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Abstract

:

We consider translates of functions in L2(Rd) along an irregular set of points, that is, {ϕ(·−λk)}k∈Z—where ϕ is a bandlimited function. Introducing a notion of pseudo-Gramian function for the irregular case, we obtain conditions for a family of irregular translates to be a Bessel, frame or Riesz sequence. We show the connection of the frame-related operators of the translates to the operators of exponentials. This is used, in particular, to find for the first time in the irregular case a representation of the canonical dual as well as of the equivalent Parseval frame—in terms of its Fourier transform.
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1. Introduction


Frames of translates, i.e., frame sequences originated by the shifts of a given, fixed function, are an important mathematical background for Gabor [1,2,3], wavelet [4,5] and sampling theory [6,7]. One generating function ϕ is shifted to create the analyzing family of elements, ϕ·−λkk∈Z for a sequence Λ={λk}k∈Z. These systems play a main role in the theory of shift invariant spaces (SIS) [8,9,10,11], which is very useful for the modeling of problems in signal processing, and is central in approximation. It is also a very active field of research in mathematics, see e.g., [12,13,14,15]. Frames of translates are closely related to frames of exponentials also called Fourier frames [16,17,18].



The regular shifts, e.g., when λk=kb for some fixed b>0, were studied e.g., in [19]. Investigations of irregular frames of translates, where the set Λ has no regular structure, were done e.g., in [1,6]. But there remain several open questions, in particular how the concept of Gramian function could be defined in the irregular case, which is a fundamental tool for describing properties of regular systems of translates. Also no explicit formulas for the canonical dual of irregular frames of translates were given so far. We do this in the present paper.



The paper is structured as follows: In Section 2 we present an overview over the main results. In Section 3 we summarize basic notations and preliminaries. In Section 4 we generalize the concept of the Gramian function and use it to describe Bessel frame and Riesz properties of irregular shifts. In Section 5 we look at the inter-relation of the frame-related operators for those sequences to those of exponential functions. This permits us to study Bessel, frame and Riesz properties of irregular frames of translates, and furthermore give formulas for the canonical dual, and for equivalent Parseval frames.




2. Main Results


We state here our main results at the beginning of the paper. For notations and definitions pleaser refer to the later sections.



For regular frames of translates the Gramian function is a key concept. For the case of irregular frames of translates, where we have no group structure, we introduce the following notion.



Definition 1.

Let ϕ∈L2(Rd). We define its pseudo-Gramian function by


Φ=ϕ^2













Surprisingly, as we will see in Section 4 and Section 5, this definition leads to quite analogous results as in the regular case, where this function is used only in a periodized version. Among them we show the following:



Theorem 1.

Let ϕ∈L2(Rd) such that supp(ϕ^) is compact. In each of the following cases (i.e., (1) or (2)), if one of the following conditions (i.e., (a),(b) or (c)) is fulfilled, the other two are equivalent:




	(1) 

	
	(a) 

	
{eλk}k∈Z is a frame in L2(supp(ϕ^)).




	(b) 

	
{Tλkϕ}k∈Z is a frame in PWsupp(ϕ^).




	(c) 

	
There exist p,P>0 such that p≤Φ≤P a.e. on supp(ϕ^).








	(2) 

	
	(a) 

	
{eλk}k∈Z is a Riesz basis in L2(supp(ϕ^)).




	(b) 

	
{Tλkϕ}k∈Z is a Riesz basis in PWsupp(ϕ^).




	(c) 

	
There exist p,P>0 such that p≤Φ≤P a.e. on supp(ϕ^).















Note that the condition 1(c)=2(c) implies that the frame properties of {eλk}k∈Z and {Tλkϕ}k∈Z coincide.



Theorem 1 is an extension of results in [20]. We prove it using an operator theory based approach. Furthermore we can give an explicit form for the canonical dual of an irregular set of translates, as a nice generalization of results in the regular case:



Theorem 2.

Let ϕ∈L2(Rd) such that supp(ϕ^) is compact. Assume that there exist p,P>0 such that p≤Φ≤P a.e. on supp(ϕ^) and let {eλk}k∈Z be a frame sequence in L2(supp(ϕ^)). Then the canonical dual of {Tλkϕ}k∈Z is {θk}k∈Z where


θ^k=ϕ^Φeλk˜on supp(ϕ^)0otherwise.











In particular if {eλk}k∈Z is an A-tight frame, then θk=Tλkθ with θ^=1A1ϕ^¯ (on supp(ϕ^)).





Note that the definition of the pseudo-Gramian gives a convenient way of formulating the other results, although they do not depend on this definition per-se.




3. Notation and Preliminaries


Given λ∈Rd, we denote by eλ the function defined by eλ(x)=e−2πiλx. The operators Tλ and Mλ are given by Tλf(x)=f(x−λ) and Mλf(x)=e−λf(x) respectively. We write f^ for the Fourier transform, F:L2(Rd)→L2(Rd), given by F(f)(w)=f^(w)=∫Rdf(x)e−2πixwdx, for f∈L1(Rd)∩L2(Rd) with the natural extension to L2(Rd).



In this paper E⊆Rd is a bounded set. We denote


PWE=f∈L2(Rd)supp(f^)⊆E.











The space


f∈L2(Rd):f(x)=0fora.e.x∈Rd∖E,








is a closed subspace of L2(Rd) which is isomorphic to L2(E), and we will identify these two spaces. The Fourier transform maps PWE onto L2(E).



When we write that {eλk}k∈Z is a frame (frame sequence, Bessel sequence or Riesz basis) of L2(E) we will mean that the set {eλkχE}k∈Z has that property, where χE stands for the indicator function of E, that is, it is an outer frame, Bessel or Riesz basis [21]. For a given operator O we denote its pseudo-inverse by O†. Motivated by that, for a function ψ we denote


ψ†(x)=1/ψ(x)x∈supp(ψ)0otherwise











Throughout this work Λ={λk}k∈Z will be a sequence in Rd. For a function f we denote its range by Rf.



3.1. Frames


Let H be a separable Hilbert space. A sequence {ψk}k∈Z⊆H is a frame for H if there exist positive constants A and B that satisfy


A∥f∥2≤∑k∈Z|⟨f,ψk⟩|2≤B∥f∥2∀f∈H.











We denote the optimal bounds by A(opt) and B(opt). If A(opt)=B(opt) then it is called a tight frame, and if A(opt)=B(opt)=1 a Parseval frame. If {ψk}k∈Z satisfies the right inequality in the above formula, it is called a Bessel sequence.



A sequence {ψk}k∈Z⊆H is a Riesz basis for H if it is complete in H and there exist 0<A≤B such that for every finite scalar sequence {ck}k∈Z


A∑|ck|2≤∑k∈Zckψk2≤B∑|ck|2.











The constants A and B are called Riesz bounds. A complete sequence is exact if it ceases to be complete when an arbitrary element is removed. Exact frames are precisely the Riesz bases.



We say that {ψk}k∈Z⊆H is a frame sequence (Riesz sequence) if it is a frame (Riesz basis) for its span.



For Ψ={ψk}k∈Z a Bessel sequence, its analysis operator C:H→ℓ2(Z) is defined by C(f)=f,ψkHk∈Z, and its synthesis operator D:ℓ2(Z)→H by Dc=∑k∈Zckψk.



If Ψ is a frame of H, the frame operator S:H⟶H given by S(f)=DC(f)=∑k∈Zf,ψkψk is bounded, invertible, self-adjoint and positive. There always exists a dual frame of Ψ, which is a frame {ϕk}k∈Z such that


f=∑k∈Z⟨f,ϕk⟩ψk∀f∈Horf=∑k∈Z⟨f,ψk⟩ϕk∀f∈H.



(1)







The sequence {S−1ψk}k∈Z satisfies (1). It is called the canonical dual frame of {ψk}k∈Z and we will denote it by {ψk˜}k∈Z. We distinguish between the operators by subscripts, e.g., Ce is the analysis operator for the set of exponentials {eλk}k∈Z and Cϕ those of the system of translates {Tλkϕ}k∈Z. For the operators corresponding to the canonical dual we will write C˜e respectively C˜ϕ.



To every frame Ψ={ψk}k∈Z a canonical tight frame can be associated, which is the sequence {S−12ψk}k∈Z, where S−12 is the positive square root of S−1.



Gram Matrices


The (bi-infinite) Gram matrix G for Ψ is given by Gj,m=ψm,ψj, for j,m∈Z. This matrix defines an operator by the standard matrix multiplication on ℓ2(Z), the set of square summable sequences. It is known, that many properties of the sequence are directly related to properties of this operator, for a summary see (Prop. 4.4, [22]). For example, that G is bounded, if and only if the sequence forms a Bessel sequence. G is invertible on all of ℓ2(Z) if and only if the sequence is a Riesz sequence.





3.2. Multipliers


In this work the operator that consists of a multiplication by a given function will play an important role.



For L2(Rd) we can give the following results, which are either known, see for example, Reference [23] or can be easily proved:



Proposition 1.

Let ϕ be a measurable function defined in Rd, and consider the multiplication operator Mϕ on L2(Rd) given by Mϕ(f)(t)=ϕ(t)f(t).




	1.

	
ϕ∈L∞(Rd) if and only if Mϕ:L2(Rd)→L2(Rd) is well defined and bounded. In this case ∥ϕ∥∞=∥Mϕ∥Op.




	2.

	
Assume there exist p,P>0 such that p≤|ϕ(x)|≤P for almost all x∈supp(ϕ). Then Im(Mϕ)=L2(supp(ϕ)),ker(Mϕ)=L2(Rd∖supp(ϕ)) and Mϕ†=Mϕ†. On supp(ϕ) we have


Mϕ(f)≥pf.












	3.

	
Mϕ is boundedly invertible if and only if there exists p>0 such that p≤|ϕ(x)| a.e. In this case Mϕ−1=M1ϕ.













4. Gramian Function for Irregular Frames of Translates


In this section we will show some results about sufficient and necessary conditions on the pseudo-Gramian function for Bessel sequence and Riesz basis properties.



As a connection of the pseudo-Gramian function with the Gramian matrix we get the following result.



Proposition 2.

Let ϕ∈L2(Rd). For any system of translates {Tλkϕ}k∈Z the Gramian matrix G has the entries


Gk,l=Φ^λk−λl.













Proof. 



Gk,l=Tλkϕ,Tλlϕ=ϕ,Tλl−λkϕ=










=ϕ^,Mλk−λlϕ^=∫Rdϕ^(ξ)2e−2πiλk−λlξdξ=Fϕ^2λk−λl








 □





As a consequence of Schur’s test, see for example, Reference [2] and the properties of the Gram matrix we get:



Corollary 1.

Let ϕ∈L2(Rd). If


supk∈Z∑l∈ZΦ^λk−λl<∞,








then the system of translates {Tλkϕ}k∈Z is a Bessel sequence.





This is equivalent to the Gram matrix being included in the Schur-type matrix algebra with no weight, that is, the set of translates forms an intrinsically localized frame [24,25].



On the other hand using necessary conditions for bounded matrices on ℓ2 [26,27] the following can be shown:



Corollary 2.

If ϕ∈L2(Rd) and {Tλkϕ}k∈Z is a Bessel sequence, then


supk∈Z∑l∈ZΦ^λk−λl2<∞.













For Riesz bases we obtain the following result:



Proposition 3.

Let ϕ∈L2(Rd). If


ϕL2(Rd)2>supj∈Z∑l,l≠jΦ^λj−λl,








then the system of translates {Tλkϕ}k∈Z is a Riesz sequence.





Proof. 

As ϕ∈L2(Rd) we have


Φ^(0)=∫RdΦ(ω)dω=∫Rdϕ^(ω)2dω=ϕ^2=ϕ2.











Therefore, by assumption, the Gram matrix Gk,l=Φ^λk−λl is strictly diagonally dominant, and it is invertible by (Lemma 6.5.4, [2]), which is the infinite-dimensional version of the Levy-Desplanque theorem. The Gram-matrix is therefore invertible from ℓ2 onto ℓ2 and so the sequence is a Riesz sequence [1]. □






5. The Operator-Based Approach to Irregular Frames of Translates


5.1. Irregular Translates in PWE


From now on we will assume ϕ∈PWE. Analogous as in (Theorem 4.1, Prop. 3.6, [20]) the following can be proved.



Lemma 1.






	1.

	
Assume {eλk}k∈Z is a Bessel sequence of L2(E) with bound Be and there exists P>0 such that Φ≤P a.e. Then {Tλkϕ}k∈Z is a Bessel sequence for L2(Rd) with bound Bϕ=Be·P.




	2.

	
Let {Tλkϕ}k∈Z be a Bessel sequence for L2(Rd) with bound Bϕ, and assume there exists p>0 such that Φ≥p a.e. in E. Then {eλk}k∈Z is a Bessel sequence for L2(E) with bound Be=Bϕ/p.











The following results generalize Lemmas 7.2.1 and 7.3.2 in [1].



Lemma 2.

Let {eλk}k∈Z be a Bessel sequence for L2(E) and assume there exists P>0 such that Φ(ω)≤P a.e. Let {ck}k∈Z∈ℓ2(Z). Then ∑k∈ZckTλkϕ converges unconditionally in L2(Rd), ∑k∈Zckeλk converges unconditionally in L2(E) and


F∑k∈ZckTλkϕ=∑k∈Zckeλkϕ^.











Therefore RMϕ^|RDe=F(RDϕ) and f∈RDϕ if and only if there exists F∈RDe such that f^=F·ϕ^.





Proof. 

Following Lemma 1 {Tλkϕ}k∈Z is a Bessel sequence and so all involved sums converge unconditionally.


F∑k∈ZckTλkϕ=∑k∈Zckeλkϕ^.











As ϕ^ is bounded, the multiplication operator Mϕ^ is also bounded and therefore


∑k∈Zckeλkϕ^=Mϕ^∑k∈Zckeλk=∑k∈ZckMϕ^eλk=∑k∈Zckeλkϕ^.








 □





Corollary 3.

Let {eλk}k∈Z be a Bessel sequence in L2(E) and assume there exists P>0 such that Φ≤P a.e. Let {Tλkϕ}k∈Z be a frame sequence. Then RDe·ϕ^=span¯eλkϕ^:k∈Z=Fspan¯Tλkϕ:k∈Z and so f∈span¯Tλkϕ:k∈Z if and only if there exists F∈RDe such that f^=F·ϕ^.





Proof. 

In this case span¯Tλkϕ:k∈Z=RDϕ. We see from the proof of Lemma 2 that F=∑k∈Zf,Tλkϕ˜eλk. □






5.2. Relation of Operators


In this section we state the relations of the operators of the set of exponentials and the system of translates.



Lemma 3.

Let {eλk}k∈Z be a Bessel sequence of L2(E) and assume that there exists P>0 such that Φ≤P a.e. Then Tλkϕ is a Bessel sequence of L2(Rd) and


Dϕ=F−1Mϕ^De,Cϕ=CeMϕ^¯F,Sϕ=F−1Mϕ^SeMϕ^¯FGϕ=CeMΦDe.













Proof. 

By Lemma 1 {Tλkϕ}k∈Z is a Bessel sequence of L2(Rd). For c∈ℓ2(Z), by Lemma 2,


FDϕc=F∑kckTλkϕ=∑kckeλkϕ^=Mϕ^Dec.











For f∈PWE,


Cϕf=f,Tλkϕk∈Z=f^,eλkϕ^k∈Z=f^ϕ^¯,eλkk∈Z.











So


Sϕ=DϕCϕ=F−1Mϕ^DeCeMϕ^¯F=F−1Mϕ^SeMϕ^¯F,








and


Gϕ=CϕDϕ=CeMϕ^¯FF−1Mϕ^De=CeMϕ^2De.








 □





In particular we have that RDϕ⊆F−1L2(supp(ϕ^)).



Proposition 4.

Let {eλk}k∈Z be a frame of L2supp(ϕ^), and assume there exist p,P>0 such that p≤Φ≤P a.e. on supp(ϕ^). Then Tλkϕk∈Z is a frame sequence that spans PWsupp(ϕ^). Furthermore


Sϕ−1|PWsupp(ϕ^)=F−1M1ϕ^¯Se−1M1ϕ^F,Sϕ†=F−1M1ϕ^¯Se−1Mϕ^†F,










De=M1ϕ^FDϕ,Ce=CϕF−1Mϕ^¯†,Se=M1ϕ^FSϕF−1Mϕ^¯†,Ge=CϕFM1ΦF−1Dϕ.











Moreover pAe(opt)≤Aϕ(opt)≤Ae(opt)P and pBe(opt)≤Bϕ(opt)≤Be(opt)P.





Proof. 

By Proposition 1 Mϕ^ is invertible on L2supp(ϕ^), and therefore Sϕ=F−1Mϕ^SeMϕ^¯F is invertible on PWsupp(ϕ^), and


Sϕ−1|PWsupp(ϕ^)=F−1M1ϕ^¯Se−1M1ϕ^F.











Note that F maps PWE onto L2(E) and Mϕ^ maps L2(E) onto L2(supp(ϕ^)), with Mϕ^†=Mϕ^†. Therefore Sϕ†=F−1M1ϕ^¯Se−1Mϕ^†F.



By Lemma 2, RDϕ⊆PWsupp(ϕ^) and since {eλk}k∈Z is a frame for L2(supp(ϕ^)), we know that RDϕ=PWsupp(ϕ^). Now Dϕ=F−1Mϕ^De implies Mϕ^−1FDϕ=De, and so RDe=L2(supp(ϕ^)).



We have CϕF−1=CeMϕ^¯ and hence Ce=CϕF−1Mϕ^¯†.



So


Ge=CeDe=CϕF−1Mϕ^¯†M1ϕ^FDϕ=CϕF−1M1ϕ^2FDϕ.











Finally,


1Aϕ(opt)=Sϕ−1Op=F−1M1ϕ^¯Se−1M1ϕ^FOp≤1p1Ae(opt)








and


1Ae(opt)=Se−1Op=Mϕ^¯FSϕ−1F−1Mϕ^Op≤P1Aϕ(opt).











Analogously, since Sϕ=F−1Mϕ^SeMϕ^¯F, it can be proved that


pBe(opt)≤Bϕ(opt)≤Be(opt)P.








 □





Furthermore, we can state the following result about the exactness of sequences of translates and sequences of exponentials. Observe that Proposition 2 follows also from the equation Gϕ=CϕDϕ=CeMΦDe in Lemma 3.



Corollary 4.

Let {eλk}k∈Z be a Bessel sequence of L2(E).




	1.

	
Assume there exists P>0 such that Φ≤P a.e.. If {Tλkϕ}k∈Z is exact, then {eλk}k∈Z is exact.




	2.

	
Assume there exist p,P>0 such that p≤Φ≤P a.e. in E. Then {Tλkϕ}k∈Z is exact if and only if {eλk}k∈Z is exact.











Proof. 

Lemma 3 yields kerDe⊆kerDϕ.



If |ϕ^| is bounded from above and below, then Mϕ^ is invertible and so by Proposition 4, part 2 follows. □





We can now proof one of the theorems stated in Section 2.



Proof of Theorem 1.

(1) Since ϕ^ is bounded from above and from below, Mϕ^ is invertible and so by Lemma 3 (c)⟹(b)⟺(a). If De and Dϕ are surjective as well as Ce and Cϕ are injective, Mϕ^ is bijective and so the other directions are shown.



(2) follows from Corollary 4 applied to E=supp(ϕ^) and (1)  □.





Note that if the completeness assumption is dropped (i.e., we use frame sequences and Riesz sequence) we still have the following:


(c)⟹(a)⟺(b)








and therefore


(a)⟹(c)⟹(b)(b)⟹(c)⟹(a).











For upper semi-frames [28], that is, complete Bessel sequences, similar relations can be given but not equivalencies.



Using Theorem 1, we can generalize Proposition 7.3.6. in [1] in the following sense:



Corollary 5.

Let {eλk}k∈Z be a frame in L2(supp(ϕ^)). If Tλkϕ forms a frame, then ϕ^ is discontinuous and so ϕ∉L1(Rd).






5.3. The Canonical Dual


We arrive to the relation between the canonical duals of frame sequences of exponentials and frame sequences of translates stated in Theorem 2.



Proof of Theorem 2.

As in Proposition 4


Sϕ−1=F−1M1ϕ^¯Se−1M1ϕ^F








and therefore


Sϕ−1Tλkϕ=F−1M1ϕ^¯Se−1M1ϕ^FTλkϕ=F−1M1ϕ^¯Se−1M1ϕ^eλkϕ^=










=F−1M1ϕ^¯Se−1eλk=F−1M1ϕ^¯eλk˜=F−1Mϕ^ϕ^2eλk˜.








 □





From Lemma 3 we obtain:



Corollary 6.

Assume {eλk}k∈Z is an Ae-tight frame of L2(E), and that there exist P>0 such that Φ≤P a.e. Then Tλkϕ is a Bessel sequence of L2(Rd) and the frame operator of {Tλkϕ}k∈Z is


Sϕ=F−1MAe·ΦF.













The following Corollary shows the relation between the analysis and synthesis operator of the duals of the shifts and of the exponentials.



Corollary 7.

Assume that there exist p,P>0 such that p≤Φ≤P a.e. on supp(ϕ^) and let {eλk}k∈Z be a frame sequence in L2(supp(ϕ^)). Then


Cθ=Cϕ˜=Ce˜Mϕ^ΦF.










Dθ=Dϕ˜=F−1Mϕ^ΦDe˜.













Now let us investigate the operator S1/2.



Lemma 4.






	1.

	
Let Φ=1 a.e. Then Sϕ−1/2=F−1Mϕ^Se−1/2Mϕ^¯F.




	2.

	
Let {eλk}k∈Z form an Ae-tight frame of L2(E). Then S−1/2=F−1MA|ϕ^|F.











Proof. 

1. With the assumption Mϕ^ is a unitary operator. Therefore


Sϕ−1=F−1M1ϕ^¯Se−1M1ϕ^F=F−1Mϕ^Se−1/2Mϕ^¯F.











2. By Corollary 6, Sϕ=F−1MAe|ϕ^|2F, and so Sϕ=F−1MA|ϕ^|F. □





Finally, we can give the following representation for an equivalent Parseval frame to a frame sequence of translates:



Theorem 3.

Let {eλk}k∈Z be a frame for L2supp(ϕ^), and assume there exist p,P>0 such that p≤Φ≤P a.e. on supp(ϕ^). Set


θk#^=ϕ^Φeλk#on supp(Φ)0otherwise,








where we denote the canonical tight frame of {eλk}k∈Z by {eλk#}k∈Z. Then {θk#}k∈Z forms a Parseval frame with the same span as {Tλkϕ}k∈Z. The frames {θk#}k∈Z and {Tλkϕ}k∈Z are equivalent, that is, are images of bounded and boudedly invertible operator of each other.



If {eλk}k∈Z forms an Ae-tight frame, then {θk#}k∈Z forms a tight frame of translates with shifts λk and generator 1AeF−1ϕ^Φ.





Proof. 

By (Theorem 4.1, [20]) θk# is a frame sequence. Clearly span¯θk#:k∈Z⊆PWsupp(ϕ^). For f∈PWsupp(ϕ^),


∑kf^,ϕ^Φeλk#ϕ^Φeλk#=∑kϕ^Φ¯f^,eλk#eλk#·ϕ^Φ=










=ϕ^Φ¯f^·ϕ^Φ=f^.











Therefore S=Id and span¯θk#:k∈Z=PWsupp(ϕ^). The equivalence follows from the fact that by assumption M1Φ is a bijection and so RCθk#=RCϕ.



The result follows from Proposition 4. □







6. Outlook and Conclusions


We have shown that under not-that-strong assumptions, we could, surprisingly, get similar results for the irregular setting as in the regular case, in particular for the (generalization of the) Gramian function and a formula for the canonical dual and Parseval frame.



We focused on the generalization of the sampling set to an irregular set. To handle the problem in full detail within the scope of this paper, we sticked to the bandlimitness assumption. Some of the results shown above are still valid for not band-limited functions, for example the results in Section 5.1 and Lemma 3. In the future an interesting question is what other results can be proved for this case.



We phrased the assumptions on the set of exponentials in a very general way, on purpose. In this way they can be easily combined with results about frames of exponentials and density results, see e.g., (Section 7.6, [1]).
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