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Abstract: A novel differentiator-based approximation-free output-feedback controller for uncertain
nonautonomous nonlinear pure-feedback systems is proposed. Using high-order sliding mode
observer, which is a finite-time exact differentiator, the time-derivatives of the signal generated using
tracking error and filtered input are directly estimated. As a result, the proposed non-backstepping
control law and stability analysis are drastically simple. The tracking error vector is guaranteed to
be exponentially stable in finite time regardless of the nonautonomous property in the considered
system. It does not require neural networks or fuzzy logic systems, which are typically adopted to
capture unstructured uncertainties intrinsic in the controlled system. As far as the authors know,
there are no research results on the output-feedback controller for the uncertain nonautonomous
pure-feedback nonlinear systems. The results of the simulation show clearly the performance and
compactness of the control scheme proposed.

Keywords: differentiator-based controller; approximation-free; nonautonomous; uncertain
nonlinear system

1. Introduction

Designing a controller for nonlinear systems containing unstructured uncertainties has been
considerably advanced and performed in recent years. Conventionally, many adaptive controllers
using universal approximators (UAs) such as neural networks (NNs) or fuzzy logic systems (FLSs)
have been proposed (refer to [1–12] and references therein). More recently, controllers for nonlinear
pure-feedback systems that contain unstructured uncertainties and unmatched disturbances have been
actively proposed. Adaptive backstepping with UAs or dynamic surface control (DSC) algorithm is
typically adopted to induce control laws that deal with unstructured uncertainties and unmatched
disturbances [10–24]. The pure-feedback nonlinear systems are more general than strict-feedback
systems [8,25–28] because they have the nonaffine appearance of the states which are chosen as virtual
controls in each intermediate design steps. As a result, it is more challenging and difficult to construct
the control law for this class of systems. Previously proposed adaptive controllers are typically
combining UAs with backstepping or DSC. In these control algorithms, unstructured uncertainties in
the system are estimated by NNs or FLSs. The outputs of the approximators are used by the controller
to compensate or cancel the effect of the unmatched or unstructured uncertainties. The conventional
adaptive DSC or backstepping based controllers that adopt NNs or FLSs have the following severe
drawbacks. The complexity of the control law grows significantly as the dynamic order of the
controlled system increases. To evade this problem, in the DSC-based controllers, the time-derivatives
of virtual controls are replaced by some filtered values of them. However, even in the DSC-based
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controllers, the shortcoming that many UAs are required to build virtual control in every design steps
still exists. These approximators are usually trained online to cope with respective uncertainties that
appear in every intermediate design step. Using too many UAs results in a significant increase in the
complexity of control law. Computational burden is another crucial problem since the parameters in
the approximators are to be updated simultaneously in real time.

In this paper, a new output-feedback differentiator-based controller for SISO uncertain
nonautonomous pure-feedback nonlinear systems is proposed using high-order sliding mode (HOSM)
observer [29,30], which is a finite-time exact differentiator. As far as the authors know, there are no
research results on the output-feedback controller for the considered nonautonomous pure-feedback
nonlinear systems. Inspired by [8,10,22], the original system is transformed into a Brunovsky form
with respect to newly defined states which are the time-derivatives of the system output. The key
idea of the proposed controller is that it utilizes HOSM observer to estimate the time-derivatives of a
signal that is generated using the tracking error and filtered control input. The merits of the controller
proposed are described as follows.

(i) The powerful feature of the HOSM differentiator is used by the controller to cope with
uncertainties in the controlled system, which leads to no need of adopting UAs such as NNs
or FLSs. Compared to the previous adaptive controller using UAs to capture unstructured
uncertainties in the system, the dynamic order of the controller proposed is considerably low.

(ii) The control law and stability analysis are also considerably simple. Moreover, the number of
design constants is relatively much smaller.

(iii) The output tracking error achieves exponential stability in finite time.

To show the compactness and performance of the controller that is proposed, simulations have
been performed.

2. Preliminaries and Problem Formulation

The following uncertain nonautonomous pure-feedback nonlinear system is considered.

ẋi = fi(xi, xi+1, t), i = 1, · · · , n− 1
ẋn = fn(xn, u, t).
y = x1

(1)

where xi’s are state variables, xi = [x1, · · · , xi]
T, n is the dynamic order, y and u are the output

and input of the system, and fi’s are unknown functions. Note that all the fi’s are the functions of
time explicitly. This class of system may contain time-varying parameters, unmatched additive or
multiplicative disturbances, interactions with linked remote systems, etc. Only the output y(= x1)

is assumed to be available. The other states xi, i = 2, · · · , n are all assumed to be unmeasurable.
The control objective is driving y to track yd(t) while maintaining all the signals to be bounded.

Assumption 1. The functions fi for i = 1, · · · , n and yd(t) are smooth functions

In practical engineering systems, all the states tend to be maintained in prescribed bounded
operation regions and the control input is also bounded due to physical limitations.

Assumption 2. The following open set includes the whole operation region of the system (1)

Ω = {xn, u||xn| < rx, u < ru} (2)

where rx and ru are positive constants.
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Consider a time-varing signal a(t) and its nth time derivative a(n)(t) is assumed to be Lipschitz.
The HOSM observer that has the following form can estimate the time-derivatives of a(t)

σ̇0 = −λnL
1

n+1 dσ0 − ac
n

n+1 + σ1 , β0

σ̇1 = −λn−1L
1
n dσ1 − β0c

n−1
n + σ2 , β1

...
σ̇n−1 = −λ1L

1
2 dσn−1 − βn−2c

1
2 + σn , βn−1

σ̇n = −λ0L sgn(σn − βn−1)

(3)

where dzcp = |z|p sgn(z), L > 0 is a design constant, and λi’s are typically chosen as λ0 = 1.1, λ1 = 1.5,
λ2 = 3, λ3 = 5, λ4 = 8, λ5 = 12 [30]. The HOSM differentiator (3) has the following powerful freature.

Lemma 1 ([29]). If the parameters in (3) are appropriately chosen, the following equalities hold after a finite
transient time

σ0 = a; σi = a(i)(t), i = 1, · · · , n (4)

if a(n)(t) has Lipschitz constant.

The positive design constant L must be determined sufficiently large enough to hold that it is
larger than the Lipschitz constant of a(n)(t).

3. Controller Design

3.1. Reformulation of the Controlled System

As in [8,10,22], we denote the time derivatives of y as zi , y(i−1) (i = 1, · · · , n), and they are
chosen as new state variables. The dynamic equations of the newly defined states are induced in this
subsection. The first dynamics is

ż1 = f1(x1, x2, t) , z2.

The second dynamics is easily induced as

ż2 =
∂ f1

∂x1
ẋ1 +

∂ f1

∂x2
ẋ2 +

∂ f1

∂t

=
∂ f1

∂x1
f1(x2, t) +

∂ f1

∂x2
f2(x2, x3, t) +

∂ f1(x2, t)
∂t

, g2(x2, x3, t)
, z3

where g2(·) is the unknown function of x2, x3, and t. The next dynamics can be induced as

ż3 =
∂g2

∂x2
ẋ2 +

∂g2

∂x3
ẋ3 +

∂g2

∂t

=
2

∑
j=1

∂g2

∂xj
f j(xj+1, t) +

∂g2

∂x3
f3(x3, x4, t)

+
∂g2(x2, x3, t)

∂t
, g3(x3, x4, t)
, z4

where g3(·) is also the unknown function of x3, x4, and t. In general, żi’s for i = 2, · · · , n − 1 are
recursively derived as

żi = gi(xi, xi+1, t) (5)
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where
gi(xi, xi+1, t) = ∑i−1

j=1
∂gi−1

∂xj
f j(xj+1, t)

+
∂gi−1

∂xi
fi(xi, xi+1, t)

+
∂gi−1(xi−1,xi ,t)

∂t .

(6)

As a result, the new dynamics of the controlled system is finally induced as

żi = zi+1, i = 1, · · · , n− 1 (7)

żn = gn(xn, u, t) (8)

y = z1 (9)

where
gn(xn, u, t) = ∑n−1

j=1
∂gn−1

∂xj
f j(xj+1, t)

+ ∂gn−1
∂xn

fn(xn, u, t)

+ ∂gn−1(xn−1,xn ,t)
∂t .

(10)

The original system (1) is redescribed as a Brunovsky system (7)–(9) with newly defined states
zi, i = 1, · · · , n. Since y = z1 = x1, the objective of the controller is maintained in the transformed
system. The newly defined state variables zi, i = 2, · · · , n are unavailable and only the system output
z1 = y is measurable.

Assumption 3. The inequality

∂gn(xn, u, t)
∂u

=

(
n−1

∏
i=1

∂ fi(xi, xi+1, t)
∂xi+1

)
∂ fn(xn, u, t)

∂u
> 0 (11)

holds for the set Ω that is defined in (2).

Assumption 3 is widely adopted in the literature for the controllability of the system (1).
(e.g., assumption 1 in [6], assumption 4 in [17], assumption 1 in [18], etc.)

3.2. Control Input Filtering

The following simple linear time-invariant (LTI) filter is introduced to constitute the signal a(t)
that is fed into the HOSM differentiator (3)

ẇi = −cwi + wi+1, i = 1, · · · , n− 1

ẇn = −cwn + u
(12)

where c > 0 is a design constant. Equation (12) can be redescribed in a vector form as

ẇ = Aw + bu (13)

where

w =


w1

w2
...

wn

 , A =


−c 1 0 · · · 0
0 −c 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −c

 , b =


0
0
...
1

 (14)
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The tracking error is defined as e = y− yd and the signal a(t) that is fed into the HOSM observer
is generated as

a = e− w1. (15)

The following equalities hold after a finite transient time according to Lemma 1:

σ0 = a = e− w1 (16)

σ1 = ȧ = ė− p1(w)− w2 (17)

σ2 = ä = ë− p2(w)− w3 (18)
...

σn−1 = a(n−1) = e(n−1) − pn−1(w)− wn (19)

σn = a(n) = e(n) − pn(w)− u (20)

where pi(w)’s are the polynomials of w and they are obviousely calculated for i = 1, · · · , 6 as follows:

p1(w) = −cw1 (21)

p2(w) = c2w1 − 2cw2 (22)

p3(w) = −c3w1 + 3c2w2 − 3cw3 (23)

p4(w) = c4w1 − 4c3w2 + 6c2w3 − 4cw4 (24)

p5(w) = −c5w1 + 5c4w2 − 10c3w3 + 10c2w4

−5cw5 (25)

p6(w) = c6w1 − 6c5w2 + 15c4w3 − 20c3w4

+15c2w5 − 6cw6 (26)

The boundedness of wi’s are described in the follwing lemma.

Lemma 2 ([31]). Under Assumption 2, the following inequalities hold

|wi| <
ru

cn−i+1 (27)

for i = 1, · · · , n.

Note that the scheme of filtering u is inspired by [32]. The difference is that the proposed filter
in this paper adopts stabilizing terms of −cwi for i = 1, · · · , n in (12). If c = 0, the filter (12) becomes
simple connected integrators that is used in [32] and all the pi(w)’s become zeros.

3.3. Control Law and Stability Anlaysis

Let the tracking error vector be e = [e, ė, · · · , e(n−1)]T ∈ Rn and its estimate is available
using (17)–(19) as

ê =


e

σ1 + p1 + w2
...

σn−1 + pn−1 + wn

 ∈ Rn (28)

which becomes e in finitie time by Lemma 1. The control law is determined as

u = −σn − pn − kTê (29)
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where k = [k1, k2, · · · , kn]T is chosen such that

(s + κ)n = sn + knsn−1 + · · ·+ k2s + k1 (30)

with κ > 0 is a design constant.
The main result of the proposed control scheme is described in the following theorem.

Theorem 1. Consider the system (1) under Assumptions 1 and 2. The control input (29) using the HOSM
differentiator (3) and input filter (13) makes the tracking error vector e to be exponentially stable in finite time.

Proof. From Lemma 1, (20), and (29), it is evident that, after a finite time, the control input u becomes

u = −σn − pn − kTê
= −{e(n) − pn − u} − pn − kTe
= −e(n) + u− kTe. (31)

The resultant equation that is easily induced from (31) is

e(n) = −kTe (32)

or, more concisely, in vector form equation of

ė = Ae (33)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
−k1 −k2 −k3 · · · −kn

 . (34)

It is evident that the solution of (33) is e(t) = exp(At)e(0). Because the characteristic equation
of A (30) is Hurwitz, it is clear that the tracking error vector e converges to zero exponentially in
finite time.

Remark 1. The requirement for Lemma 1 is that the following a(n) has a Lipschitz constant.

a(n) = e(n) − pn(w)− u
= (gn − y(n)d )− pn(w)− u (35)

The a(n) has a Lipschitz constant if its time-derivative exists and continuous. Since fi’s in (1) and yd are
assumed to be smooth functions by Assumption 1, it is evident that the gn and y(n)d are also smooth functions
and they are continuously differentiable. The w is evidently differentiable and continuous by (13) which results
that the pn is also continuously differentiable since pn is the polynomial of w. The control input u is determined
as (29) which is also continuously differentiable considering (3), (12). Gathering all these facts together, it is
evident that a(n) has a Lipschitz constant.

Remark 2. Previous literature [10–24] typically uses UAs such as NNs or FLSs to cope with the intrinsic
unstructured uncertainty. The parameters in the adopted UAs are updated online to capture the unknown
system functions. This kind of controllers has the shortcoming that the control law, adaptive laws, and stability
analysis are too complex. The controller proposed needs no UAs because the disturbances and uncertainties
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in the controlled system are effectively compensated by the HOSM observer. This makes the structure of the
proposed controller and stability analysis be drastically simplified.

Remark 3. It is worth to note that no time derivatives of yd(t) are required. In real physical systems, they are
often very difficult to measure or calculate.

Remark 4. The discontinuous switching function in HOSM differentiator is hidden in the last dynamics of (3),
which results that the chattering is most intensive in σn. However, σi for i = 1, n − 1 show much weaker
chattering as i approaches zero. Moreover, as described in [29], the a(n) is more accurately observed by higher
order differentiators. Thus, the simple remedy to suppress control chattering is using m(> n + 1)th-order
HOSM differentiator to generate σ0, ...σn, and just discard the redundant σn+1...σm−1 values that contain
intensive chatterings.

Remark 5. In (30), if κ is once determined, the vector k is directly calculated. Thus, the controller has only
three constants to be determined, κ in (30), c in (12), and L in (3) which are all positive. The critical parameters
that directly affect the contoller performance are L and κ. In most simulations performed, the easiest choice for c
is c = 1, which results in |wi| < ru from Lemma 2.

The overall design steps for the controller are summarized as follows.

(i) For the nth-order system (1), construct the HOSM differentiator (3) with appropriately
determined constant L.

(ii) LTI filter (12) with designed constant c is to be made. In this step, the constant c is usually chosen
as 1.

(iii) Formula (29) with an adequately chosen κ is used to generate the control input into the system.

These steps will be applied to an example 2nd-order system in the next section.

4. Simulation

To illustrate the performance and simplicity of the controller proposed, simulations for the
following 2nd-order system are performed.

ẋ1 = 0.1x1 cos 10t + (1 + x2
1)x2

ẋ2 = x1x2 + u + u
3
7 + 0.5 sin 5t (36)

It is worth noting that the actual dynamic equations and contained disturbances are not known
explicitly to the controller. The desired output yd = sin t and x(0) = [0.1, 0]T is the initial condition.
The constants are determined as κ = 20, L = 12, and c = 1. Python language and its libraries such as
scipy, numpy, and matplotlib [33] are used to perform the simulations.

Since n = 2, the following 3rd-order HOSM differentiator is adopted:

σ̇0 = −3L
1
3 dσ0 − ac

2
3 + σ1 , β0

σ̇1 = −1.5L
1
2 dσ1 − β0c

1
2 + σ2 , β1

σ̇2 = −1.1L sgn(σ2 − β1) (37)

The input filter has the following 2nd-order dynamics:

ẇ1 = −cw1 + w2

ẇ2 = −cw2 + u (38)

The control input is

u = −σ2 − p2 − kTê (39)
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where p2 is defines as (22), k = [20, 400]T and

ê =

[
e

σ1 + p1 + w2

]
(40)

with (21).
The simulation results are depicted in Figures 1–3. It is illustrated that the output tracks yd very

well after a short transient period in Figure 1. It is depicted in Figure 3 that there is a slight chattering
in σ2, which directly effects on the control input (39). From Figures 2 and 3, all the states of the HOSM
differentiator and input filter are bounded.

0 2 4 6 8 10
(a)   time(t)

−1

0

1

x1
yd

0 2 4 6 8 10
(b)   time(t)

−40
−20

0
20
40

u

Figure 1. Trajectories of (a) y and yd (b) control input u with x(0) = [0.1, 0]T .

0 2 4 6 8 10
time(t)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
w1
w2

Figure 2. Trajectories of w1 and w2.
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0 2 4 6 8 10
time(t)

−1.0

−0.5

0.0

0.5

1.0

1.5 σ0
σ1
σ2

Figure 3. Trajectories of σ0, σ1, and σ2.

Additional simulation is performed for the different initial condition x(0) = [0, 0.1]T and the
result is depicted in Figure 4. It is observed that the system output y tracks yd very well with smaller
transient oscillation.

0 2 4 6 8 10
(a)   time(t)

−1

0

1

x1
yd

0 2 4 6 8 10
(b)   time(t)

−40
−20

0
20
40

u

Figure 4. In the case of x(0) = [0, 0.1]T (a) y and yd (b) control input u.

In both simulations, the control input is maintained within the range of (−40, 40). The states of
HOSM differentiator and input filter are also bounded such that |σi| < 2 for i = 1, 2, 3 and |wi| < 1.0
for i = 1, 2 hold.

5. Conclusions

A novel output-feedback differentiator-based controller for SISO uncertain nonautonomous
nonlinear pure-feedback systems is proposed. The HOSM differentiator, which is a finite-time exact
differentiator, is used to estimate the time-derivatives of the signal which consist of the tracking
error and filtered input. The controller has a very simple form and exponential convergence of the
tracking error in finite time is guaranteed regardless of unstructured uncertainties and nonautonomous
property in the considered system. No separate adaptive schemes, nor UAs such as NNs or FLSs that
are to be adaptively tuned online to cope with system uncertainties, are required. Simulation results
illustrate the simplicity and performance of the proposed controller.
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