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Abstract: Spline approximation, using both values yi and xi as observations, is of vital importance
for engineering geodesy, e.g., for approximation of profiles measured with terrestrial laser scanners,
because it enables the consideration of arbitrary dispersion matrices for the observations. In the
special case of equally weighted and uncorrelated observations, the resulting error vectors are
orthogonal to the graph of the spline function and hence can be utilized for deformation monitoring
purposes. Based on a functional model that uses cubic polynomials and constraints for continuity,
smoothness and continuous curvature, the case of spline approximation with both the values yi and
xi as observations is considered. In this case, some of the columns of the functional matrix contain
observations and are thus subject to random errors. In the literature on mathematics and statistics this
case is known as an errors-in-variables (EIV) model for which a so-called “total least squares” (TLS)
solution can be computed. If weights for the observations and additional constraints for the unknowns
are introduced, a “constrained weighted total least squares” (CWTLS) problem is obtained. In this
contribution, it is shown that the solution for this problem can be obtained from a rigorous solution of
an iteratively linearized Gauss-Helmert (GH) model. The advantage of this model is that it does not
impose any restrictions on the form of the functional relationship between the involved quantities.
Furthermore, dispersion matrices can be introduced without limitations, even the consideration
of singular ones is possible. Therefore, the iteratively linearized GH model can be regarded as
a generalized approach for solving CWTLS problems. Using a numerical example it is demonstrated
how the GH model can be applied to obtain a spline approximation with orthogonal error vectors.
The error vectors are compared with those derived from two least squares (LS) approaches.

Keywords: spline approximation; total least squares (TLS); constrained weighted total least squares
(CWTLS); Gauss-Helmert (GH) model; singular dispersion matrix

1. Introduction

To capture the geometry of arbitrary objects as completely as possible, nowadays in engineering
geodesy areal (area-wise, in contrast to point-wise) measurement methods are applied. Examples
are terrestrial laser scanning or photogrammetric approaches based on the evaluation of image
data. However, the resulting point cloud is almost never used as a final result since the
creation of Computer-aided Design (CAD) models or deformation analyses require a curve or
surface approximation by a continuous mathematical function. An overview of curve and surface
approximations of three-dimensional (3D) point clouds, including polynomial curves, Bézier curves,
B-Spline curves and NURBS curves, was presented by Bureick et al. [1]. Ezhov et al. [2] elaborated the
basic methodology of spline approximation in two dimensions (2D) from a geodetic point of view using
splines constructed from ordinary polynomials of the form yi = f (xi). In the resulting adjustment
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problem, the values yi were introduced as observations subject to random errors and the values xi as
error-free values. This approach is relevant, for example, for the following applications:

• Registration of a signal at certain time intervals, whereby the time measurement is much more
precise than the measurement of the signal and can therefore be considered as error-free.

• Acquisition of measurements at fixed sensor positions, e.g., measurement of vertical displacements
with displacement transducers at fixed horizontal positions during a load test.

• Regarding the values xi as error-free to generate a solution using a linear functional model.
This can be justified when the interpretation of the error vectors (in contrast to deformation
analysis) is not the primary aim, but point clouds are approximated to obtain results that primarily
satisfy aesthetic requirements.

The fundamental concept and the statistical properties of geodetic measurements are explained
e.g., by Mikhail [3] (p. 3 ff.). In that textbook, on page 24, it is pointed out that in practical applications,
normal distributions are encountered very often, since in geodesy random variables that represent
measurements (respectively, their errors) are often nearly normally distributed. In this contribution we
consider the case that both values yi and xi of spline functions of the form yi = f (xi) are observations
subject to random errors. An example for this case is the spline approximation in the field of deformation
monitoring where the data were captured with a profile laser scanner.

If the dispersion matrix is a scalar multiple of the identity matrix, the observations yi and xi are
equally weighted and uncorrelated and a parameter estimation using the method of least squares yields
a result where the error vectors of each point are orthogonal to the computed spline approximation.
This characteristic is of vital importance for the interpretation of the error vectors not only for the
purpose of deformation analysis in engineering geodesy but in many other scientific fields. Hence,
a vast literature has been created that discusses the general problem of “orthogonal distance fitting”.
Elaborations of this topic are offered e.g., by Sourlier [4], Turner [5] and Ahn [6].

In the contribution of Crambes [7] the case of spline approximation with yi and xi as erroneous
observations is regarded as errors-in-variables (EIV) model and a total least squares (TLS) solution
is presented. A total least squares fitting of Bézier curves to ordered data with an extension to
B-spline curves was proposed by Borges and Pastva [8]. They developed an algorithm for applying the
Gauss-Newton approach to this problem with a direct method for evaluating the Jacobian based on
implicitly differentiating a pseudo-inverse. However, a dispersion matrix for the observations was
not introduced.

Jazaeri et al. [9] have presented a new algorithm for solving arbitrary weighted TLS problems
within an EIV model having linear and quadratic constraints and singular dispersion matrices.
They equivalently translate the weighted total least squares (WTLS) objective function under
consideration of the constraints into the Lagrange target function of the constrained minima technique
to derive an integrative solution. Fang [10] presented a WTLS and constrained weighted total least
squares (CWTLS) solution based on Newton iteration.

In this contribution, we follow the idea of Neitzel [11] and present a total least squares spline
approximation as a rigorous evaluation of an iteratively linearized Gauss-Helmert (GH) model taking
into account additional constraints for the unknowns. This model has the advantage that it does not
impose any restrictions on the form of the functional relationship between the quantities involved
in the model. The functional model of 2D similarity transformation discussed by Neitzel [11], e.g.,
yields a functional matrix that contains two columns that do not contain any random errors (“fixed”
or “frozen” columns in the frame of TLS terminology) and two columns in which the same x- and
y-values appear crosswise (one with reversed sign). In order to appropriately consider this structure
of the functional matrix, special TLS algorithms must be applied, as presented by Mahboub [12],
Schaffrin et al. [13] or Han et al. [14], while this case can be solved in a standard way in the GH model.
Furthermore, arbitrary and even singular dispersion matrices can be introduced into the GH model as
shown by Schaffrin et al. [15] and Neitzel and Schaffrin [16]. Therefore, the iteratively linearized GH
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model can be regarded as a generalized approach for solving constrained weighted total least squares
(CWTLS) problems.

The aim of this publication is not to investigate which algorithm is more efficient, but rather
to show that the TLS spline approximation can be solved in the well-known GH model, which can
be traced back to Helmert [17] (p. 285 ff.), and to offer the algorithm which can be used for solving
practical geodetic problems.

2. A Review of the Errors-in-Variables (EIV) Model

Using the function of a cubic polynomial as an example, a brief overview of the errors-in-variables
(EIV) model with regular dispersion matrix is presented in the following. In the case of the EIV model
with a singular dispersion matrix, please refer to the contribution of Schaffrin et al. [15]. Ezhov et al. [2]
elaborated a spline function constructed from ordinary cubic polynomials

yi = a0 + a1xi + a2x2
i + a3x3

i (1)

with additional constraints to impose continuity, smoothness and continuous curvature.
Under consideration of the values yi as observations subject to random errors eyi , values xi as
fixed (error-free) values and a0, a1, a2, a3 as unknowns, the observation equations

yi − eyi = â0 + â1xi + â2x2
i + â3x3

i (2)

are obtained. For a description of the constraint equations please refer to Ezhov et al. [2]. The resulting
adjustment problem can be expressed as

L− eL = AX̂, (3)

eL ∼ (0, σ2
0QLL), (4)

c = CX̂, (5)

where

L is the observation vector containing the values yi,
eL the normally distributed random error vector associated with L containing the values eyi with

expected value 0 and dispersion matrix QLL,
A the functional matrix containing the coefficients 1, xi, x2

i , x3
i of the linear functional model,

X̂ the vector of adjusted unknowns containing the parameters â0 j , â1 j , â2 j , â3 j ,

c the vector with given constant values,
C the functional matrix containing the coefficients of the linear constraints for the unknowns, refer to

Ezhov et al. [2] for details, and
σ2

0 the theoretical reference standard deviation.

With QLL being a non-singular matrix the corresponding weight matrix can be computed from

P = Q−1
LL . (6)

Introducing the vector λ of Lagrange multipliers, the constrained minima technique can be applied
which yields the objective function

Φ(eL,λ, X̂) = eT
LP eL + 2λT(CX̂− c) = min, (7)

compare with the textbook by Mikhail [3] (p. 215). The solution can be obtained from a Gauss-Markov
(GM) model with constraints, as shown in detail by Ezhov et al. [2].
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If we now consider both the values yi and the values xi as observations, we have to introduce not
only errors eyi associated with the values yi but also errors exi associated with observations xi and we
obtain the condition equations

yi − eyi = â0 + â1(xi − exi) + â2(xi − exi)
2 + â3(xi − exi)

3. (8)

For a description of the additional constraint equations please refer to Ezhov et al. [2]. Starting
from (3) these condition equations can be expressed in a general form as a so-called errors-in-variables
(EIV) model (in which some of the columns of the functional matrix A contain observations and are
thus subject to random errors EA) with constraints

L− eL = (A− EA)X̂, (9)

c = CX̂. (10)

The normally distributed random error vector associated with L and A containing the vectors eL

and eA with expected value [ 0 0 ]
T

and dispersion matrix Q reads[
eL

eA

]
=

[
eL

vec EA

]
∼ (

[
0
0

]
, σ2

0Q = σ2
0

[
QLL QLA
QAL QAA

]
), (11)

where

EA is the random error matrix associated with A containing the values exi , and
eA the vectorized form of EA.

From the non-singular dispersion matrix Q, the weight matrix

P = Q−1 =

[
P11 P12

P21 P22

]
(12)

can be computed, which leads to the objective function

Φ(eL, eA,λ, X̂) =
[

eT
L eT

A

] [ P11 P12

P21 P22

] [
eL

eA

]
+ 2λT(CX̂− c) = min. (13)

The solution for this EIV model can be determined (amongst others) using the TLS approach,
more precisely in this case the constrained weighted total-least squares (CWTLS) approach. The notion
“total least squares” (TLS) was introduced by Golub and van Loan [18] and very elegant solution
algorithms based on singular value decomposition (SVD) were developed; see, e.g., the contributions
by Golub and van Loan [18], van Huffel and Vandewalle [19] (p. 29 ff.) or Markovsky and van
Huffel [20].

However, a solution with SVD is only possible if the functional model of the adjustment problem
is pseudo-linear and if it has a certain structure, yielding a functional matrix that does not contain fixed
(error-free) columns or columns in which the same variables occur multiple times (e.g., crosswise).
The problem discussed in this article does not belong to this class. A systematic approach for direct
solutions of specific non-linear adjustment problems such as fitting of a straight line in 2D and 3D,
fitting of a plane in 3D and 2D similarity transformation with all coordinates introduced as observations
subject to random errors was elaborated from a geodetic point of view by Malissiovas et al. [21].

Jazaeri et al. [9] have presented a new flexible algorithm for solving the weighted TLS problem
within an EIV model having linear and quadratic constraints and singular dispersion matrices.
Their iterative algorithm is based on an equivalent translation of the objective function (13) subject to
(9) and (10) into a Lagrange target function. The case of quadratic constraints occurs, e.g., when the
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2D or 3D coordinate transformation is formulated for the most general case (affine transformation)
and the cases of similarity or rigid transformation are imposed with the help of constraint equations,
which was shown by Fang [10]. Singular dispersion matrices are always associated with coordinates
computed from a free network adjustment, as explained by Neitzel and Schaffrin [16].

The term errors-in-variables (EIV) model was introduced in the literature on mathematics and
statistics. It is used for regression models where measurement errors are taken into account for
both, the dependent variables and the independent variables. For geodesists, this terminology is
rather confusing, because whenever we introduce errors, they are inherently associated with the term
observations and not with variables. A remark of this kind was also given by Fuller [22], who explained:
“The term errors in variables is used in econometrics, while the terms observation error or measurement
error are common in other areas of statistical application.” Thus, it is immediately evident that an EIV
model is just another formulation of a well-known adjustment problem. Therefore, we can rearrange
the EIV model (8) and obtain an implicit form of the functional relation

yi − eyi − â0 − â1(xi − exi) − â2(xi − exi)
2
− â3(xi − exi)

3 = 0, (14)

which is an example of a functional relationship that leads to the adjustment of (nonlinear) condition
equations with unknowns that can already be found in the classical textbook of Helmert [17] (p. 285 ff.).

Neitzel [11] showed using the example of unweighted and weighted 2D similarity transformation
that the TLS solution within an EIV model can be obtained from a rigorous solution of an iteratively
linearized Gauss-Helmert model. After the definition of a spline constructed from ordinary cubic
polynomials in Section 3 and the definition of the problem in Section 4, we will follow this idea and
show in Section 5 how to derive the constrained weighted total-least squares (CWTLS) of an EIV model
from a rigorous solution of an iteratively linearized Gauss-Helmert model with additional constraints
for the unknowns. A numerical example will be presented in Section 6 followed by conclusions and
outlook in Section 7.

3. Definition of a Spline Constructed from Ordinary Cubic Polynomials

For the definition of a spline constructed from ordinary cubic polynomials the elaboration from
Ezhov et al. [2] is presented in what follows. Considering a 2D Cartesian coordinate system, Figure 1
illustrates a spline interpolation where the given knots are interpolated by a piecewise continuous
spline consisting of polynomials which meet at these knots. The coordinates of the knots are denoted by
(xk j , yk j); hence, j = 0, 1, . . . , n is the index (ordinal number) of the knot and n the number of segments.
Character k stands for “knot” and is not an index; hence, xk j means “x-value of the knot j”. Then the
spline is given by the function S(x) with the following properties:

1. S(x) is a piecewise cubic polynomial with knots at xk0 , xk1 , . . . , xkn ,
2. S(x) is a linear polynomial for x ≤ xk0 and x ≥ xkn ,
3. S(x) has two continuous derivatives everywhere,
4. S(xk j) = yk j for j = 0, 1, . . . , n.
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Figure 1. Spline interpolation after Ezhov et al. [2]. Figure 1. Spline interpolation after Ezhov et al. [2].
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According to Schumaker [23] (p. 7) S(x) (see Figure 1) defined as above, is in a way the best
interpolating function. This is one of the reasons why the cubic spline is generally accepted as the most
relevant of all splines.

According to the above mentioned properties a spline function can be defined as

S(x) =



S1(x), xk0 ≤ x ≤ xk1
...

S j(x), xk j−1 ≤ x ≤ xk j
...

Sn(x), xkn−1 ≤ x ≤ xkn

, (15)

where the expression for a cubic polynomial in each segment j can be written as

S j(x) = a0 j + a1 jx + a2 jx
2 + a3 jx

3, j = 1, 2, . . . , n. (16)

The property that the spline has to meet exactly the data at the given knots yields the conditions

S j(xk j−1) = yk j−1 and S j(xk j) = yk j , j = 1, 2, . . . , n. (17)

The property that S(x) has two continuous derivatives everywhere yields the constraints

S′j(xk j) = S′j+1(xk j), j = 1, 2, . . . , n− 1, (18)

S′′j (xk j) = S′′j+1(xk j), j = 1, 2, . . . , n− 1. (19)

From Equation (16) and Figure 1 we see that there are n polynomial functions S j(x) and n+ 1 knots.
The cubic function depends on four parameters, and consequently, the spline S(x) on 4n unknowns.
From (17), we obtain 2n and from (18) and (19) we get 2(n− 1) condition equations. This results in 4n− 2
condition equations to be solved for 4n unknowns and hence the equation system is underdetermined.
To overcome this problem, arbitrary additional conditions can be introduced. Usually the missing
constraints are introduced at the first and the last knot. For more details refer to Ezhov et al. [2].

The main application of spline interpolation is the construction of curves through a sparse
sequence of data points, e.g., in the construction of aesthetically pleasing curves in CAD models.
The aim is different when modern sensors such as laser scanners are used with an acquisition rate of
up to 2 million points per second, providing a very dense sequence of data points. Due to the high
point density and the fact that measurements are affected by random errors, it is no longer appropriate
to apply spline interpolation, since observation errors and other abrupt changes in the data points
would be modeled, resulting in a strongly oscillating spline.

To avoid this effect, the point sequence is divided into not so many intervals using predefined knots.
Due to the high point density, this results in an overdetermined configuration and the parameters of
piecewise cubic splines can be determined using least squares adjustment. Conditions for smoothness at
the knots (where two polynomials meet) can be introduced as constraint equations into the formulation
of the adjustment problem. The result is a spline that no longer follows all data points exactly, but as
closely as possible, subject to a predefined target function. In the case of least squares adjustment,
this means that the sum of the weighted squared residuals becomes minimal. This case, illustrated in
Figure 2, is called spline approximation.
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For formulating this approximation problem, cubic polynomials (16) are used for each interval
of the spline. Furthermore, constraint equations for continuity (17), smoothness (18) and continuous
curvature (19) are to be introduced at the knots. Both the values yi and the values xi are regarded as
observations subject to random errors. An example for this case is the spline approximation in the
field of deformation monitoring where the data were captured with a profile laser scanner.

In spline approximation, the parameters for an overdetermined configuration are determined by
a least squares adjustment. In contrast to spline interpolation, a solution can be found by minimizing
the sum of the weighted squared residuals without imposing any extra conditions to the first and last
point of the spline. Only the already mentioned conditions for continuity, smoothness and continuous
curvature have to be introduced at the “inner” knots as additional constraints. In the following section
the resulting adjustment problem is defined.

4. Definition of the Problem

Let:

• (x1 j , y1 j), (x2 j , y2 j), . . . , (xi j , yi j), . . . , (xm j , ym j) be pairs of observed values within an interval j,
where the sequence on the x-axis x1 j < x2 j < . . . < xi j < . . . xm j is non-decreasing,

•

[
ex

ey

]
∼ (

[
0
0

]
, σ2

0QLL = σ2
0

[
Qxx Qxy
Qyx Qyy

]
) be the stochastic model and P = Q−1

LL the

corresponding weight matrix,
• xk1 < xk2 < . . . < xk j < . . . < xkn−1 be a non-decreasing sequence of user-defined values for the knots

on the x-axis which are regarded as error-free. As mentioned before, the first knot xk0 and the last
knot xkn , see Figure 1, have no particular influence on the adjustment, they are just xk0 = xmin and
xkn = xmax. Therefore, when the positioning of the knots is discussed, we refer only to the knots
xk1 , . . . , xk j , . . . , xkn−1 , see Figure 2, on which some constraints are imposed. The positioning of the
knots plays a key role in spline approximation problems. This problem is further discussed in
Section 5.4.

To determine:

• (a01 , a11 , a21 , a31), . . . , (a0 j , a1 j , a2 j , a3 j), . . . , (a0n , a1n , a2n , a3n), which represent a set of parameters for
the cubic polynomials S j(x) which has to be estimated for all intervals [xk j−1 , xk j).

According to (16) the functional model for the cubic polynomials reads

yi j = S j(xi j) = a0 j + a1 jxi j + a2 jx
2
i j
+ a3 jx

3
i j

(20)

with j = 1, 2, . . . , n as index for an interval [xk j−1 , xk j). Furthermore, i = 1, 2, . . . , m j represents an index
for all pairs of observed values within the interval j.

Since an overdetermined system of equations is considered, a spline approximation is performed
without putting any extra conditions on the first and the last knots of the spline. The dataset is
subdivided into intervals w.r.t. the x-axis by predefined knots. For each interval [xk j−1 , xk j) there is a set
of at least two pairs of values (xi j , yi j) inside of it. According to (17)–(19) the conditions
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S j(xk j) = S j+1(xk j), j = 1, . . . , n− 1 (21)

S′j(xk j) = S′j+1(xk j), j = 1, . . . , n− 1 (22)

S′′j (xk j) = S′′j+1(xk j), j = 1, . . . , n− 1 (23)

are imposed on the knots for constructing a spline. These knots xk j are also coordinates on the x-axis
but their number and their values are freely specified, or can be determined by some knot placement
strategy, see Section 5.4.

After having defined all these quantities, a spline approximation can be performed from
an overdetermined configuration using the Gauss-Helmert model with additional constraints for
the unknowns.

5. TLS Solution Generated by Least Squares Adjustment within the Gauss-Helmert Model

In this section, the solution for the weighted total least-squares problem with constraints (CWTLS)
(13) is based on “classical” procedures, specifically on an iterative evaluation of the nonlinear normal
equations derived for nonlinear condition and constraint equations by least squares adjustment.
A common approach does replace the original nonlinear condition and constraint equations by
a sequence of linearized equations which obviously requires a correct linearization of the condition
and constraint equations. This means that the linearization has to be done both at the approximate
values X0 for the unknowns, and at approximate values e0 for the random errors. Such an iterative
solution is regarded as “rigorous” evaluation of the iteratively linearized Gauss-Helmert model.

An extensive presentation of an evaluation of this kind was already given e.g., by Pope [24].
Lenzmann and Lenzmann [25] pick up this problem once more and present another rigorous solution
for the iteratively linearized GH model. In doing so, they show very clearly which terms when
neglected will produce merely approximate formulas. Unfortunately, these approximate formulas,
which can yield an unusable solution, can be found in many popular textbooks on adjustment calculus.
For more details please refer to Neitzel [11]. The rigorous solution as presented in the following is
based on Lenzmann and Lenzmann [25].

5.1. Formulation of the Adjustment Problem

Based on the functional model (20) with observations yi and xi, the condition equations

ψi(e, X̂) = yi − eyi − â0 j − â1 j(xi − exi) − â2 j(xi − exi)
2
− â3 j(xi − exi)

3 = 0 (24)

can be formulated. Obviously, (24) is nonlinear. However, the application of least squares adjustment
usually “lives” in the linear world. Since the Gauss-Newton method is used here for solving least
squares problems, the condition equations have to be linearized. With appropriate approximate values
e0 and X0, the linearized condition equations can be written as

f(e, X̂) = B(e− e0) + A(X̂−X0) +ψ(e0, X0) = c1 (25)

with c1 = 0 and the matrices of partial derivatives

A(e, X̂) =
∂ψ(e, X̂)

∂X̂

∣∣∣∣∣∣
e0, X0

, (26)

B(e, X̂) =
∂ψ(e, X̂)

∂e

∣∣∣∣∣∣
e0, X0

. (27)
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These derivatives have to be evaluated at the approximate values e0 and X0. Taking the partial
derivatives for the function that defines the condition Equation (24) with respect to the unknowns

∂ψi(e, X̂)
∂â0 j

∣∣∣∣∣∣
e0,X0

= −1, (28)

∂ψi(e, X̂)
∂â1 j

∣∣∣∣∣∣
e0,X0

= −(xi − e0
xi
), (29)

∂ψi(e, X̂)
∂â2 j

∣∣∣∣∣∣
e0,X0

= −(xi − e0
xi
)

2
, (30)

∂ψi(e, X̂)
∂â3 j

∣∣∣∣∣∣
e0,X0

= −(xi − e0
xi
)

3
, (31)

we can set up the matrices A j for each polynomial piece of the spline. The functional matrix for the
first interval reads

A1 = −



1 (x11 − e0
x11

) (x11 − e0
x11

)
2

(x11 − e0
x11

)
3

1 (x21 − e0
x21

) (x21 − e0
x21

)
2

(x21 − e0
x21

)
3

...
...

...
...

1 (xm1 − e0
xm1

) (xm1 − e0
xm1

)
2

(xm1 − e0
xm1

)
3


, (32)

for the second interval, we obtain

A2 = −



1 (x12 − e0
x12

) (x12 − e0
x12

)
2

(x12 − e0
x12

)
3

1 (x22 − e0
x22

) (x22 − e0
x22

)
2

(x22 − e0
x22

)
3

...
...

...
...

1 (xm2 − e0
xm2

) (xm2 − e0
xm2

)
2

(xm2 − e0
xm2

)
3


. (33)

This construction of A j matrices continues until the last interval. Finally, the entire functional
matrix has the following form

A = diag
[

A1 · · · An
]
. (34)

From (32) and (33), we can see the typical characteristic of an EIV model (9), where some (or
sometimes all) columns of the functional matrix contain observations with their corresponding errors.

Taking the partial derivatives of the function ψ from condition Equations (24) with respect to
the errors

∂ψi(e, X̂)
∂exi

∣∣∣∣∣∣
e0,X0

= a0
1 j
+ 2a0

2 j
(xi − e0

xi
) + 3a0

3 j
(xi − e0

xi
)

2
, (35)

∂ψi(e, X̂)
∂eyi

∣∣∣∣∣∣
e0,X0

= −1, (36)

we can define the matrices B1 and B2

B1 = diag
[
· · · a0

1 j
+ 2a0

2 j
(xi − e0

xi
) + 3a0

3 j
(xi − e0

xi
)

2
· · ·

]
, (37)

B2 = −I. (38)
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Finally, matrix B obtains the following form

B =
[

B1 B2
]
. (39)

Now, we have to take into account also the constraints (21)–(23). Since the knots xk are error-free
values, we obtain linear constraint equations

â01 + â11xk1 + â21x2
k1
+ â31x3

k1
= â02 + â12xk1 + â22x2

k1
+ â32x3

k1
,

â02 + â12xk2 + â22x2
k2
+ â32x3

k2
= â03 + â13xk2 + â23x2

k2
+ â33x3

k2
,

...
â0n−1 + â1n−1xkn−1 + â2n−1x2

kn−1
+ â3n−1x3

kn−1
= â0n + â1n xkn−1 + â2n x2

kn−1
+ â3n x3

kn−1

(40)

which enforce the spline to be continuous at the knots. The next set of constraint equations

â11 + 2â21xk1 + 3â31 x2
k1
= â12 + 2â22xk1 + 3â32x2

k1
,

â12 + 2â22xk2 + 3â32 x2
k2
= â13 + 2â23xk2 + 3â33x2

k2
,

...
â1n−1 + 2â2n−1xkn−1 + 3â3n−1x2

kn−1
= â1n + 2â2n xkn−1 + 3â3n x2

kn−1

(41)

enforces the spline to have a continuous first derivative at the knots. This implies that the spline will
have smooth transition at the knots. The last set of constraint equations

2â21 + 6â31xk1
= 2â22 + 6â32xk1

,

2â22 + 6â32xk2
= 2â23 + 6â33xk2

,
...

2â2n−1 + 6â3n−1xkn−1
= 2â2n + 6â3n xkn−1

(42)

enforces the spline to have a continuous second derivative at the knots, which implies that the curvature
at the knots will be continuous. Rearranging Equations (40)–(42) yields for continuity the constraint
equations

γ1(X̂) = â0 j + â1 jxk j + â2 jx
2
k j
+ â3 jx

3
k j
− â0 j+1 − â1 j+1xk j − â2 j+1x2

k j
− â3 j+1x3

k j
= 0, (43)

for smoothness it is

γ2(X̂) = â1 j + 2â2 jxk j + 3â3 jx
2
k j
− â1 j+1 − 2â2 j+1 xk j − 3â3 j+1x2

k j
= 0, (44)

and for the curvature we obtain

γ3(X̂) = 2â2 j + 6â3 jxk j
− 2â2 j+1 − 6â3 j+1xk j

= 0. (45)

The nonlinearity of the condition equations (24) affects the unknowns of the linear constraint
equations. As a consequence, we have to consider the linear constraint equations in a “linearized” form

gq(X̂) = Cq(X̂−X0) + γq(X
0) = c2, (46)

with c2 = 0 and q = 1, 2, 3, where the matrices Cq contain the coefficients of the unknowns. Every row
of these matrices refers only to two consecutive intervals, i.e.,:

• Unknowns from the first row refer to the first two intervals, [xk0 , xk1) and [xk1 , xk2).
• Unknowns from the second row refer to the second and the third interval, [xk1 , xk2) and [xk2 , xk3).
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• This continues until the last row where the unknowns refer to the last and its preceding interval,
[xkn−2 , xkn−1) and [xkn−1 , xkn).

Taking into account the sequence of the unknowns, matrix C1 that imposes continuity at the
knots is

C1 =


1 xk1 x2

k1
x3

k1
−1 −xk1 −x2

k1
−x3

k1
0 0 0 0 · · · 0

0 0 0 0 1 xk2 x2
k2

x3
k2

−1 −xk2 −x2
k2
−x3

k2
· · · 0

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 0 0 · · · −x3
kn−1

. (47)

Matrix C2 contains the coefficients from the equations of constraints that preserve the smoothness of
the spline at the knots and is expressed as

C2 =


0 1 2xk1

3x2
k1

0 −1 −2xk1
−3x2

k1
0 0 0 0 · · · 0

0 0 0 0 0 1 2xk2
3x2

k2
0 −1 −2xk2

−3x2
k2
· · · 0

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 0 0 · · · −3x2
kn−1

. (48)

Matrix C3 contains the coefficients from the equations of constraints which enforce continuous curvature
at the knots written as

C3 =


0 0 2 6xk1

0 0 −2 −6xk1
0 0 0 0 · · · 0

0 0 0 0 0 0 2 6xk2
0 0 −2 −6xk2

· · · 0
...

...
. . .

...
0 0 0 0 0 0 0 0 0 0 0 0 · · · −6xkn−1

. (49)

Now, we expand (25) and introduce

w0 = −Be0 +ψ(e0, X0) − c1, (50)

and for the constraint Equations (46) we introduce

w1 = γ1(X
0) − c2,

w2 = γ2(X
0) − c2,

w3 = γ3(X
0) − c2

(51)

as vectors of misclosures. Finally, we can write the linearized condition equation and the constraint
equations in the form

Be + A(X̂−X0) + w0 = 0, (52)

C1(X̂−X0) + w1 = 0,
C2(X̂−X0) + w2 = 0,
C3(X̂−X0) + w3 = 0.

(53)

5.2. Least Squares Adjustment

Since from (52) and (53), four separate sets of equations are obtained, four vectors of Langrange
multipliers λ0, λ1, λ2 and λ3 have to be introduced to apply the constrained minima technique.
The quadratic form to be minimized is
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Φ (e, X̂,λ0,λ1,λ2,λ3) = eTP e− 2λT
0 (Be + A(X̂−X0) + w0)

−2λT
1 (C1(X̂−X0) + w1)

−2λT
2 (C2(X̂−X0) + w2)

−2λT
3 (C3(X̂−X0) + w3).

(54)

To minimize the objective function we take the partial derivatives of (54) w.r.t. the errors
e, the reduced unknowns (X̂ − X0) and the Lagrange multipliers λ0, λ1, λ2, λ3. Afterwards,
every derivative is set equal to zero and we obtain

− Pe + BTλ0 = 0, (55)

ATλ0 + CT
1λ1 + CT

2λ2 + CT
3λ3 = 0, (56)

Be + A(X̂−X0) + w0 = 0, (57)

C1(X̂−X0) + w1 = 0, (58)

C2(X̂−X0) + w2 = 0, (59)

C3(X̂−X0) + w3 = 0. (60)

Solving (55) for e yields
e = QLLBTλ0, (61)

with the dispersion matrix of the observations QLL = P−1. Since in almost all cases the dispersion
matrix QLL is given directly, this inversion is usually not necessary. Inserting (61) into (57) yields

BQLLBTλ0 + A(X̂−X0) + w0 = 0. (62)

Finally, we can set up the system of matrix equations

BQLLBTλ0 + A(X̂−X0) = −w0,
ATλ0 + CT

1λ1 + CT
2λ2 + CT

3λ3 = 0,
C1(X̂−X0) = −w1,
C2(X̂−X0) = −w2,
C3(X̂−X0) = −w3.

(63)

This system of matrix equations can be written in matrix form as
BQLLBT A 0 0 0

AT 0 C1
T C2

T C3
T

0 C1 0 0 0
0 C2 0 0 0
0 C3 0 0 0




λ0

X̂−X0

λ1

λ2

λ3


=


−w0

0
−w1

−w2

−w3


. (64)

Obviously, it is possible to further reduce this system by eliminating λ0 but in the form (64),
it offers the great advantage to consider also a singular dispersion matrix QLL for the observations.
The structure of the coefficient matrix in (64) coincides with the one that Jazaeri et al. [9] use for their
weighted TLS solution with constraints when QLL is singular. The rank condition that has to be fulfilled
to obtain a unique solution was explained by Neitzel and Schaffrin [16].

The solution X̂−X0 and the Lagrange multipliers can be derived from (64) using matrix inversion.
However, in most of the applications, other methods such as Cholesky decomposition are used, because
the inversion of a matrix is highly prone to rounding errors and is computationally inefficient. The error
vector e can be obtained from (61). The solution e, X̂, after stripping it of its random character, is to be
substituted as a new approximation as long as necessary until a break-off condition is met. For the
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choice of break-off conditions, we refer, e.g., to Lenzmann and Lenzmann [25]. Note that often the
update in (50) is erroneous, in which case convergence may occur, but not to the correct nonlinear least
squares solution.

After the solution is obtained we can compute the total sum of squared residuals (TSSR) by

Ω = eTP e. (65)

In case of a singular dispersion matrix, the weight matrix P = Q−1
LL does not exist and we introduce (61)

for the residuals to obtain the TSSR from

Ω = λT
0 BQLLBTλ0. (66)

Finally, we can compute the estimated reference standard deviation

σ̂2
0 = Ω/r, (67)

where r is the redundancy of the adjustment problem. Based on the value σ̂2
0, we can get an idea about

the quality of the adjustment by applying a statistical test.

5.3. Initial Values for the Unknowns

In the case under consideration, appropriate starting values for the unknowns can be obtained
from the solution of the linear adjustment problem with yi as observations and xi as fixed values,
presented by Ezhov et al. [2] and as initial values of the errors we can choose

e0
xi
= 0, e0

yi
= 0. (68)

Experience with several numerical examples has shown that it is also possible to introduce

a0
0 j
= 1, a0

1 j
= 1, a0

2 j
= 1, a0

3 j
= 1 (69)

as initial values for the unknowns.

5.4. Knot Placement Strategies

As described by Ezhov et al. [2], the basic problem of knot placement in spline approximation
comprises two fundamental challenges:

1. Systematic or heuristic choice of the knots.
2. Selection of suitable quality criteria according to which the resulting spline approximation can

be assessed.

According to these specifications, the knots are rearranged in the course of an iterative process
until the quality criteria are met. Since the distribution of the knots plays a crucial role in spline
approximation, various knot placement strategies have been proposed in the literature; see, e.g.,
the approaches developed by Cox et al. [26], Schwetlick and Schütze [27] and Park [28]. An overview
of knot placement strategies is offered by Bureick et al. [1,29]. Current research focuses on choosing
the optimal number of B-spline control points using the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC); see the contribution by Harmening and Neuner [30].

In this article, the main focus is on generating the TLS solution for spline approximation. Hence,
for simplicity, a uniformly distributed knot sequence is chosen, proposed by De Boor [31], also called
“equidistant arrangement”; see the contribution by Yanagihara and Ohtaki [32]. The term uniformly
distributed knot sequence describes that all knots have equal spacing within the dataset [xmin, xmax] in
which the spline is fitted.
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6. Numerical Example

In the following numerical example, we consider the spline approximation for the case that both
the values xi and yi are observations subject to random errors. Two inherently different approaches for
this case are presented:

1. Based on spline functions of the form yi = f (xi), see (20), a TLS solution will be computed from
an iteratively linearized GH model introduced in the previous sections.

2. Based on spline functions in parametric form xi = f1(ti) and yi = f2(ti), i.e.,

xi j = a0 j + a1 j ti j + a2 j t
2
i j
+ a3 j t

3
i j

, (70)

yi j = b0 j + b1 j ti j + b2 j t
2
i j
+ b3 j t

3
i j

, (71)

it is also possible to introduce xi and yi as observations. In contrast to the first approach, xi and yi
are now considered independently of each other which enables the representation of arbitrary
curves that depend on a location parameter ti. These values of the location parameter in (70) and
(71) form a non-decreasing sequence of error-free values t1 j < t2 j < . . . < ti j < . . . tm j referring
to the observations within an interval j. The parameters a0 j , a1 j , a2 j , a3 j and b0 j , b1 j , b2 j , b3 j are
the unknowns to be estimated for all intervals. The choice of the numerical values for ti j plays
a crucial role, and hence, it determines the position on the curve to which the values xi j , yi j refer.
In this example we apply two methods for the choice of numerical values for ti j that are suggested
by Piegl and Tiller [33] (p. 364 ff.), namely “equally spaced” and “chord length”. Introducing
these values ti j as fixed parameters, the resulting linear least squares (LS) problem can be solved
within the Gauss-Markov (GM) model with constraints, as described in detail by Ezhov et al. [2].

Using the synthetic data set in Table 1, which can be regarded as a cutout from a profile laser scan,
we want to investigate the error vectors that are obtained from the TLS and the LS approach.

Table 1. Numerical example.

Point xi yi

1 1.128 9.730
2 2.255 11.195
3 3.624 12.054
4 4.972 12.688
5 6.248 12.844
6 7.530 12.920
7 8.840 12.766
8 10.286 12.196
9 11.556 11.637

10 12.787 11.451
11 14.171 11.174
12 15.350 11.571
13 16.644 12.201
14 18.013 13.044
15 19.334 14.038
16 20.669 14.823
17 21.958 15.857
18 23.408 16.523
19 24.609 17.025
20 25.846 16.663
21 27.061 15.977
22 28.528 14.687
23 29.897 12.979
24 31.235 11.426
25 32.397 9.715
26 33.779 8.335
27 35.072 6.852
28 36.337 6.198
29 37.737 5.480
30 38.901 4.902
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Naturally, both approaches will yield different results, because they consider two different least
squares adjustment problems. Therefore, it is not a question of which approach yields “better” results
than the other. It is simply to show which approach might be more suitable for the application in
engineering geodesy. In all computations, the observations xi and yi are considered equally weighted
and uncorrelated (although the methodology proposed in this article can handle the most general
correlated case, as well), and the knots are uniformly distributed, as described in Section 5.4.

However, for the LS approach based on spline functions in parametric form, there is a slight
difference. The knots are chosen from the span of the vector of parameters ti instead of the span of the
vector of observations xi as for the TLS approach. Since in the LS case two separate functional models
xi = f1(ti) and yi = f2(ti) are considered, two separate least squares adjustments are performed.
The chosen knots tk are identical for both of them.

Computations were performed for three different cases:

Case 1: Total least squares (TLS) adjustment of a spline function,
Case 2.a: Least squares (LS) adjustment of a spline curve with equally spaced location parameters ti j ,

Case 2.b: Least squares (LS) adjustment of a spline curve with location parameters ti j proportional to
the chord length.

The results for Case 1 and Case 2.a are depicted in Figure 3, a magnification of the area marked
by a rectangle is shown in Figure 4. The numerical values for the observation errors are listed in
Table 2. With xi, yi, introduced as equally weighted and uncorrelated observations, the TLS solution
yields error vectors that are orthogonal to the graph of the adjusted spline. In contrast, it is clearly
visible in Figure 4 that the LS solution yields error vectors with “irregular” behavior, in the sense that
they are far away from being orthogonal to the curve. Since the LS and the TLS solution refer to two
different adjustment problems, the resulting adjusted graphs of the spline differ from each other. In this
numerical example, the difference between the two adjusted graphs is rather small. The total sum of
squared residuals (TSSR) for the TLS and for the LS solution are listed in Table 3.

Figure 5 compares the result for Case 1 with the result for Case 2.b. In the magnification of the
area marked by a rectangle shown in Figure 6 it is again clearly visible that the directions of the error
vectors obtained from the LS solution are “irregular” and not orthogonal to the graph of the spline
curve. Furthermore, if the length and direction of the error vectors for Case 2.a and Case 2.b are
compared, a considerable influence of the chosen numerical values for the location parameter ti can be
observed. In this numerical example the resulting adjusted graphs of the spline deviate considerably
from each other. The corresponding TSSR values are listed in Table 3.

It can be concluded that both approaches have their advantages and disadvantages.
Their application depends on the type of the phenomenon that is subject to the approximation.
The parametric spline curve (LS solution) can be useful for geometrical approximation of arbitrary
shapes where the interpretation of the errors is not the main focus since they vary with the choice
of the values of the location parameter ti. The error vectors obtained from the TLS approach can be
utilized for deformation monitoring purposes, since they are orthogonal to the graph of the spline
function in the case of equally weighted and uncorrelated observations.

It should be noted that the coordinates xi and yi captured with, e.g., a profile laser scanner are not
original observations. They are based on the same angle and distance measurements and are, therefore,
differently weighted and correlated. Since the precision of the distance measurement is influenced by
a variety of factors, simplified assumptions about the stochastic model have often been used in the past.
The intensity-based approach developed by Wujanz et al. [34] allows now to set up an appropriate
stochastic model for 3D laser scanners. Based on this, Heinz et al. [35] have developed a stochastic
model for a profile laser scanner. If a general stochastic model is used, the error vectors will no longer
be strictly orthogonal to the adjusted spline, but it will be possible to apply statistical tests for outlier
detection and deformation analysis.
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Table 2. Error components from TLS and LS spline approximation.

Point
Case 1 Case 2.a Case 2.b

exTLS eyTLS
exLS eyLS

exLS eyLS

1 0.0286 −0.0217 0.0274 −0.0058 0.0118 0.1954
2 −0.0644 0.0684 −0.0715 0.0404 −0.0391 −0.2529
3 0.0292 −0.0488 0.0225 −0.0598 0.0258 −0.2995
4 0.0045 −0.0155 0.0606 0.0118 0.0097 −0.0128
5 0.0039 −0.0721 0.0060 −0.0604 0.0279 0.1192
6 0.0070 0.0553 −0.0491 0.0588 0.0163 0.3405
7 0.0376 0.1490 −0.0686 0.1566 −0.0031 0.4266
8 0.0037 0.0118 0.0641 −0.0283 −0.0793 0.1472
9 −0.0408 −0.1417 0.0337 −0.1719 −0.1223 −0.2025
10 −0.0063 −0.0324 −0.0282 −0.0188 −0.0400 −0.2721
11 −0.0009 −0.1615 0.0654 −0.1398 0.0670 −0.5328
12 −0.0246 0.1071 −0.0488 0.1233 0.1357 −0.2524
13 −0.1080 0.1914 −0.0557 0.2260 0.1543 0.0541
14 −0.0844 0.1068 0.0029 0.1640 0.0989 0.2499
15 −0.0300 0.0344 0.0068 0.0463 −0.0496 0.2926
16 0.1486 −0.1779 0.0211 −0.3057 −0.0869 0.0775
17 0.1035 −0.1568 −0.0111 −0.2528 −0.2471 0.1072
18 0.0669 −0.2246 0.1203 −0.2305 −0.1714 0.0386
19 0.0163 0.1570 0.0080 0.1364 −0.0662 0.2322
20 0.0556 0.1266 −0.0629 0.1692 0.1140 −0.0808
21 0.0899 0.1262 −0.1529 0.3136 0.2207 −0.2843
22 0.0838 0.0864 0.0095 0.1924 0.2008 −0.3201
23 −0.0398 −0.0349 0.0719 −0.1057 −0.0041 −0.1345
24 −0.0262 −0.0216 0.0987 −0.1050 −0.0486 0.2171
25 −0.1711 −0.1417 −0.0566 −0.2168 −0.1914 0.2269
26 −0.0501 −0.0446 0.0064 −0.0592 −0.0179 0.1687
27 −0.1120 −0.1188 −0.0143 −0.1769 −0.0468 −0.1908
28 0.0916 0.1241 −0.0505 0.2511 0.1224 −0.1052
29 0.0788 0.2075 0.0680 0.2211 0.1091 −0.0263
30 0.0023 −0.1372 −0.0228 −0.1737 −0.1005 0.0733

Table 3. Total sum of squared residuals (TSSR).

Case 1 Case 2.a Case 2.b

TSSR 0.578466 0.923518 1.968949

7. Conclusions and Outlook

In this contribution, we have presented a total least squares spline approximation generated
from a rigorous evaluation of an iteratively linearized Gauss-Helmert model under consideration of
additional constraints for the unknowns. Similar to the approach for such problems proposed by
Jazaeri et al. [9], the GH model allows introducing singular dispersion matrices for the observations.

Together with the basic methodology of spline approximation elaborated by Ezhov et al. [2], a clear
und understandable formulation of spline approximation with both values xi and yi as observations is
now available. This approach is of particular interest for engineering geodesy because the error vectors
are orthogonal to the graph of the adjusted spline which has been demonstrated using a numerical
example with equally weighted and uncorrelated observations. Hence, this approach is very suitable
for the analysis of deformations.
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