

	
28.32

	
800

	
798

	
10.53
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Table 4. Comparison results on Memetic_D_O_MLCP and ABC.






Table 4. Comparison results on Memetic_D_O_MLCP and ABC.





	
Inst

	
Memetic_D_O_MLCP

	
ABC




	
m

	
Best

	
Best






	
DSJC125.1.col

	
|V|/5

	
255

	
209




	
DSJC125.5.col

	
|V|/5

	
1091

	
1005




	
DSJC125.9.col

	
|V|/5

	
1798

	
1746




	
fpsol2.i.1.col

	
|V|/5

	
3091

	
2956




	
fpsol2.i.2.col

	
|V|/5

	
2290

	
2231




	
fpsol2.i.3.col

	
|V|/5

	
2387

	
2207




	
inithx.i.1.col

	
10

	
6644

	
1295




	
inithx.i.2.col

	
10

	
5622

	
3574




	
inithx.i.3.col

	
10

	
5589

	
3548




	
myciel3.col

	
|V|/5

	
5

	
5




	
myciel4.col

	
|V|/5

	
21

	
21




	
myciel5.col

	
|V|/5

	
73

	
68




	
myciel6.col

	
|V|/5

	
233

	
207




	
myciel7.col

	
|V|/5

	
723

	
621




	
le450_5a.col

	
10

	
1824

	
1475




	
le450_5b.col

	
10

	
1820

	
1490




	
le450_5c.col

	
10

	
2985

	
2505




	
le450_5d.col

	
10

	
2943

	
2493




	
le450_15b.col

	
10

	
2395

	
2110




	
le450_15c.col

	
10

	
4530

	
4217




	
le450_15d.col

	
10

	
4586

	
4227
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Table 5. Comparison results on Memetic_D_O_MLCP, Tabu and VNS.
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Inst

	
Memetic_D_O_MLCP

	
Tabu

	
VNS




	
m

	
Best

	
Avg

	
Best

	
Avg

	
Best

	
Avg






	
anna.col

	
|V|/5

	
200

	
198

	
195

	
182

	
218

	
189




	
david.col

	
|V|/5

	
158

	
157

	
153

	
142

	
164

	
152




	
DSJC125.1.col

	
|V|/5

	
255

	
252

	
248

	
238

	
227

	
215




	
DSJC125.5.col

	
|V|/5

	
1091

	
1083

	
1078

	
1073

	
1047

	
1033




	
DSJC125.9.col

	
|V|/5

	
1798

	
1789

	
1794

	
1787

	
1793

	
1785




	
games120.col

	
|V|/5

	
288

	
281

	
282

	
269

	
192

	
181




	
homer.col

	
10

	
662

	
655

	
651

	
625

	
603

	
541




	
huck.col

	
|V|/5

	
130

	
129

	
130

	
126

	
123

	
110




	
inithx.i.1.col

	
10

	
6644

	
6153

	
7412

	
6272

	
6215

	
5838




	
inithx.i.2.col

	
10

	
5622

	
5104

	
5956

	
5831

	
4771

	
4478




	
inithx.i.3.col

	
10

	
5589

	
4756

	
5943

	
5818

	
4804

	
4464




	
jean.col

	
|V|/5

	
111

	
110

	
110

	
104

	
110

	
95




	
latin_square_10.col

	
10

	
85161

	
85072

	
76925

	
76925

	
77031

	
76956




	
le450_5a.col

	
10

	
1824

	
1801

	
1977

	
1923

	
1545

	
1520




	
le450_5b.col

	
10

	
1820

	
1801

	
1969

	
1923

	
1550

	
1522




	
le450_5c.col

	
10

	
2985

	
2951

	
3154

	
3124

	
2578

	
2553




	
le450_5d.col

	
10

	
2943

	
2913

	
3140

	
3108

	
2583

	
2546




	
le450_15b.col

	
10

	
2395

	
2355

	
2795

	
2719

	
2338

	
2268




	
le450_25b.col

	
10

	
2664

	
2606

	
2903

	
2863

	
2382

	
2337




	
le450_25d.col

	
10

	
4872

	
4807

	
5420

	
5376

	
4844

	
4747




	
miles250.col

	
|V|/5

	
185

	
184

	
183

	
172

	
134

	
126




	
miles500.col

	
|V|/5

	
522

	
522

	
502

	
483

	
402

	
367




	
miles750.col

	
|V|/5

	
870

	
870

	
836

	
833

	
708

	
648




	
miles1000.col

	
|V|/5

	
1183

	
1180

	
1114

	
1108

	
1035

	
963




	
miles1500.col

	
|V|/5

	
1645

	
1616

	
1517

	
1513

	
1565

	
1490




	
mulsol.i.1.col

	
|V|/5

	
1697

	
1690

	
1649

	
1649

	
1313

	
1240




	
mulsol.i.2.col

	
|V|/5

	
1685

	
1682

	
1685

	
1668

	
1319

	
1211




	
mulsol.i.3.col

	
|V|/5

	
1695

	
1692

	
1695

	
1669

	
1260

	
1217




	
mulsol.i.4.col

	
|V|/5

	
1704

	
1701

	
1704

	
1693

	
1276

	
1214




	
mulsol.i.5.col

	
|V|/5

	
1714

	
1713

	
1697

	
1686

	
1296

	
1233




	
myciel3.col

	
|V|/5

	
5

	
5

	
5

	
5

	
7

	
7




	
myciel4.col

	
|V|/5

	
21

	
21

	
21

	
20

	
25

	
24




	
myciel6.col

	
|V|/5

	
233

	
231

	
231

	
223

	
247

	
237




	
myciel7.col

	
|V|/5

	
723

	
717

	
714

	
701

	
737

	
711




	
queen5_5.col

	
|V|/5

	
46

	
46

	
46

	
45

	
50

	
48




	
queen6_6.col

	
|V|/5

	
91

	
91

	
91

	
90

	
86

	
82




	
queen7_7.col

	
|V|/5

	
148

	
147

	
148

	
145

	
142

	
136




	
queen8_8.col

	
|V|/5

	
236

	
232

	
236

	
233

	
208

	
201




	
queen8_12.col

	
|V|/5

	
458

	
453

	
458

	
457

	
380

	
369




	
queen9_9.col

	
|V|/5

	
340

	
336

	
336

	
332

	
306

	
293




	
queen10_10.col

	
|V|/5

	
485

	
479

	
485

	
483

	
403

	
394




	
queen11_11.col

	
|V|/5

	
644

	
643

	
650

	
637

	
546

	
536




	
queen12_12.col

	
|V|/5

	
866

	
853

	
866

	
858

	
703

	
689




	
queen13_13.col

	
|V|/5

	
1097

	
1093

	
1106

	
1066

	
910

	
887




	
queen14_14.col

	
|V|/5

	
1407

	
1385

	
1407

	
1403

	
1127

	
1101




	
queen15_15.col

	
|V|/5

	
1721

	
1707

	
1722

	
1703

	
1388

	
1366




	
queen16_16.col

	
|V|/5

	
2107

	
2075

	
2136

	
2125

	
1682

	
1650




	
school1.col

	
10

	
6633

	
6553

	
6975

	
6752

	
5628

	
5398




	
school1_nsh.col

	
10

	
5545

	
5450

	
5721

	
5622

	
4169

	
4066




	
zeroin.i.1.col

	
10

	
1210

	
1198

	
1185

	
1166

	
1454

	
1358




	
zeroin.i.2.col

	
10

	
1135

	
1126

	
1105

	
1079

	
1294

	
1201




	
zeroin.i.3.col

	
10

	
1134

	
1126

	
1107

	
1082

	
1221

	
1158
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