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Abstract: We consider translates of functions in L2(Rd) along an irregular set of points, that is,
{φ(· − λk)}k∈Z—where φ is a bandlimited function. Introducing a notion of pseudo-Gramian function
for the irregular case, we obtain conditions for a family of irregular translates to be a Bessel, frame
or Riesz sequence. We show the connection of the frame-related operators of the translates to the
operators of exponentials. This is used, in particular, to find for the first time in the irregular case
a representation of the canonical dual as well as of the equivalent Parseval frame—in terms of its
Fourier transform.
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1. Introduction

Frames of translates, i.e., frame sequences originated by the shifts of a given, fixed function,
are an important mathematical background for Gabor [1–3], wavelet [4,5] and sampling theory [6,7].
One generating function φ is shifted to create the analyzing family of elements, {φ (· − λk)}k∈Z for
a sequence Λ = {λk}k∈Z. These systems play a main role in the theory of shift invariant spaces
(SIS) [8–11], which is very useful for the modeling of problems in signal processing, and is central in
approximation. It is also a very active field of research in mathematics, see e.g., [12–15]. Frames of
translates are closely related to frames of exponentials also called Fourier frames [16–18].

The regular shifts, e.g., when λk = kb for some fixed b > 0, were studied e.g., in [19]. Investigations
of irregular frames of translates, where the set Λ has no regular structure, were done e.g., in [1,6].
But there remain several open questions, in particular how the concept of Gramian function could be
defined in the irregular case, which is a fundamental tool for describing properties of regular systems
of translates. Also no explicit formulas for the canonical dual of irregular frames of translates were
given so far. We do this in the present paper.

The paper is structured as follows: In Section 2 we present an overview over the main results.
In Section 3 we summarize basic notations and preliminaries. In Section 4 we generalize the concept
of the Gramian function and use it to describe Bessel frame and Riesz properties of irregular shifts.
In Section 5 we look at the inter-relation of the frame-related operators for those sequences to those of
exponential functions. This permits us to study Bessel, frame and Riesz properties of irregular frames
of translates, and furthermore give formulas for the canonical dual, and for equivalent Parseval frames.

2. Main Results

We state here our main results at the beginning of the paper. For notations and definitions pleaser
refer to the later sections.
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For regular frames of translates the Gramian function is a key concept. For the case of irregular
frames of translates, where we have no group structure, we introduce the following notion.

Definition 1. Let φ ∈ L2(Rd). We define its pseudo-Gramian function by

Φ =
∣∣φ̂∣∣2

Surprisingly, as we will see in Sections 4 and 5, this definition leads to quite analogous results as
in the regular case, where this function is used only in a periodized version. Among them we show
the following:

Theorem 1. Let φ ∈ L2(Rd) such that supp(φ̂) is compact. In each of the following cases (i.e., (1) or (2)),
if one of the following conditions (i.e., (a),(b) or (c)) is fulfilled, the other two are equivalent:

(1) (a) {eλk}k∈Z is a frame in L2(supp(φ̂)).
(b) {Tλk φ}k∈Z is a frame in PWsupp(φ̂).

(c) There exist p, P > 0 such that p ≤ Φ ≤ P a.e. on supp(φ̂).
(2) (a) {eλk}k∈Z is a Riesz basis in L2(supp(φ̂)).

(b) {Tλk φ}k∈Z is a Riesz basis in PWsupp(φ̂).

(c) There exist p, P > 0 such that p ≤ Φ ≤ P a.e. on supp(φ̂).

Note that the condition 1(c) = 2(c) implies that the frame properties of {eλk}k∈Z and
{Tλk φ}k∈Z coincide.

Theorem 1 is an extension of results in [20]. We prove it using an operator theory based approach.
Furthermore we can give an explicit form for the canonical dual of an irregular set of translates, as a
nice generalization of results in the regular case:

Theorem 2. Let φ ∈ L2(Rd) such that supp(φ̂) is compact. Assume that there exist p, P > 0 such that
p ≤ Φ ≤ P a.e. on supp(φ̂) and let {eλk}k∈Z be a frame sequence in L2(supp(φ̂)). Then the canonical dual of
{Tλk φ}k∈Z is {θk}k∈Z where

θ̂k =

{
φ̂
Φ ẽλk on supp(φ̂)

0 otherwise.

In particular if {eλk}k∈Z is an A-tight frame, then θk = Tλk θ with θ̂ = 1
A

1
φ̂

(on supp(φ̂)).

Note that the definition of the pseudo-Gramian gives a convenient way of formulating the other
results, although they do not depend on this definition per-se.

3. Notation and Preliminaries

Given λ ∈ Rd, we denote by eλ the function defined by eλ(x) = e−2πiλx. The operators Tλ

and Mλ are given by Tλ f (x) = f (x − λ) and Mλ f (x) = e−λ f (x) respectively. We write f̂ for
the Fourier transform, F : L2(Rd) → L2(Rd), given by F ( f )(w) = f̂ (w) =

∫
Rd f (x)e−2πixwdx,

for f ∈ L1(Rd) ∩ L2(Rd) with the natural extension to L2(Rd).
In this paper E ⊆ Rd is a bounded set. We denote

PWE =
{

f ∈ L2(Rd) | supp( f̂ ) ⊆ E
}

.

The space {
f ∈ L2(Rd) : f (x) = 0 for a.e. x ∈ Rd\E

}
,
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is a closed subspace of L2(Rd) which is isomorphic to L2(E), and we will identify these two spaces.
The Fourier transform maps PWE onto L2(E).

When we write that {eλk}k∈Z is a frame (frame sequence, Bessel sequence or Riesz basis) of L2(E)
we will mean that the set {eλk χE}k∈Z has that property, where χE stands for the indicator function
of E, that is, it is an outer frame, Bessel or Riesz basis [21]. For a given operator O we denote its
pseudo-inverse by O†. Motivated by that, for a function ψ we denote

ψ†(x) =

{
1/ψ(x) x ∈ supp(ψ)

0 otherwise

Throughout this work Λ = {λk}k∈Z will be a sequence in Rd. For a function f we denote its range
by R f .

3.1. Frames

Let H be a separable Hilbert space. A sequence {ψk}k∈Z ⊆ H is a frame for H if there exist
positive constants A and B that satisfy

A‖ f ‖2 ≤ ∑
k∈Z
|〈 f , ψk〉|2 ≤ B‖ f ‖2 ∀ f ∈ H.

We denote the optimal bounds by A(opt) and B(opt). If A(opt) = B(opt) then it is called a tight
frame, and if A(opt) = B(opt) = 1 a Parseval frame. If {ψk}k∈Z satisfies the right inequality in the above
formula, it is called a Bessel sequence.

A sequence {ψk}k∈Z ⊆ H is a Riesz basis for H if it is complete in H and there exist 0 < A ≤ B
such that for every finite scalar sequence {ck}k∈Z

A ∑ |ck|2 ≤
∥∥∥∥∥∑

k∈Z
ckψk

∥∥∥∥∥
2

≤ B ∑ |ck|2 .

The constants A and B are called Riesz bounds. A complete sequence is exact if it ceases to be
complete when an arbitrary element is removed. Exact frames are precisely the Riesz bases.

We say that {ψk}k∈Z ⊆ H is a frame sequence (Riesz sequence) if it is a frame (Riesz basis) for its span.
For Ψ = {ψk}k∈Z a Bessel sequence, its analysis operator C : H → `2(Z) is defined by C( f ) =

{〈 f , ψk〉H}k∈Z, and its synthesis operator D : `2(Z)→ H by Dc = ∑
k∈Z

ckψk.

If Ψ is a frame of H, the frame operator S : H −→ H given by S( f ) = DC( f ) = ∑
k∈Z
〈 f , ψk〉ψk is

bounded, invertible, self-adjoint and positive. There always exists a dual frame of Ψ, which is a frame
{φk}k∈Z such that

f = ∑
k∈Z
〈 f , φk〉ψk ∀ f ∈ H or f = ∑

k∈Z
〈 f , ψk〉φk ∀ f ∈ H. (1)

The sequence {S−1ψk}k∈Z satisfies (1). It is called the canonical dual frame of {ψk}k∈Z and we
will denote it by {ψ̃k}k∈Z. We distinguish between the operators by subscripts, e.g., Ce is the analysis
operator for the set of exponentials {eλk}k∈Z and Cφ those of the system of translates {Tλk φ}k∈Z.
For the operators corresponding to the canonical dual we will write C̃e respectively C̃φ.

To every frame Ψ = {ψk}k∈Z a canonical tight frame can be associated, which is the sequence
{S− 1

2 ψk}k∈Z, where S−
1
2 is the positive square root of S−1.
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Gram Matrices

The (bi-infinite) Gram matrix G for Ψ is given by [G]j,m =
〈
ψm, ψj

〉
, for j, m ∈ Z. This matrix

defines an operator by the standard matrix multiplication on `2(Z), the set of square summable
sequences. It is known, that many properties of the sequence are directly related to properties of
this operator, for a summary see (Prop. 4.4, [22]). For example, that G is bounded, if and only if
the sequence forms a Bessel sequence. G is invertible on all of `2(Z) if and only if the sequence is a
Riesz sequence.

3.2. Multipliers

In this work the operator that consists of a multiplication by a given function will play an
important role.

For L2(Rd) we can give the following results, which are either known, see for example,
Reference [23] or can be easily proved:

Proposition 1. Let φ be a measurable function defined in Rd, and consider the multiplication operator Mφ on
L2(Rd) given by

(
Mφ( f )

)
(t) = φ(t) f (t).

1. φ ∈ L∞(Rd) if and only if Mφ : L2(Rd) → L2(Rd) is well defined and bounded. In this case
‖φ‖∞ = ‖Mφ‖Op.

2. Assume there exist p, P > 0 such that p ≤ |φ(x)| ≤ P for almost all x ∈ supp(φ). Then Im(Mφ) =

L2(supp(φ)), ker(Mφ) = L2(Rd\supp(φ)) and M†
φ = Mφ† . On supp(φ) we have∥∥Mφ( f )

∥∥ ≥ p ‖ f ‖ .

3. Mφ is boundedly invertible if and only if there exists p > 0 such that p ≤ |φ(x)| a.e. In this
case M−1

φ = M 1
φ

.

4. Gramian Function for Irregular Frames of Translates

In this section we will show some results about sufficient and necessary conditions on the
pseudo-Gramian function for Bessel sequence and Riesz basis properties.

As a connection of the pseudo-Gramian function with the Gramian matrix we get the
following result.

Proposition 2. Let φ ∈ L2(Rd). For any system of translates {Tλk φ}k∈Z the Gramian matrix G has the entries

Gk,l = Φ̂ (λk − λl) .

Proof.
Gk,l =

〈
Tλk φ, Tλl φ

〉
=
〈
φ, Tλl−λk φ

〉
=

=
〈
φ̂, Mλk−λl φ̂

〉
=
∫
Rd

∣∣φ̂(ξ)∣∣2 e−2πi(λk−λl)ξ dξ =
(
F
∣∣φ̂∣∣2) (λk − λl)

As a consequence of Schur’s test, see for example, Reference [2] and the properties of the Gram
matrix we get:

Corollary 1. Let φ ∈ L2(Rd). If
sup
k∈Z

∑
l∈Z

∣∣Φ̂ (λk − λl)
∣∣ < ∞,

then the system of translates {Tλk φ}k∈Z is a Bessel sequence.
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This is equivalent to the Gram matrix being included in the Schur-type matrix algebra with no
weight, that is, the set of translates forms an intrinsically localized frame [24,25].

On the other hand using necessary conditions for bounded matrices on `2 [26,27] the following
can be shown:

Corollary 2. If φ ∈ L2(Rd) and {Tλk φ}k∈Z is a Bessel sequence, then

sup
k∈Z

∑
l∈Z

∣∣Φ̂ (λk − λl)
∣∣2 < ∞.

For Riesz bases we obtain the following result:

Proposition 3. Let φ ∈ L2(Rd). If

‖φ‖2
L2(Rd) > sup

j∈Z

(
∑

l,l 6=j

∣∣Φ̂ (λj − λl
)∣∣) ,

then the system of translates {Tλk φ}k∈Z is a Riesz sequence.

Proof. As φ ∈ L2(Rd) we have

Φ̂(0) =
∫
Rd

Φ(ω)dω =
∫
Rd

∣∣φ̂(ω)
∣∣2 dω =

∥∥φ̂
∥∥2

= ‖φ‖2 .

Therefore, by assumption, the Gram matrix Gk,l = Φ̂ (λk − λl) is strictly diagonally dominant,
and it is invertible by (Lemma 6.5.4, [2]), which is the infinite-dimensional version of the
Levy-Desplanque theorem. The Gram-matrix is therefore invertible from `2 onto `2 and so the
sequence is a Riesz sequence [1].

5. The Operator-Based Approach to Irregular Frames of Translates

5.1. Irregular Translates in PWE

From now on we will assume φ ∈ PWE. Analogous as in (Theorem 4.1, Prop. 3.6, [20]) the
following can be proved.

Lemma 1.

1. Assume {eλk}k∈Z is a Bessel sequence of L2(E) with bound Be and there exists P > 0 such that Φ ≤ P
a.e. Then {Tλk φ}k∈Z is a Bessel sequence for L2(Rd) with bound Bφ = Be · P.

2. Let {Tλk φ}k∈Z be a Bessel sequence for L2(Rd) with bound Bφ, and assume there exists p > 0 such that
Φ ≥ p a.e. in E. Then {eλk}k∈Z is a Bessel sequence for L2(E) with bound Be = Bφ/p.

The following results generalize Lemmas 7.2.1 and 7.3.2 in [1].

Lemma 2. Let {eλk}k∈Z be a Bessel sequence for L2(E) and assume there exists P > 0 such that Φ(ω) ≤ P
a.e. Let {ck}k∈Z ∈ `2(Z). Then ∑k∈Z ckTλk φ converges unconditionally in L2(Rd), ∑k∈Z ckeλk converges
unconditionally in L2(E) and

F
(

∑
k∈Z

ckTλk φ

)
=

(
∑
k∈Z

ckeλk

)
φ̂.

Therefore RMφ̂ |RDe

= F (RDφ
) and f ∈ RDφ

if and only if there exists F ∈ RDe such that f̂ = F · φ̂.
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Proof. Following Lemma 1 {Tλk φ}k∈Z is a Bessel sequence and so all involved sums converge
unconditionally.

F
(

∑
k∈Z

ckTλk φ

)
= ∑

k∈Z
ckeλk φ̂.

As φ̂ is bounded, the multiplication operator Mφ̂ is also bounded and therefore(
∑
k∈Z

ckeλk

)
φ̂ = Mφ̂

(
∑
k∈Z

ckeλk

)
= ∑

k∈Z
ck Mφ̂

(
eλk

)
= ∑

k∈Z
ckeλk φ̂.

Corollary 3. Let {eλk}k∈Z be a Bessel sequence in L2(E) and assume there exists P > 0 such that Φ ≤ P a.e.

Let {Tλk φ}k∈Z be a frame sequence. Then RDe · φ̂ = span
{

eλk φ̂ : k ∈ Z
}
= F

(
span

{
Tλk φ : k ∈ Z

})
and

so f ∈ span
{

Tλk φ : k ∈ Z
}

if and only if there exists F ∈ RDe such that f̂ = F · φ̂.

Proof. In this case span
{

Tλk φ : k ∈ Z
}

= RDφ
. We see from the proof of Lemma 2 that

F = ∑
k∈Z

〈
f , T̃λk φ

〉
eλk .

5.2. Relation of Operators

In this section we state the relations of the operators of the set of exponentials and the system
of translates.

Lemma 3. Let {eλk}k∈Z be a Bessel sequence of L2(E) and assume that there exists P > 0 such that Φ ≤ P
a.e. Then

{
Tλk φ

}
is a Bessel sequence of L2(Rd) and

Dφ = F−1Mφ̂De, Cφ = Ce M
φ̂
F ,

Sφ = F−1Mφ̂Se M
φ̂
F Gφ = Ce MΦDe.

Proof. By Lemma 1 {Tλk φ}k∈Z is a Bessel sequence of L2(Rd). For c ∈ `2(Z), by Lemma 2,

F
(

Dφc
)
= F

(
∑
k

ckTλk φ

)
=

(
∑
k

ckeλk

)
φ̂ = Mφ̂Dec.

For f ∈ PWE,

Cφ f =
{〈

f , Tλk φ
〉}

k∈Z =
{〈

f̂ , eλk φ̂
〉}

k∈Z
=
{〈

f̂ φ̂, eλk

〉}
k∈Z

.

So
Sφ = DφCφ = F−1Mφ̂DeCe M

φ̂
F = F−1Mφ̂Se M

φ̂
F ,

and

Gφ = CφDφ = Ce M
φ̂
FF−1Mφ̂De = Ce M|φ̂|2 De.

In particular we have that RDφ
⊆ F−1L2(supp(φ̂)).
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Proposition 4. Let {eλk}k∈Z be a frame of L2(supp(φ̂)
)
, and assume there exist p, P > 0 such that

p ≤ Φ ≤ P a.e. on supp(φ̂). Then
{

Tλk φ
}

k∈Z is a frame sequence that spans PWsupp(φ̂). Furthermore

S−1
φ |PWsupp(φ̂)

= F−1
(

M 1
φ̂

S−1
e M 1

φ̂

)
F , S†

φ = F−1M 1
φ̂

S−1
e Mφ̂†F ,

De = M 1
φ̂
FDφ, Ce = CφF−1M

φ̂
† ,

Se = M 1
φ̂
FSφF−1M

φ̂
† , Ge = CφFM 1

Φ
F−1Dφ.

Moreover pA(opt)
e ≤ A(opt)

φ ≤ A(opt)
e P and pB(opt)

e ≤ B(opt)
φ ≤ B(opt)

e P.

Proof. By Proposition 1 Mφ̂ is invertible on L2(supp(φ̂)
)
, and therefore Sφ = F−1Mφ̂Se M

φ̂
F is

invertible on PWsupp(φ̂), and

S−1
φ |PWsupp(φ̂)

= F−1M 1
φ̂

S−1
e M 1

φ̂
F .

Note that F maps PWE onto L2(E) and Mφ̂ maps L2(E) onto L2(supp(φ̂)), with M†
φ̂
= Mφ̂† .

Therefore S†
φ = F−1M 1

φ̂

S−1
e Mφ̂†F .

By Lemma 2, RDφ
⊆ PWsupp(φ̂) and since {eλk}k∈Z is a frame for L2(supp(φ̂)), we know that

RDφ
= PWsupp(φ̂). Now Dφ = F−1Mφ̂De implies M−1

φ̂
FDφ = De, and so RDe = L2(supp(φ̂)).

We have CφF−1 = Ce M
φ̂

and hence Ce = CφF−1M
φ̂

† .

So
Ge = CeDe = CφF−1M

φ̂
† M 1

φ̂
FDφ = CφF−1M 1

|φ̂|2
FDφ.

Finally,
1

A(opt)
φ

=
∥∥∥S−1

φ

∥∥∥
Op

=

∥∥∥∥F−1M 1
φ̂

S−1
e M 1

φ̂
F
∥∥∥∥

Op
≤ 1

p
1

A(opt)
e

and
1

A(opt)
e

=
∥∥∥S−1

e

∥∥∥
Op

=
∥∥∥M

φ̂
FS−1

φ F
−1Mφ̂

∥∥∥
Op
≤ P

1

A(opt)
φ

.

Analogously, since Sφ = F−1Mφ̂Se M
φ̂
F , it can be proved that

pB(opt)
e ≤ B(opt)

φ ≤ B(opt)
e P.

Furthermore, we can state the following result about the exactness of sequences of translates and
sequences of exponentials. Observe that Proposition 2 follows also from the equation Gφ = CφDφ =

Ce MΦDe in Lemma 3.

Corollary 4. Let {eλk}k∈Z be a Bessel sequence of L2(E).

1. Assume there exists P > 0 such that Φ ≤ P a.e.. If {Tλk φ}k∈Z is exact, then {eλk}k∈Z is exact.
2. Assume there exist p, P > 0 such that p ≤ Φ ≤ P a.e. in E. Then {Tλk φ}k∈Z is exact if and only if

{eλk}k∈Z is exact.

Proof. Lemma 3 yields kerDe ⊆ kerDφ.
If |φ̂| is bounded from above and below, then Mφ̂ is invertible and so by Proposition 4,

part 2 follows.

We can now proof one of the theorems stated in Section 2.
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Proof of Theorem 1. (1) Since φ̂ is bounded from above and from below, Mφ̂ is invertible and so by
Lemma 3 (c) =⇒ ((b)⇐⇒ (a)). If De and Dφ are surjective as well as Ce and Cφ are injective, Mφ̂ is
bijective and so the other directions are shown.

(2) follows from Corollary 4 applied to E = supp(φ̂) and (1) .

Note that if the completeness assumption is dropped (i.e., we use frame sequences and Riesz
sequence) we still have the following:

(c) =⇒
(
(a)⇐⇒ (b)

)
and therefore

(a) =⇒
(
(c) =⇒ (b)

)
(b) =⇒

(
(c) =⇒ (a)

)
.

For upper semi-frames [28], that is, complete Bessel sequences, similar relations can be given
but not equivalencies.

Using Theorem 1, we can generalize Proposition 7.3.6. in [1] in the following sense:

Corollary 5. Let {eλk}k∈Z be a frame in L2(supp(φ̂)). If Tλk φ forms a frame, then φ̂ is discontinuous and so
φ 6∈ L1(Rd).

5.3. The Canonical Dual

We arrive to the relation between the canonical duals of frame sequences of exponentials and
frame sequences of translates stated in Theorem 2.

Proof of Theorem 2. As in Proposition 4

S−1
φ = F−1M 1

φ̂

S−1
e M 1

φ̂
F

and therefore
S−1

φ Tλk φ = F−1M 1
φ̂

S−1
e M 1

φ̂
FTλk φ = F−1M 1

φ̂

S−1
e M 1

φ̂
eλk φ̂ =

= F−1M 1
φ̂

S−1
e eλk = F

−1M 1
φ̂

ẽλk = F
−1M φ̂

|φ̂|2
ẽλk .

From Lemma 3 we obtain:

Corollary 6. Assume {eλk}k∈Z is an Ae-tight frame of L2(E), and that there exist P > 0 such that Φ ≤ P a.e.
Then

{
Tλk φ

}
is a Bessel sequence of L2(Rd) and the frame operator of {Tλk φ}k∈Z is

Sφ = F−1MAe ·ΦF .

The following Corollary shows the relation between the analysis and synthesis operator of the
duals of the shifts and of the exponentials.

Corollary 7. Assume that there exist p, P > 0 such that p ≤ Φ ≤ P a.e. on supp(φ̂) and let {eλk}k∈Z be a
frame sequence in L2(supp(φ̂)). Then

Cθ = C̃φ = C̃e M φ̂
Φ
F .

Dθ = D̃φ = F−1M φ̂
Φ

D̃e.

Now let us investigate the operator S1/2.
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Lemma 4.

1. Let Φ = 1 a.e. Then S−1/2
φ = F−1Mφ̂S−1/2

e M
φ̂
F .

2. Let {eλk}k∈Z form an Ae-tight frame of L2(E). Then S−1/2 = F−1M√A|φ̂|F .

Proof. 1. With the assumption Mφ̂ is a unitary operator. Therefore√
S−1

φ =
√
F−1M 1

φ̂

S−1
e M 1

φ̂
F = F−1Mφ̂S−1/2

e M
φ̂
F .

2. By Corollary 6, Sφ = F−1MAe |φ̂|2F , and so
√

Sφ = F−1M√A|φ̂|F .

Finally, we can give the following representation for an equivalent Parseval frame to a frame
sequence of translates:

Theorem 3. Let {eλk}k∈Z be a frame for L2(supp(φ̂)
)
, and assume there exist p, P > 0 such that p ≤ Φ ≤ P

a.e. on supp(φ̂). Set

θ̂#
k =

{
φ̂√
Φ

e#
λk

on supp(Φ)

0 otherwise
,

where we denote the canonical tight frame of {eλk}k∈Z by {e#
λk
}k∈Z. Then {θ#

k}k∈Z forms a Parseval frame with
the same span as {Tλk φ}k∈Z. The frames {θ#

k}k∈Z and {Tλk φ}k∈Z are equivalent, that is, are images of bounded
and boudedly invertible operator of each other.

If {eλk}k∈Z forms an Ae-tight frame, then {θ#
k}k∈Z forms a tight frame of translates with shifts λk and

generator 1
Ae
F−1 φ̂√

Φ
.

Proof. By (Theorem 4.1, [20]) θ#
k is a frame sequence. Clearly span

{
θ#

k : k ∈ Z
}
⊆ PWsupp(φ̂).

For f ∈ PWsupp(φ̂),

∑
k

〈
f̂ ,

φ̂√
Φ

e#
λk

〉
φ̂√
Φ

e#
λk

=

(
∑
k

〈
φ̂√
Φ

f̂ , e#
λk

〉
e#

λk

)
· φ̂√

Φ
=

=
φ̂√
Φ

f̂ · φ̂√
Φ

= f̂ .

Therefore S = Id and span
{

θ#
k : k ∈ Z

}
= PWsupp(φ̂). The equivalence follows from the fact that

by assumption M 1√
Φ

is a bijection and so RC
θ#
k
= RCφ

.

The result follows from Proposition 4.

6. Outlook and Conclusions

We have shown that under not-that-strong assumptions, we could, surprisingly, get similar results
for the irregular setting as in the regular case, in particular for the (generalization of the) Gramian
function and a formula for the canonical dual and Parseval frame.

We focused on the generalization of the sampling set to an irregular set. To handle the problem in
full detail within the scope of this paper, we sticked to the bandlimitness assumption. Some of the
results shown above are still valid for not band-limited functions, for example the results in Section 5.1
and Lemma 3. In the future an interesting question is what other results can be proved for this case.

We phrased the assumptions on the set of exponentials in a very general way, on purpose. In this
way they can be easily combined with results about frames of exponentials and density results,
see e.g., (Section 7.6, [1]).
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