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Abstract: The paper is devoted to the inhomogeneous random evolutions (IHRE) and their
applications in finance. We introduce and present some properties of IHRE. Then, we prove weak law
of large numbers and central limit theorems for IHRE. Financial applications are given to illiquidity
modeling using regime-switching time-inhomogeneous Levy price dynamics, to regime-switching
Levy driven diffusion based price dynamics, and to a generalized version of the multi-asset model of
price impact from distress selling, for which we retrieve and generalize their diffusion limit result for
the price process.
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1. Introduction

Random Evolutions started to be studied in the 1970’s, because of their potential applications
to biology, movement of particles, signal processing, quantum physics, finance and insurance,
among others (see [1–3]). They allow modeling a situation in which the dynamics of a system are
governed by various regimes, and the system switches from one regime to another at random times.
Let us be given a state process {xn}n∈N (with state space J) and a sequence of increasing random times
{Tn}n∈N. In short, during each random time interval [Tn, Tn+1), the evolution of the system will be
governed by the state xn. At the random time Tn+1, the system will switch to state xn+1, and so on.
Think for example of regime-switching models in finance, where the state process is linked with, e.g.,
different liquidity regimes, as in the recent article [4]. In their work, the sequence {Tn} represents the
random times at which the market switches from one liquidity regime to another.

When random evolutions began to be studied [1–3], the times {Tn} were assumed to be
exponentially distributed and {xn}n∈N was assumed to be a Markov chain, so that the process
x(t) := xN(t) was assumed to be a continuous-time Markov chain. Here, as in [5], we let:

N(t) := sup{n ∈ N : Tn ≤ t} (1)

the number of regime changes up to time t. In these first papers, limit theorems for the expectation of
the random evolution were studied. Then, in 1984–1985, J. Watkins [6–8] established weak law of large
numbers and diffusion limit results for a specific class of random evolutions, where the times {Tn}
are deterministic and the state process {xn}n∈N is strictly stationary. In [9,10], A. Swishchuk and V.
Korolyuk extended the work of J. Watkins to a setting where (xn, Tn)n∈N is assumed to be a Markov
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renewal process, and obtained weak law of large numbers, central limit theorem and diffusion limit
results. It can also be noted that they allowed the system to be “impacted” at each regime transition,
which they modeled with the use of operators that we will denote D in the following.

As we show in applications (Section 6), these operators D can be used for example to model an
impact on the stock price at each regime transition due to illiquidity as in [4], or to model situations
where the stock price only evolves in a discrete way (i.e., only by successive “impacts”), such as
in the recent articles [11,12] on, respectively, high frequency price dynamics and modeling of price
impact from distressed selling (see Sections 6.1 and 6.3). For example, the price dynamics of the latter
article [11] can be seen as a specific case of random evolution for which the operators D are given by:

D(x, y) f (z) := f ◦ exp
(

z + ε2m + εy + φ(h(z + ε2m + εy)− h(z))
)

, (2)

where x, y ∈ J, z ∈ Rd, f , φ, and h are some functions and ε and m some constants. In Section 6.3,
we generalize their diffusion limit result by using our tools and results on random evolutions
(see [9,13,14] for more details).

In the aforementioned literature on (limit theorems for) random evolutions [6–10], the evolution
of the system on each time interval [Tn, Tn+1) is assumed to be driven by a (time-homogeneous)
semigroup Uxn depending on the current state of the system xn. A semigroup U is a family of
time-dependent operators satisfying U(t + s) = U(t)U(s). For example, if Z is a time-homogeneous
Markov process, then we can define the semigroup:

U(t) f (z) := E[ f (Zt)|Z0 = z],

where f is a bounded measurable function and z ∈ Rd. The idea of a random evolution is therefore the
following: during each time interval [Tn, Tn+1), the system (e.g., price process) evolves according to the
semigroup Uxn (associated to the Markov process Zxn in the case of a price process). At the transition
Tn+1, the system will be impacted by an operator D(xn, xn+1) modeling for example a drop in the price
at what [4] call a liquidity breakdown. Then, on the interval [Tn+1, Tn+2), the price will be driven by the
semigroup Uxn+1 , and so on: it can be summarized as a regime-switching model with impact at each
transition. We can write the previously described random evolution V(t) in the following compact
form (where the product applies on the right):

V(t) =

[
N(t)

∏
k=1

Uxk−1 (Tk − Tk−1) D(xk−1, xk)

]
Ux(t)

(
t− TN(t)

)
. (3)

This time-homogeneous setting (embedded in the time-homogeneous semigroups U) does not
include, e.g., time-inhomogeneous Lévy processes (see Section 6.1), or processes Z solutions of
stochastic differential equations (SDEs) of the form:

dZt = Φ(Zt− , t)dLt, (4)

where L is a vector-valued Lévy process and Φ a driving matrix-valued function (see Section 6.2).
The latter class of SDEs includes many popular models in finance, e.g., time-dependent Heston models.
Indeed, these examples can be associated to time-inhomogeneous generalizations of semigroups,
also called propagators. A (backward) propagator Γ (see Section 2) is simply a family of operators
satisfying Γ(s, t) = Γ(s, u)Γ(u, t) for s ≤ u ≤ t. We then define for a time-inhomogeneous Markov
process Z:

Γ(s, t) f (z) := E[ f (Zt)|Zs = z].

The celebrated Chapman–Kolmogorov equation guaranties the relation Γ(s, t) = Γ(s, u)Γ(u, t) for
s ≤ u ≤ t.
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Let us explain here the main ideas of the main results of the paper, Theorems 8 (LLN) and 11 (FCLT),
using one of the applications, namely, a regime-switching inhomogeneous Lévy-based stock price
model. We consider a regime-switching inhomogeneous Lévy-based stock price model, very similar
in the spirit to the recent article [4]. In short, an inhomogeneous Lévy process differs from a classical
Lévy process in the sense that it has time-dependent (and absolutely continuous) characteristics.
We let {Lx}x∈J be a collection of such Rd-valued inhomogeneous Lévy processes with characteristics
(bx

t , cx
t , νx

t )x∈J, and we define:

Γx(s, t) f (z) := E[ f (Lx
t − Lx

s + z)], z ∈ Rd, x ∈ J, (5)

Dε(x, y) f (z) := f (z + εα(x, y)), z ∈ Rd, x, y ∈ J, (6)

for some bounded function α. We give in Section 6 a financial interpretation of this function α, as well
as reasons we consider a regime-switching model. In this setting, f represents a contingent claim on
a (d-dimensional) risky asset S having regime-switching inhomogeneous Lévy dynamics driven by
the processes {Lx}x∈J: on each random time interval [Tε,s

k (s), Tε,s
k+1(s)), the risky asset is driven by

the process Lxk(s). Indeed, we have the following representation, for ω′ ∈ Ω (to make clear that the
expectation below is taken with respect to ω embedded in the process L and not ω′):

Vε(s, t)(ω′) f (z) =

E

 f

z +

Ns

(
t

1
ε ,s
)
(ω′)+1

∑
k=1

∆Lk +

Ns

(
t

1
ε ,s
)
(ω′)

∑
k=1

εα(xk−1(s)(ω′), xk(s)(ω′))


 ,

(7)

where we have denoted for clarity:

∆Lk = ∆Lk(ε, ω′) := Lxk−1(s)(ω′)
Tε,s

k (s)(ω′)∧t − Lxk−1(s)(ω′)
Tε,s

k−1(s)(ω
′)

. (8)

The random evolution Vε(s, t) f represents in this case the present value of the contingent claim
f of maturity t on the risky asset S, conditionally on the regime switching process (xn, Tn)n≥0:
indeed, remember that Vε(s, t) f is random, and that its randomness (only) comes from the Markov
renewal process. Our main results, Theorems 8 and 11, allow approximating the impact of the
regime-switching on the present value Vε(s, t) f of the contingent claim. Indeed, we get the following
normal approximation, for small ε:

Vε(s, t) f ≈ Γ̂(s, t) f︸ ︷︷ ︸
1st order

regime-switching approx.

+
√

εIσ(s, t) f︸ ︷︷ ︸
noise due to

regime-switching

(9)

The above approximation allows to quantify the risk inherent to regime-switchings occurring at
a high frequency governed by ε. The parameter ε reflects the frequency of the regime-switchings and
can therefore be calibrated to market data by the risk manager. For market practitioners, because of the
computational cost, it is often convenient to have asymptotic formulas that allow them to approximate
the present value of a given derivative, and by extent the value of their whole portfolio. In addition,
the asymptotic normal form of the regime-switching cost allows the risk manager to derive approximate
confidence intervals for his portfolio, as well as other quantities of interest such as reserve policies
linked to a given model.

Therefore, the goal of this paper is to focus on limit theorems for so-called time-inhomogeneous
random evolutions, i.e., random evolutions that we construct with propagators, and not with
(time-homogeneous) semigroups, in order to widen the range of possible applications, as mentioned
above. We call these random evolutions as inhomogeneous random evolutions (IHRE).
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The notion of “time-inhomogeneity” in fact appears twice in our framework: in addition
to being constructed with propagators, random evolutions are driven by time-inhomogeneous
semi-Markov processes (using results from [5]). This general case has not been treated before.
Even if we do not have the same goal in mind, our methodology is similar—in spirit—to the recent
article [15] on the comparison of time-inhomogeneous Markov processes, or to the article [16] on
time-inhomogeneous affine processes. We say “similar”, because we are all in a position where
results for the time-homogenous case exist, and our goal is to develop a rigorous treatment of the
time-inhomogeneous case. It is interesting to see that even if the topics we deal with are different,
the ”philosophy” and “intuition” behind is similar in many ways.

The paper is organized as follows: Section 2 is devoted to propagators. We introduce the concept
of regular propagators, which we characterize as unique solutions to well-posed Cauchy problems:
this is of crucial importance for both our main weak law of large numbers (WLLN) and central limit
theorem (CLT) results, in order to get the unicity of the limiting process. In Section 3, we introduce
inhomogeneous random evolutions and present some of their properties. In Sections 4 and 5, we prove,
respectively, a WLLN and a CLT, which are the main results of the paper (Theorems 8 and 11).
In particular, for the CLT, we obtain a precise (and new) characterization of the limiting process using
weak Banach-valued stochastic integrals and so-called orthogonal martingale measures: this result—to
the best of our knowledge—has not even been obtained in the time-homogeneous case. In Section 6,
we present financial applications to illiquidity modeling using regime-switching time-inhomogeneous
Lévy price dynamics and regime-switching Lévy driven diffusion based price dynamics. We also
present a generalized version of the multi-asset model of price impact from distressed selling
introduced in the recent article [11], for which we retrieve (and generalize) their diffusion limit
result for the price process. We would like to mention that copula-based multivariate semi-Markov
models with application in high-frequency finance is considered in [17], which is related to some
generalization of semi-Markov processes and their application.

2. Propagators

This section aims at presenting a few results on propagators, which are used in the sequel. Most
of them (as well as the corresponding proofs) are similar to what can be found in [18] Chapter 5, [19]
Chapter 2 or [15], but, to the best of our knowledge, they do not appear in the literature in the form
presented below. In particular, the main result of this section is Theorem 4, which characterizes
so-called regular propagators as unique solutions to well-posed Cauchy problems.

Let (Y, || · ||) be a real separable Banach space. Let Y∗ be the dual space of Y. (Y1, || · ||Y1) is
assumed to be a real separable Banach space which is continuously embedded in Y (this idea was
used in [18], Chapter 5), i.e., Y1 ⊆ Y and ∃c1 ∈ R+: || f || ≤ c1|| f ||Y1 ∀ f ∈ Y1. Unless mentioned
otherwise, limits are taken in the Y-norm, normed vector spaces are equipped with the norm topology
and subspaces of normed vector spaces are equipped with the subspace topology. Limits in the Y1

norm are denoted Y1 − lim, for example. In the following, J refers to either R+ or [0, T∞] for some
T∞ > 0 and ∆J := {(s, t) ∈ J2 : s ≤ t}. In addition, let, for s ∈ J, J(s) := {t ∈ J : s ≤ t} and
∆J(s) := {(r, t) ∈ J2 : s ≤ r ≤ t}. We start by a few introductory definitions:

Definition 1. A function Γ : ∆J → B(Y) is called a Y-(backward) propagator if:

(i) ∀t ∈ J: Γ(t, t) = I; and
(ii) ∀(s, r), (r, t) ∈ ∆J : Γ(s, r)Γ(r, t) = Γ(s, t).

If, in addition, ∀(s, t) ∈ ∆J : Γ(s, t) = Γ(0, t− s), Γ is called a Y-semigroup.

Note that we focus our attention on backward propagators as many applications only fit the
backward case, as shown below. Forward propagators differ from backward propagators in the way
that they satisfy Γ(t, r)Γ(r, s) = Γ(t, s) (s ≤ r ≤ t). We now introduce the generator of the propagator:
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Definition 2. For t ∈ int(J), define:

D(AΓ(t)) :=

 f ∈ Y : lim
h↓0

t+h∈J

(Γ(t, t + h)− I) f
h

= lim
h↓0

t−h∈J

(Γ(t− h, t)− I) f
h

∈ Y

 (10)

and for f ∈ D(AΓ(t)): AΓ(t) f := lim
h↓0

t+h∈J

(Γ(t, t + h)− I) f
h

= lim
h↓0

t−h∈J

(Γ(t− h, t)− I) f
h

. (11)

Define similarly for t = 0:

D(AΓ(0)) :=

 f ∈ Y : lim
h↓0
h∈J

(Γ(0, h)− I) f
h

∈ Y

 (12)

and for f ∈ D(AΓ(0)): AΓ(0) f := lim
h↓0
h∈J

(Γ(0, h)− I) f
h

, (13)

and define AΓ(T∞) similarly to AΓ(0). Let D(AΓ) :=
⋂

t∈J
D(AΓ(t)). Then, AΓ : J → L(D(AΓ), Y) is called

the infinitesimal generator of the Y-propagator Γ.

In the following definitions, which deal with continuity and boundedness of propagators, (E1, || ·
||E1) and (E2, || · ||E2) represent Banach spaces such that E2 ⊆ E1 (possibly E1 = E2).

Definition 3. A E1-propagator Γ is B(E2, E1)-bounded if sup
(s,t)∈∆J

||Γ(s, t)||B(E2,E1)
< ∞. It

is a B(E2, E1)-contraction if sup
(s,t)∈∆J

||Γ(s, t)||B(E2,E1)
≤ 1. It is B(E2, E1)-locally bounded if

sup
(s,t)∈K

||Γ(s, t)||B(E2,E1)
< ∞ for every compact K ⊆ ∆J .

Definition 4. Let F ⊆ E2. A E1-propagator Γ is (F, || · ||E2)-strongly continuous if ∀(s, t) ∈ ∆J , ∀ f ∈ F:

Γ(s, t)F ⊆ E2 and lim
(h1,h2)→(0,0)

(s+h1,t+h2)∈∆J

||Γ(s + h1, t + h2) f − Γ(s, t) f ||E2 = 0. (14)

When E1 = E2 = Y, we simply write that it is F-strongly continuous.

We use the terminologies t-continuity and s-continuity for the continuity of the partial applications.
According to [19], strong joint continuity is equivalent to strong separate continuity together with local
boundedness of the propagator.

Definition 5. Let F ⊆ E2. The generator AΓ or the E1-propagator Γ is (F, || · ||E2)-strongly continuous if
∀t ∈ J, ∀ f ∈ F:

AΓ(t)F ⊆ E2 and lim
h→0

t+h∈J

||AΓ(t + h) f − AΓ(t) f ||E2 = 0. (15)

When E1 = E2 = Y, we simply write that it is F-strongly continuous.

The following results give conditions under which the propagator is differentiable in s and t.
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Theorem 1. Let Γ be a Y-propagator. Assume that ∀(s, t) ∈ ∆J , Γ(s, t)Y1 ⊆ D(AΓ). Then:

∂−

∂s
Γ(s, t) f = −AΓ(s)Γ(s, t) f , ∀(s, t) ∈ ∆J , ∀ f ∈ Y1. (16)

If, in addition, Γ is (Y1, || · ||Y1)-strongly s-continuous, Y1-strongly t-continuous, then:

∂

∂s
Γ(s, t) f = −AΓ(s)Γ(s, t) f ∀(s, t) ∈ ∆J , ∀ f ∈ Y1. (17)

Proof of Theorem 1. Let (s, t) ∈ ∆J , f ∈ Y1.

∂−

∂s
Γ(s, t) f = lim

h↓0
(s−h,t)∈∆J

Γ(s, t) f − Γ(s− h, t) f
h

(18)

= − lim
h↓0

(s−h,t)∈∆J

Γ(s− h, s)− I
h

Γ(s, t) f = −AΓ(s)Γ(s, t) f (19)

since Γ(s, t) f ∈ D(AΓ). We have for s < t:

∂+

∂s
Γ(s, t) f = lim

h↓0
(s+h,t)∈∆J

Γ(s + h, t) f − Γ(s, t) f
h

(20)

= − lim
h↓0

(s+h,t)∈∆J

Γ(s, s + h)− I
h

Γ(s + h, t) f . (21)

Let h ∈ (0, t− s]:∣∣∣∣∣∣∣∣ (Γ(s, s + h)− I)
h

Γ(s + h, t) f − AΓ(s)Γ(s, t) f
∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣ (Γ(s, s + h)− I)

h
Γ(s, t) f − AΓ(s)Γ(s, t) f

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ (Γ(s, s + h)− I)
h

∣∣∣∣∣∣∣∣
B(Y1,Y)

||Γ(s + h, t) f − Γ(s, t) f ||Y1 ,
(22)

the last inequality holding because ∀(s, t) ∈ ∆J : Γ(s, t)Y1 ⊆ Y1. We apply the uniform boundedness

principle to show that sup
h∈(0,t−s]

∣∣∣∣∣∣ (Γ(s,s+h)−I)
h

∣∣∣∣∣∣
B(Y1,Y)

< ∞. Y1 is Banach. We have to show that ∀g ∈ Y1:

sup
h∈(0,t−s]

∣∣∣∣∣∣ (Γ(s,s+h)−I)
h g

∣∣∣∣∣∣ < ∞. Let g ∈ Y1. We have
∣∣∣∣∣∣ (Γ(s,s+h)−I)

h g
∣∣∣∣∣∣ h↓0→ ||AΓ(s)g|| since Y1 ⊆ D(AΓ).

∃δ(g) ∈ (0, t− s) : h ∈ (0, δ) ⇒
∣∣∣∣∣∣ (Γ(s,s+h)−I)

h g
∣∣∣∣∣∣ < 1 + ||AΓ(s)g||. Then, by Y1-strong t-continuity

of Γ, h →
∣∣∣∣∣∣ (Γ(s,s+h)−I)

h g
∣∣∣∣∣∣ ∈ C([δ, t − s],R). Let M := maxh∈[δ,t−s]

∣∣∣∣∣∣ (Γ(s,s+h)−I)
h g

∣∣∣∣∣∣. Then, we get∣∣∣∣∣∣ (Γ(s,s+h)−I)
h g

∣∣∣∣∣∣ ≤ max(M, 1 + ||AΓ(s)g||) ∀h ∈ (0, t− s]⇒ sup
h∈(0,t−s]

∣∣∣∣∣∣ (Γ(s,s+h)−I)
h g

∣∣∣∣∣∣ < ∞.

Further, by (Y1, || · ||Y1)-strong s-continuity of Γ, ||Γ(s + h, t) f − Γ(s, t) f ||Y1

h↓0→ 0. Finally, since

Γ(s, t) f ∈ D(AΓ),
∣∣∣∣∣∣ (Γ(s,s+h)−I)

h Γ(s, t) f − AΓ(s)Γ(s, t) f
∣∣∣∣∣∣ h↓0→ 0.

Therefore, we get ∂+

∂s Γ(s, t) f = −AΓ(s)Γ(s, t) f for s < t, which shows that ∂
∂s Γ(s, t) f =

−AΓ(s)Γ(s, t) f for (s, t) ∈ ∆J .

Theorem 2. Let Γ be a Y-propagator. Assume that Y1 ⊆ D(AΓ). Then, we have:

∂+

∂t
Γ(s, t) f = Γ(s, t)AΓ(t) f ∀(s, t) ∈ ∆J , ∀ f ∈ Y1. (23)
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If, in addition, Γ is Y-strongly t-continuous, then we have:

∂

∂t
Γ(s, t) f = Γ(s, t)AΓ(t) f ∀(s, t) ∈ ∆J , ∀ f ∈ Y1. (24)

Proof of Theorem 2. Let (s, t) ∈ ∆J , f ∈ Y1. We have:

∂+

∂t
Γ(s, t) f = lim

h↓0
(s,t+h)∈∆J

Γ(s, t + h) f − Γ(s, t) f
h

(25)

= lim
h↓0

(s,t+h)∈∆J

Γ(s, t)
(Γ(t, t + h)− I) f

h
. (26)

For h ∈ J: t + h ∈ J:∣∣∣∣∣∣∣∣Γ(s, t)
(Γ(t, t + h)− I) f

h
− Γ(s, t)AΓ(t) f

∣∣∣∣∣∣∣∣ ≤ ||Γ(s, t)||B(Y)
∣∣∣∣∣∣∣∣ (Γ(t, t + h)− I) f

h
− AΓ(t) f

∣∣∣∣∣∣∣∣ h↓0→ 0. (27)

since f ∈ D(AΓ). Therefore, ∂+

∂t Γ(s, t) f = Γ(s, t)AΓ(t) f . Now, if s < t:

∂−

∂t
Γ(s, t) f = lim

h↓0
(s,t−h)∈∆J

Γ(s, t) f − Γ(s, t− h) f
h

(28)

= lim
h↓0

(s,t−h)∈∆J

Γ(s, t− h)
(Γ(t− h, t)− I) f

h
. (29)

For h ∈ (0, t− s]: ∣∣∣∣∣∣∣∣Γ(s, t− h)
(Γ(t− h, t)− I) f

h
− Γ(s, t)AΓ(t) f

∣∣∣∣∣∣∣∣
≤ ||Γ(s, t− h)||B(Y)

∣∣∣∣∣∣∣∣ (Γ(t− h, t)− I) f
h

− AΓ(t) f
∣∣∣∣∣∣∣∣

+ ||(Γ(s, t− h)− Γ(s, t))AΓ(t) f ||.

(30)

Since f ∈ D(AΓ),
∣∣∣∣∣∣ (Γ(t−h,t)−I) f

h − AΓ(t) f
∣∣∣∣∣∣ h↓0→ 0. By Y-strong t-continuity of Γ: ||(Γ(s, t− h)−

Γ(s, t))AΓ(t) f || h↓0→ 0. By the principle of uniform boundedness together with the Y-strong t-continuity
of Γ, we have suph∈(0,t−s] ||Γ(s, t− h)||B(Y) ≤ suph∈[0,t−s] ||Γ(s, t− h)||B(Y) < ∞. Therefore, we get
∂−
∂t Γ(s, t) f = Γ(s, t)AΓ(t) f for s < t, which shows ∂

∂t Γ(s, t) f = Γ(s, t)AΓ(t) f for (s, t) ∈ ∆J .

In general, we want to use the evolution equation: Γ(s, t) f = f +
∫ t

s Γ(s, u)AΓ(u) f du; therefore,
we need that u → Γ(s, u)AΓ(u) f is in L1

Y([s, t]). The following result gives sufficient conditions for
which it is the case.

Theorem 3. Assume that Theorem 2 holds true, i.e., ∀t ∈ J, AΓ(t) ∈ B(Y1, Y) and ∀(s, t) ∈ ∆J , u →
||AΓ(u)||B(Y1,Y) ∈ L1

R([s, t]). Then, ∀ f ∈ Y1, (s, t) ∈ ∆J :

Γ(s, t) f = f +
∫ t

s
Γ(s, u)AΓ(u) f du. (31)
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Proof of Theorem 3. Let f ∈ Y1, (s, t) ∈ ∆J . First, u→ Γ(s, u)AΓ(u) f ∈ BY([s, t]) as the derivative of
u→ Γ(s, u) f . By the principle of uniform boundedness together with the Y-strong t-continuity of Γ,
we have M := supu∈[s,t] ||Γ(s, u)||B(Y) < ∞. We then observe that for u ∈ [s, t]:

||Γ(s, u)AΓ(u) f || ≤ M||AΓ(u) f || ≤ M||AΓ(u)||B(Y1,Y)|| f ||Y1 . (32)

The following definition introduces the concept of regular propagator, which in short means that
it is differentiable with respect to both variables, and that its derivatives are integrable.

Definition 6. A Y-propagator Γ is said to be regular if it satisfies Theorems 1 and 2 and ∀(s, t) ∈ ∆J , ∀ f ∈ Y1,
u→ ||AΓ(u)Γ(u, t) f || and u→ ||Γ(s, u)AΓ(u) f || are in L1

R([s, t]).

Now, we are ready to characterize a regular propagator as the unique solution of a well-posed
Cauchy problem, which is needed in the sequel. Note that the proof of the theorem below requires
that Γ satisfies both Theorems 1 and 2 (hence, our above definition of regular propagators). The next
result is the initial value problem statement for operator G.

Theorem 4. Let AΓ be the generator of a regular Y-propagator Γ and s ∈ J, Gs ∈ B(Y). A solution operator
G : J(s)→ B(Y) to the Cauchy problem:{

d
dt G(t) f = G(t)AΓ(t) f ∀t ∈ J(s), f ∈ Y1

G(s) = Gs
(33)

is said to be regular if it is Y-strongly continuous. If G is such a regular solution, then we have
G(t) f = GsΓ(s, t) f , ∀t ∈ J(s), ∀ f ∈ Y1.

Proof of Theorem 4. Let (s, u), (u, t) ∈ ∆J , f ∈ Y1. Consider the function φ : u → G(u)Γ(u, t) f .
We show that φ′(u) = 0 ∀u ∈ [s, t] and therefore that φ(s) = φ(t). We have for u < t:

d+φ

du
(u) = lim

h↓0
h∈(0,t−u]

1
h
[G(u + h)Γ(u + h, t) f − G(u)Γ(u, t) f ]. (34)

Let h ∈ (0, t− u]. We have:∣∣∣∣∣∣∣∣1h [G(u + h)Γ(u + h, t) f − G(u)Γ(u, t) f ]
∣∣∣∣∣∣∣∣ ≤∣∣∣∣∣∣∣∣1h G(u + h)Γ(u, t) f − 1

h
G(u)Γ(u, t) f − G(u)AΓ(u)Γ(u, t) f

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(1)

+ ||G(u + h)||B(Y)
∣∣∣∣∣∣∣∣1h Γ(u + h, t) f − 1

h
Γ(u, t) f + AΓ(u)Γ(u, t) f

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(2)

+ ||G(u + h)AΓ(u)Γ(u, t) f − G(u)AΓ(u)Γ(u, t) f ||︸ ︷︷ ︸
(3)

(35)

We have:

• (1)→ 0 as G satisfies the initial value problem and Γ(u, t)Y1 ⊆ Y1.
• (2)→ 0 as ∂

∂u Γ(u, t) f = −AΓ(u)Γ(u, t) f .
• (3)→ 0 by Y-strong continuity of G.



Mathematics 2019, 7, 447 9 of 62

Further, by the principle of uniform boundedness together with the Y-strong continuity of G,

we have suph∈(0,t−u] ||G(u+ h)||B(Y) ≤ suph∈[0,t−u] ||G(u+ h)||B(Y) < ∞. We therefore get d+φ
du (u) = 0.

Now, for u > s:

d−φ

du
(u) = lim

h↓0
h∈(0,u−s]

1
h
[G(u)Γ(u, t) f − G(u− h)Γ(u− h, t) f ] (36)

Let h ∈ (0, u− s]:∣∣∣∣∣∣∣∣1h [G(u)Γ(u, t) f − G(u− h)Γ(u− h, t) f ]
∣∣∣∣∣∣∣∣ ≤∣∣∣∣∣∣∣∣1h G(u)Γ(u, t) f − 1

h
G(u− h)Γ(u, t) f − G(u)AΓ(u)Γ(u, t) f

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(4)

+ ||G(u− h)||B(Y)
∣∣∣∣∣∣∣∣−1

h
Γ(u− h, u)Γ(u, t) f +

1
h

Γ(u, t) f + AΓ(u)Γ(u, t) f
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

(5)

+ ||G(u)AΓ(u)Γ(u, t) f − G(u− h)AΓ(u)Γ(u, t) f ||︸ ︷︷ ︸
(6)

(37)

By the principle of uniform boundedness together with the Y-strong t-continuity of G, we have
suph∈(0,u−s] ||G(u− h)||B(Y) ≤ suph∈[0,u−s] ||G(u− h)||B(Y) < ∞. Furthermore:

• (4)→ 0 as G satisfies the initial value problem and Γ(u, t)Y1 ⊆ Y1.
• (5)→ 0 as Γ(u, t)Y1 ⊆ Y1.
• (6)→ 0 by Y-strong continuity of G.

We therefore get d−φ
du (u) = 0.

The following corollary expresses the fact that equality of generators implies equality
of propagators.

Corollary 1. Assume that Γ1 and Γ2 are regular Y-propagators and that ∀ f ∈ Y1, ∀t ∈ J, AΓ1(t) f = AΓ2(t) f .
Then, ∀ f ∈ Y1, ∀(s, t) ∈ ∆J : Γ1(s, t) f = Γ2(s, t) f . In particular, if Y1 is dense in Y, then Γ1 = Γ2.

We conclude this section with a second-order Taylor formula for propagators. Let:

D(AΓ ∈ Y1) := { f ∈ D(AΓ) ∩Y1 : AΓ(t) f ∈ Y1 ∀t ∈ J} . (38)

Theorem 5. Let Γ be a regular Y-propagator, (s, t) ∈ ∆J . Assume that ∀u ∈ J, AΓ(u) ∈ B(Y1, Y) and
u→ ||AΓ(u)||B(Y1,Y) ∈ L1

R([s, t]). Then, we have for f ∈ D(AΓ ∈ Y1):

Γ(s, t) f = f +
∫ t

s
AΓ(u) f du +

∫ t

s

∫ u

s
Γ(s, r)AΓ(r)AΓ(u) f drdu. (39)

Proof of Theorem 5. Since Γ is regular and f , AΓ(u) f ∈ Y1 and u→ ||AΓ(u)||B(Y1,Y) is integrable on
[s, t] we have by 3:

Γ(s, t) f = f +
∫ t

s
Γ(s, u)AΓ(u) f du = f +

∫ t

s

[
AΓ(u) f +

∫ u

s
Γ(s, r)AΓ(r)AΓ(u) f dr

]
du (40)

= f +
∫ t

s
AΓ(u) f du +

∫ t

s

∫ u

s
Γ(s, r)AΓ(r)AΓ(u) f drdu. (41)
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3. Inhomogeneous Random Evolutions: Definitions and Properties

Let (Ω,F ,P) be a complete probability space, J a finite set and (xn, Tn)n∈N an
inhomogeneous Markov renewal process on it, with associated inhomogeneous semi-Markov process
(x(t))t∈R+

:= (xNt)t∈R+
(as in [5]). In this section, we use the same notations for the various kernels

and cumulative distribution functions (Qs(i, j, t), Fs(i, t), etc.) as in [5] on inhomogeneous Markov
renewal processes. Throughout the section, we assume that the inhomogeneous Markov renewal
process (xn, Tn)n∈N is regular (cf. definition in [5]), and that Qs(·, ·, 0) = 0 for all s ∈ R+. Further
assumptions on it are made below. We define the following random variables on Ω, for s ≤ t ∈ R+:

• the number of jumps on (s, t]: Ns(t) := N(t)− N(s);
• the jump times on (s, ∞): Tn(s) := TN(s)+n for n ∈ N∗, and T0(s) := s; and
• the states visited by the process on [s, ∞): xn(s) := x(Tn(s)), for n ∈ N.

Consider a family of Y-propagators (Γx)x∈J, with respective generators (Ax)x∈J, satisfying:

∀s ∈ J :(r, t, x, f )→ Γx(r ∧ t, r ∨ t) f (42)

is Bor(J(s))⊗ Bor(J(s))⊗ Bor(J)⊗ Bor(Y)− Bor(Y) measurable, (43)

as well as a family (D(x, y))(x,y)∈J2 ⊆ B(Y) of B(Y)-contractions, satisfying:

(x, y, f )→ D(x, y) f is Bor(J)⊗ Bor(J)⊗ Bor(Y)− Bor(Y) measurable. (44)

We define the inhomogeneous random evolution the following way:

Definition 7. The function V : ∆J ×Ω→ B(Y) defined pathwise by:

V(s, t)(ω) =

[
Ns(t)

∏
k=1

Γxk−1(s) (Tk−1(s), Tk(s)) D(xk−1(s), xk(s))

]
Γx(t)

(
TNs(t)(s), t

)
(45)

is called a (Γ, D, x)-inhomogeneous Y-random evolution, or simply an inhomogeneous Y-random evolution. V is
said to be continuous (respectively, purely discontinuous) if D(x, y) = I (respectively, Γx = I), ∀(x, y) ∈ J2.
V is said to be regular (respectively, B(Y)-contraction) if (Γx)x∈J are regular (respectively, B(Y)-contraction).

Remark 1. In the latter definition, we use as conventions that
n
∏

k=1
Ak := A1...An−1 An, that is, the product

operator applies the product on the right. Further, if Ns(t) > 0, then xNs(t)(s) = x(TNs(t)(s)) = x(TN(t)) =

x(t). If Ns(t) = 0, then x(s) = x(t) and xNs(t)(s) = x0(s) = x(T0(s)) = x(s) = x(t). Therefore, in all
cases, xNs(t)(s) = x(t). By Proposition 2 below, if D = I, we see that V is continuous and if Γx = I (and
therefore Ax = 0), we see that V has no continuous part, hence Definition 7.

As long as our main object is stochastic process (V(s, t)(ω) f ), we have to show a measurability
of this process. Thus, we have the following measurability result:

Proposition 1. For s ∈ J, f ∈ Y, the stochastic process (V(s, t)(ω) f )(ω,t)∈Ω×J(s) is adapted to the
(augmented) filtration:

Ft(s) := σ
[

xn∧Ns(t)(s), Tn∧Ns(t)(s) : n ∈ N
]
∨ σ(P− null sets). (46)
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Proof of Proposition 1. Let E ∈ Bor(Y), (s, t) ∈ ∆J , f ∈ Y. We have:

V(s, t) f−1(E) =
⋃

n∈N
{V(s, t) f ∈ E} ∩ {Ns(t) = n}. (47)

Denote the Ft(s) − Bor(R+) measurable (by construction) function hk := T(k+1)∧Ns(t)(s) −
Tk∧Ns(t)(s). Since Q(·, ·, 0) = 0, remark that Ns(t)(ω) = supm∈N ∑m

k=0 1h−1
k (R+∗)(ω) and is therefore

Ft(s)− Bor(R+) measurable. Therefore, {Ns(t) = n} ∈ Ft(s). Let:

Ωn := {Ns(t) = n} M := {n ∈ N : Ωn 6= ∅} . (48)

M 6= ∅ since Ω =
⋃

n∈N Ωn, and for n ∈ M, let the sigma-algebra Fn := Ft(s)|Ωn := {A ∈
Ft(s) : A ⊆ Ωn} (Fn is a sigma-algebra on Ωn since Ωn 6= ∅ ∈ Ft(s)). Now, consider the map
Vn(s, t) f : (Ωn,Fn)→ (Y, Bor(Y)):

Vn(s, t) f :=

[
n

∏
k=1

Γxk−1(s) (Tk−1(s), Tk(s)) D(xk−1(s), xk(s))

]
Γxn(s) (Tn(s), t) f . (49)

We have:

V(s, t) f−1(E) =
⋃

n∈N
{Vn(s, t) f ∈ E} ∩Ωn =

⋃
n∈N
{ω ∈ Ωn : Vn(s, t) f ∈ E} (50)

=
⋃

n∈N
Vn(s, t) f−1(E). (51)

Therefore, it remains to show that Vn(s, t) f−1(E) ∈ Fn, since Fn ⊆ Ft(s). First, let n > 0. Notice
that Vn(s, t) f = ψ ◦ βn ◦ αn... ◦ β1 ◦ α1 ◦ φ, where:

φ : Ωn → J(s)× J×Ωn → Y×Ωn (52)

ω → (Tn(s)(ω), xn(s)(ω), ω)→ (Γxn(s)(ω)(Tn(s)(ω), t) f , ω). (53)

The previous mapping holding since Tk(s)(ω) ∈ [s, t] ∀ω ∈ Ωn, k ∈ [|1, n|]. φ is measurable
iff each one of the coordinate mappings are. The canonical projections are trivially measurable.
Let A ∈ Bor(J(s)), B ∈ Bor(J). We have:

{ω ∈ Ωn : Tn(s) ∈ A} = Ωn ∩ Tn∧Ns(t)(s)
−1(A) ∈ Fn (54)

{ω ∈ Ωn : xn(s) ∈ B} = Ωn ∩ xn∧Ns(t)(s)
−1(B) ∈ Fn. (55)

Now, by measurability assumption, we have for B ∈ Bor(Y):

{(tn, yn) ∈ J(s)× J : Γyn(t ∧ tn, t ∨ tn) f ∈ B} = C ∈ Bor(J(s))⊗ Bor(J) (56)

Therefore, {(tn, yn, ω) ∈ J(s)× J×Ωn : Γyn(t ∧ tn, t ∨ tn) f ∈ B} (57)

= C×Ωn ∈ Bor(J(s))⊗ Bor(J)⊗Fn. (58)

Therefore, φ is Fn − Bor(Y)⊗Fn measurable. Define for i ∈ [1, n]:

αi : Y×Ωn → J× J×Y×Ωn → Y×Ωn (59)

(g, ω)→ (xn−i(s)(ω), xn−i+1(s)(ω), g, ω)→ (D(xn−i(s)(ω), xn−i+1(s)(ω))g, ω). (60)
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Again, the canonical projections are trivially measurable. We have for p ∈ [|0, n|]:

{ω ∈ Ωn : xp(s) ∈ B} = Ωn ∩ xp∧Ns(t)(s)
−1(B) := C ∈ Fn (61)

Therefore, {(g, ω) ∈ Y×Ωn : xp(s) ∈ B} = Y× C ∈ Bor(Y)⊗Fn. (62)

Now, by measurability assumption, ∀B ∈ Bor(Y), ∃C ∈ Bor(J)⊗ Bor(J)⊗ Bor(Y):

{(yn−i, yn−i+1, g, ω) ∈ J× J×Y×Ωn : D(yn−i, yn−i+1)g ∈ B} (63)

= C×Ωn ∈ Bor(J)⊗ Bor(J)⊗ Bor(Y)⊗Fn, (64)

which proves the measurability of αi. Then, we define for i ∈ [1, n]:

βi : Y×Ωn → J(s)× J(s)× J×Y×Ωn → Y×Ωn (65)

(g, ω)→ (Tn−i(s)(ω), Tn−i+1(s)(ω), xn−i(s)(ω), g, ω) (66)

→ (Γxn−i(s)(ω)(Tn−i(s)(ω), Tn−i+1(s)(ω))g, ω). (67)

By measurability assumption, ∀B ∈ Bor(Y), ∃C ∈ Bor(J(s))⊗ Bor(J(s))⊗ Bor(J)⊗ Bor(Y):

{(tn−i, tn−i+1, yn−i, g, ω) ∈ J(s)× J(s)× J×Y×Ωn : Γyn−i (tn−i ∧ tn−i+1, tn−i ∨ tn−i+1)g ∈ B} (68)

= C×Ωn ∈ Bor(J(s))⊗ Bor(J(s))⊗ Bor(J)⊗ Bor(Y)⊗Fn, (69)

which proves the measurability of βi. Finally, define the canonical projection:

ψ : Y×Ωn → Y (70)

(g, ω)→ g (71)

which proves the measurability of Vn(s, t) f . For n = 0, we have Vn(s, t) f = Γx(s) (s, t) f and the proof
is similar.

The following result characterizes an inhomogeneous random evolution as a propagator, shows
that it is right-continuous and that it satisfies an integral representation (which is used extensively
below). It also clarifies why we use the terminology “continuous inhomogeneous Y-random evolution”
when D = I.

Proposition 2. Let V an inhomogeneous Y-random evolution and (s, t) ∈ ∆J , ω ∈ Ω. Then, V(•, •)(ω) is
a Y-propagator. If we assume that V is regular, then we have on Ω the following integral representation:

V(s, t) f = f +
∫ t

s
V(s, u)Ax(u)(u) f du +

Ns(t)

∑
k=1

V(s, Tk(s)−)[D(xk−1(s), xk(s))− I] f . (72)

Further u→ V(s, u)(ω) is Y-strongly RCLL on J(s), i.e., ∀ f ∈ Y, u→ V(s, u)(ω) f ∈ D(J(s), (Y, || ·
||)). More precisely, we have for f ∈ Y:

V(s, u−) f = V(s, u) f if u /∈ {Tn(s) : n ∈ N} (73)

V(s, Tn+1(s)) f = V(s, Tn+1(s)−)D(xn(s), xn+1(s)) f ∀n ∈ N, (74)

where we denote V(s, t−) f := limu↑t V(s, u) f .

Proof of Proposition 2. The fact that V(s, t) ∈ B(Y) is straightforward from the definition of V
and using the fact that (D(x, y))(x,y)∈J2 are B(Y)-contractions. We can also obtain easily that V
is a propagator by straightforward computations. We now show that u → V(s, u)(ω) is Y-strongly
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continuous on each [Tn(s), Tn+1(s)) ∩ J(s), n ∈ N and Y-strongly RCLL at each Tn+1(s) ∈ J(s), n ∈ N.
Let n ∈ N such that Tn(s) ∈ J(s). ∀t ∈ [Tn(s), Tn+1(s)) ∩ J(s), we have:

V(s, t) =

[
n

∏
k=1

Γxk−1(s) (Tk−1(s), Tk(s)) D(xk−1(s), xk(s))

]
Γxn(s) (Tn(s), t) . (75)

Therefore, by Y-strong t-continuity of Γ, we get that u → V(s, u)(ω) is Y-strongly continuous
on [Tn(s), Tn+1(s)) ∩ J(s). If Tn+1(s) ∈ J(s), the fact that V(s, •) has a left limit at Tn+1(s) also comes
from the Y-strong t-continuity of Γ:

V(s, Tn+1(s)−) f = lim
h↓0

Gs
nΓxn(s)(Tn(s), Tn+1(s)− h) f = Gs

nΓxn(s)(Tn(s), Tn+1(s)) f (76)

Gs
n =

n

∏
k=1

Γxk−1(s) (Tk−1(s), Tk(s)) D(xk−1(s), xk(s)). (77)

Therefore, we get the relationship:

V(s, Tn+1(s)) f = V(s, Tn+1(s)−)D(xn(s), xn+1(s)) f . (78)

To prove the integral representation, let s ∈ J, ω ∈ Ω, f ∈ Y1. We proceed by induction and show
that ∀n ∈ N, we have ∀t ∈ [Tn(s), Tn+1(s)) ∩ J(s):

V(s, t) f = f +
∫ t

s
V(s, u)Ax(u)(u) f du +

n

∑
k=1

V(s, Tk(s)−)[D(xk−1(s), xk(s))− I] f . (79)

For n = 0, we have ∀t ∈ [s, T1(s)) ∩ J(s): V(s, t) f = Γx(s)(s, t) f , and therefore V(s, t) f =

f +
∫ t

s V(s, u)Ax(u)(u) f du by regularity of Γ. Now, assume that the property is true for n− 1, namely:
∀t ∈ [Tn−1(s), Tn(s)) ∩ J(s). We have:

V(s, t) f = f +
∫ t

s
V(s, u)Ax(u)(u) f du +

n−1

∑
k=1

V(s, Tk(s)−)[D(xk−1(s), xk(s))− I] f . (80)

Therefore, it implies that (by continuity of the Bochner integral):

V(s, Tn(s)−) f = f +
∫ Tn(s)

s
V(s, u)Ax(u)(u) f du +

n−1

∑
k=1

V(s, Tk(s)−)[D(xk−1(s), xk(s))− I] f . (81)

Now, ∀t ∈ [Tn(s), Tn+1(s)) ∩ J(s) we have that:

V(s, t) = Gs
nΓxn(s)(Tn(s), t) (82)

Gs
n :=

n

∏
k=1

Γxk−1(s) (Tk−1(s), Tk(s)) D(xk−1(s), xk(s)), (83)

and therefore ∀t ∈ [Tn(s), Tn+1(s)) ∩ J(s), by Theorem 2 and regularity of Γ:

∂

∂t
V(s, t) f = V(s, t)Ax(t)(t) f ⇒ V(s, t) f = V(s, Tn(s)) f +

∫ t

Tn(s)
V(s, u)Ax(u)(u) f du. (84)
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Further, we already proved that V(s, Tn(s)) f = V(s, Tn(s)−)D(xn−1(s), xn(s)) f . Therefore,
combining these results we have:

V(s, t) f = V(s, Tn(s)−)D(xn−1(s), xn(s)) f +
∫ t

Tn(s)
V(s, u)Ax(u)(u) f du (85)

= V(s, Tn(s)−) f +
∫ t

Tn(s)
V(s, u)Ax(u)(u) f du + V(s, Tn(s)−)D(xn−1(s), xn(s)) f −V(s, Tn(s)−) f (86)

= f +
∫ Tn(s)

s
V(s, u)Ax(u)(u) f du +

n−1

∑
k=1

V(s, Tk(s)
−)[D(xk−1(s), xk(s))− I] f (87)

+
∫ t

Tn(s)
V(s, u)Ax(u)(u) f du + V(s, Tn(s)−)D(xn−1(s), xn(s)) f −V(s, Tn(s)−) f (88)

= f +
∫ t

s
V(s, u)Ax(u)(u) f du +

n

∑
k=1

V(s, Tk(s)
−)[D(xk−1(s), xk(s))− I] f . (89)

4. Weak Law of Large Numbers

In this section, we introduce a rescaled random evolution Vε, in which time is rescaled by a
small parameter ε. The main result of this section is Theorem 8 in Section 4.5. To prove the weak
convergence of Vε to some regular propagator Γ̂, we prove in Section 4.3 that Vε is relatively compact,
which informally means that, for any sequence εn → 0, there exists a subsequence {nk} along which
Vεnk

converges weakly. To show the convergence of Vε to Γ̂, we need to show that all limit points of the

latter Vεnk
are equal to Γ̂. To prove relative compactness, we need among other things that Vε satisfies

the so-called compact containment criterion (CCC), which in short requires that for every f ∈ Y,
Vε(s, t) f remains in a compact set of Y with an arbitrarily high probability as ε → 0. This compact
containment criterion is the topic of Section 4.2. Section 4.1 introduces the rescaled random evolution
Vε as well as some regularity assumptions (condensed in Assumptions 1, Section 4.1, for spaces and
operators under consideration, and in Assumptions 2, Section 4.1, for the semi-Markov processes)
which will be assumed to hold throughout the rest of the paper. It also reminds the reader of some
definitions and results on relative compactness in the Skorohod space, which are mostly taken from
the well-known book [20]. Finally, the main WLLN result Theorem 8 is proved using a martingale
method similar in the spirit to what is done in [10] (Chapter 4, Section 4.2.1) for time-homogeneous
random evolutions. This method is here adapted rigorously to the time-inhomogeneous setting: this is
the topic of Section 4.4. The martingale representation presented in Lemma 5 of Section 4.4 will be
used in the Section 5 to prove a CLT for time-inhomogeneous random evolutions.

4.1. Preliminary Definitions and Assumptions

In this section, we prove a weak law of large numbers for inhomogeneous random evolutions.
We rescale both time and the jump operators D in a suitable way by a small parameter ε and
study the limiting behavior of the rescaled random evolution. To this end, the same way we
introduce inhomogeneous Y-random evolutions, we consider a family (Dε(x, y))(x,y)∈J2,ε∈(0,1] of
B(Y)-contractions, satisfying ∀ε ∈ (0, 1]:

(x, y, f )→ Dε(x, y) f is Bor(J)⊗ Bor(J)⊗ Bor(Y)− Bor(Y) measurable. (90)

and let D0(x, y) := I. We define:

D(D1) :=
⋂

ε∈[0,1]
(x,y)∈J2

 f ∈ Y : lim
h→0

ε+h∈[0,1]

Dε+h(x, y) f − Dε(x, y) f
h

∈ Y

 (91)



Mathematics 2019, 7, 447 15 of 62

and ∀ f ∈ D(D1):

Dε
1(x, y) f := lim

h→0
ε+h∈[0,1]

Dε+h(x, y) f − Dε(x, y) f
h

. (92)

The latter operators correspond, in short, to the (first-order) derivatives of the operators Dε with
respect to ε. We need them in the following to be able to use the expansion Dε ≈ I + εDε

1 + . . ., which
proves useful when proving limit theorems for random evolutions. The same way, we introduce Dε

2,
corresponding to the second derivative. We also let:

D(D0
1 ∈ Y1) :=

{
f ∈ D(D1) ∩Y1 : D0

1(x, y) f ∈ Y1 ∀(x, y) ∈ J2
}

. (93)

For x ∈ J, remembering the definition of D(Ax ∈ Y1) in (38), we let:

D(A′x) := D(Ax ∈ Y1) ∩

 f ∈ D(Ax) ∩Y1 : Y1 − lim
h→0

t+h∈J

Ax(t + h) f − Ax(t) f
h

∈ Y1 ∀t ∈ J

 (94)

and for t ∈ J, f ∈ D(A′x):

A′x(t) f := Y1 − lim
h→0

t+h∈J

Ax(t + h) f − Ax(t) f
h

. (95)

Here, Y1 − lim simply indicates that the limit is taken in the Y1 norm. We also introduce the space
D̂ on which we are mostly working on:

D̂ :=
⋂
x∈J
D(A′x) ∩D(D2) ∩D(D0

1 ∈ Y1). (96)

Throughout this section, we make the following set of regularity assumptions, which we first
state and then comment on immediately afterwards. We recall that the various notions of continuity
and regularity are defined in Section 2.

Assumptions 1.

Assumptions on the structure of spaces:

1. The subset D̂ contains a countable family which is dense in both Y1 and Y.
2. Y1 ⊆ D(D1).

Assumptions on the regularity of operators:

1. (Γx)x∈J are regular Y-propagators.
2. Ax is Y1-strongly continuous, ∀x ∈ J.

Assumptions on the boundedness of operators:

1. (Γx)x∈J are B(Y)-exponentially bounded, i.e., ∃γ ≥ 0 such that ||Γx(s, t)||B(Y) ≤ eγ(t−s), for all x ∈ J,
(s, t) ∈ ∆J .

2. Ax(t) ∈ B(Y1, Y) and supu∈[0,t] ||Ax(u)||B(Y1,Y) < ∞ ∀t ∈ J, ∀x ∈ J.
3. supt∈[0,T]

x∈J
||A′x(t) f || < ∞, supt∈[0,T]

x∈J
||Ax(t) f ||Y1 < ∞, ∀ f ∈ ⋂x∈JD(A′x), for all T ∈ J.

4. D0
1(x, y) ∈ B(Y1, Y) ∀x, y ∈ J.

5. sup ε∈[0,1]
(x,y)∈J2

||Dε
1(x, y) f || < ∞, ∀ f ∈ D(D1).
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6. sup ε∈[0,1]
(x,y)∈J2

||Dε
2(x, y) f || < ∞, ∀ f ∈ D(D2).

Assumptions 2.

Assumptions on the semi-Markov process:

1. (ergodicity) Assumptions from [5] holds true for the function t→ t, so that:

lim
t→∞

N(t)
t

=
1

Πm
a.e. (97)

2. (uniform boundedness of sojourn increments) ∃τ̄ > 0 such that:

sup
t∈R+
i∈J

Ft(i, τ̄) = 1. (98)

3. (regularity of the inhomogeneous Markov renewal process) The conditions for Ft(i, τ̄) are satisfied (see [5]),
namely: there exists τ′ > 0 and β′ > 0 such that:

sup
t∈R+
i∈J

Ft(i, τ′) < 1− β′. (99)

Let us make a few comments on the previous assumptions. The assumptions regarding the
regularity of operators mainly ensure that we can use the results obtained on propagators in Section 2,
for example Theorem 5. The (strong) continuity of Ax also proves to be useful when working with
convergence in the Skorokhod space. The assumptions on the boundedness of operators is used to show
that various quantities converge well. Finally, regarding the assumptions on the semi-Markov process,
the almost sure convergence of t−1N(t) as t → ∞ is used very often. It is one of the fundamental
requirement for the work below. The uniform boundedness of the sojourn increments is a mild
assumption in practice. There might be a possibility to weaken it, but the proofs would become
heavier, for example because the jumps of the martingales introduced below would no longer be
uniformly bounded.

Notation: In the following, we let for n ∈ N, i ∈ J and t ∈ R+ (their existence is guaranteed by
Assumption 1):

mn(i, t) :=
∫ ∞

0
snFt(i, ds) mn(i) :=

∫ ∞

0
snF(i, ds). (100)

We also let J := J if J = R+ and J := [0, T∞ − τ̄) if J = [0, T∞]. In the latter case, it is assumed that
T∞ > τ̄. Similarly, we let for s ∈ J: J(s) := {t ∈ J : s ≤ t}.

We now introduce the rescaled random evolution, with the notation tε,s := s + ε(t− s):

Definition 8. Let V be an inhomogeneous Y-random evolution. We define (pathwise on Ω) the rescaled
inhomogeneous Y-random evolution Vε for ε ∈ (0, 1], (s, t) ∈ ∆J by:

Vε(s, t) :=


Ns

(
t

1
ε ,s
)

∏
k=1

Γxk−1(s)

(
Tε,s

k−1(s), Tε,s
k (s)

)
Dε(xk−1(s), xk(s))

 Γ
x
(

t
1
ε ,s
)
Tε,s

Ns

(
t

1
ε ,s
)(s), t

 . (101)
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Remark 2. we notice that Vε is well-defined since on Ω:

Tε,s

Ns

(
t

1
ε ,s
)(s) = s + ε

T
Ns

(
t

1
ε ,s
)(s)− s

 ≤ s + ε
(

t
1
ε ,s − s

)
= t, (102)

and that it coincides with V for ε = 1, i.e., V1(s, t) = V(s, t).

Our goal is to prove, as in [10], that, for each f in some suitable subset of Y, {Vε(s, •) f }—seen as
a family of elements of D(J(s), Y)—converges weakly to some continuous limiting process V0(s, •) f to
be determined. To this end, we first prove that {Vε(s, •) f } is relatively compact with almost surely
continuous weak limit points. This is equivalent to the notion of C-tightness in [21] (VI.3) because
P(D(J(s), Y)) topologized with the Prohorov metric is a separable and complete metric space (Y being
a separable Banach space), which implies that relative compactness and tightness are equivalent in
P(D(J(s), Y)) (by Prohorov’s theorem). Then, we identify the limiting operator-valued process V0,
using the results of [14]. We first need some elements that can be found in [10] (Section 1.4) and [20]
(Sections 3.8–3.11):

Definition 9. Let (νn)n∈N be a sequence of probability measures on a metric space (S, d). We say that νn

converges weakly to ν, and write νn ⇒ ν iff ∀ f ∈ Cb(S,R):

lim
n→∞

∫
S

f dνn =
∫

S
f dν (103)

Definition 10. Let {νε} be a family of probability measures on a metric space (S, d). {νε} is said to be relatively
compact iff for any sequence (νn)n∈N ⊆ {νε}, there exists a weakly converging subsequence.

Definition 11. Let s ∈ J, {Xε} a family of stochastic processes with sample paths in D(J(s), Y). We say
that {Xε} is relatively compact iff {L(Xε)} is (in the metric space P(D(J(s), Y)) endowed with the Prohorov
metric). We write that Xε ⇒ X iff L(Xε)⇒ L(X). We say that {Xε} is C-relatively compact iff it is relatively
compact and if ever Xε ⇒ X, then X has a.e. continuous sample paths. If EY ⊆ Y, we say that {Vε} is
EY-relatively compact (respectively, EY-C-relatively compact) iff {Vε(s, •) f } is ∀ f ∈ EY, ∀s ∈ J.

Definition 12. Let s ∈ J, {Xε} be a family of stochastic processes with sample paths in D(J(s), Y). We say
that {Xε} satisfies the compact containment criterion ({Xε} ∈ CCC) if ∀∆ ∈ (0, 1], ∀t ∈ J(s) ∩Q, ∃K ⊆ Y
compact set such that:

lim inf
ε→0

P[Xε(t) ∈ K] ≥ 1− ∆. (104)

We say that {Vε} satisfies the compact containment criterion in EY ⊆ Y ({Vε} ∈ EY-CCC), if ∀ f ∈ EY,
∀s ∈ J, {Vε(s, •) f } ∈ CCC.

Theorem 6. Let s ∈ J, {Xε} a family of stochastic processes with sample paths in D(J(s), Y). {Xε} is
C-relatively compact iff it is relatively compact and js(Xε)⇒ 0, where:

js(X) :=
∫

J(s)
e−u(js(X, u) ∧ 1)du (105)

js(X, u) := sup
t∈[s,u]

||X(t)− X(t−)||. (106)

Theorem 7. Let s ∈ J, {Xε} be a family of stochastic processes with sample paths in D(J(s), Y). {Xε} is
relatively compact in D(J(s), Y) iff:

1. {Xε} ∈CCC
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2. ∀T ∈ J(s), ∃r > 0 and a family {Cs(ε, η) : (ε, η) ∈ (0, 1]× (0, 1)} of nonnegative random variables
such that ∀(ε, η) ∈ (0, 1]× (0, τ̄ ∧ 1), ∀h ∈ [0, η], ∀t ∈ [s, T]:

E [ ||Xε(t + h)− Xε(t)||r| Gε,s
t ] ≤ E[Cs(ε, η)|Gε,s

t ] (107)

lim
η→0

lim sup
ε→0

E[Cs(ε, η)] = 0, (108)

where Gε,s
t := σ [Xε(u) : u ∈ [s, t]].

If {Xε} is relatively compact, then the stronger compact containment criterion holds: ∀∆ ∈ (0, 1],
∀T ∈ J(s), ∃K ⊆ Y compact set such that:

lim inf
ε→0

P[Xε(t) ∈ K ∀t ∈ [s, T]] ≥ 1− ∆. (109)

4.2. The Compact Containment Criterion

We show that, to prove relative compactness, we need to prove that the compact containment
criterion is satisfied. We give below some sufficient conditions for which it is the case, in particular
for the space C0(Rd), which is used in many applications. In [6], it is mentioned that there exists
a compact embedding of a Hilbert space into C0(Rd). Unfortunately, this is not true (to the best of
our knowledge), and we show below in Proposition 4 how to overcome this problem. This latter
proposition is applied in Section 6 to the time-inhomogeneous Lévy case, and the corresponding proof
can easily be recycled for many other examples.

Proposition 3. Assume that there exists a Banach space (Z, || · ||Z) compactly embedded in Y, that (Γx)x∈J,
are B(Z)-exponentially bounded (uniformly in J), and that (Dε(x, y)) ε∈(0,1]

(x,y)∈J2

are B(Z)-contractions. Then,

{Vε} ∈ Z-CCC.

Proof. Let f ∈ Z, (s, t) ∈ ∆J, and assume ||Γx(s, t) f ||Z ≤ er(t−s)|| f ||Z for some r ≥ 0. Let c :=
er(t−s)|| f ||Z and K := cl(Y) − Sc(Z), the Y-closure of the Z-closed ball of radius c. K is compact
because of the compact embedding of Z into Y. Let ε ∈ (0, 1]. We have ∀ω ∈ Ω: ||Vε(s, t)(ω) f ||Z ≤ c.
Therefore, Vε(s, t)(ω) f ∈ Sc(Z) ⊆ K and so P[Vε(s, t) f ∈ K] = P(Ω) = 1 ≥ 1− ∆.

For example, we can consider the Rellich–Kondrachov compactness theorem: if U ⊆ Rd is an
open, bounded Lipschitz domain, then the Sobolev space W1,p(U) is compactly embedded in Lq(U),
where p ∈ [1, d) and q ∈ [1, dp

d−p ).

For the space C0(Rd), there is no well-known such compact embedding, therefore we have to
proceed differently. The result below is applied for the time-inhomogeneous Lévy case (see Section 6),
and the corresponding proof can easily be recycled for other examples.

Proposition 4. Let Y := C0(Rd), EY ⊆ Y. Assume that ∀∆ ∈ (0, 1], (s, t) ∈ ∆J, ε ∈ (0, 1], f ∈ EY,
∃Aε ⊆ Ω : P(Aε) ≥ 1− ∆ and the family {Vε(s, t)(ω) f : ε ∈ (0, 1], ω ∈ Aε} converge uniformly to 0 at
infinity, is equicontinuous and uniformly bounded. Then, {Vε} ∈ EY-CCC.

Proof. Let f ∈ EY, K the Y-closure of the set:

K1 := {Vε(s, t)(ω) f : ε ∈ (0, 1], ω ∈ Aε}. (110)

K1 is a family of elements of Y that are equicontinuous, uniformly bounded and that converge
uniformly to 0 at infinity by assumption. Therefore, it is well-known, using the Arzela–Ascoli theorem
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on the one-point compactification of Rd, that K1 is relatively compact in Y and therefore that K is
compact in Y. We have ∀ε ∈ (0, 1]:

P[Vε(s, t) f ∈ K] ≥ P[ω ∈ Aε : Vε(s, t) f ∈ K] = P(Aε) ≥ 1− ∆. (111)

4.3. Relative Compactness of {Vε}

This section is devoted to proving that {Vε} is relatively compact. In the following we assume
that {Vε} satisfies the compact containment criterion (see [14]):

{Vε} ∈ Y1 −CCC. (112)

We first state an integral representation of {Vε}, which proof is the same as the proof of
Proposition 2.

Lemma 1. Let Assumption 1 hold true. Let (s, t) ∈ ∆J , f ∈ Y1. Then, Vε satisfies on Ω:

Vε(s, t) f = f +
∫ t

s
Vε(s, u)A

x
(

u
1
ε ,s
)(u) f du +

Ns

(
t

1
ε ,s
)

∑
k=1

Vε(s, Tε,s
k (s)−)[Dε(xk−1(s), xk(s))− I] f . (113)

We now prove that {Vε} is relatively compact.

Lemma 2. Let Assumptions 1 and 2, hold true. Then, {Vε} is Y1-relatively compact.

Proof. We use Theorem 7 to show this result. Using Lemma 1, we have for h ∈ [0, η]:

||Vε(s, t + h) f −Vε(s, t) f || (114)

≤

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∫ t+h

t
Vε(s, u)A

x
(

u
1
ε ,s
)(u) f du +

Ns

(
(t+h)

1
ε ,s
)

∑
k=Ns

(
t

1
ε ,s
)
+1

Vε(s, Tε,s
k (s)−)[Dε(xk−1(s), xk(s))− I] f

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ (115)

≤ ηM1 + εeγ(T+1−s)

Ns

(
(t+η)

1
ε ,s
)

∑
k=Ns

(
t

1
ε ,s
)
+1

1
ε
||Dε(xk−1(s), xk(s)) f − f || (116)

≤ ηM1 + εM2

[
N
(
(t + η)

1
ε ,s
)
− N

(
t

1
ε ,s
)]

. (117)

where

M1 := eγ(T+1−s) sup
x∈J,u∈[s,T+1∧τ̄]

||Ax(u)||B(Y1,Y)|| f ||Y1 , (118)

M2 := eγ(T+1−s) sup
ε,x,y
||Dε

1(x, y) f ||, (119)
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by Assumption 1. Now, for ε ∈ (0, 1]:

ε
[

N
(
(t + η)

1
ε ,s
)
− N

(
t

1
ε ,s
)]

(120)

≤ ε sup
t∈[s,s+η]

[
N
(
(t + η)

1
ε ,s
)
− N

(
t

1
ε ,s
)]

+ ε sup
t∈[s+η,T]

[
N
(
(t + η)

1
ε ,s
)
− N

(
t

1
ε ,s
)]

(121)

≤ εN
(
(s + 2η)

1
ε ,s
)
+ ε sup

t∈[s+η,T]

[
N
(
(t + η)

1
ε ,s
)
− N

(
t

1
ε ,s
)]

. (122)

Note that the supremums in the previous expression are a.e. finite as they are a.e. bounded by
N
(
(T + 1)

1
ε ,s
)

. Now, let:

Cs(ε, η) := ηM1 + M2εN
(
(s + 2η)

1
ε ,s
)
+ M2ε sup

t∈[s+η,T]

[
N
(
(t + η)

1
ε ,s
)
− N

(
t

1
ε ,s
)]

. (123)

We have to show that limη→0 limε→0 E[Cs(ε, η)] = 0. We have:

lim
η→0

lim
ε→0

ηM1 + M2εE
[

N
(
(s + 2η)

1
ε ,s
)]

= lim
η→0

ηM1 + M2
2η

Πm
= 0. (124)

Let {εn} any sequence converging to 0, and denote

Zn := εn sup
t∈[s+η,T]

[
N
(
(t + η)

1
εn ,s
)
− N

(
t

1
εn ,s
)]

. (125)

We first want to show that {Zn} is uniformly integrable. According to [20], it is sufficient to

show that supn E(Z2
n) < ∞. We have that E(Z2

n) ≤ ε2
nE
[

N2
(
(T + 1)

1
εn ,s
)]

. By Assumption 1 (more
precisely, the regularity of the inhomogeneous Markov renewal process), we get:

lim
t→∞

E(N2(t))
t2 < ∞, (126)

and therefore {Zn} is uniformly integrable. Then, we show that Zn
a.e.→ Z := η

Πm . Let:

Ω∗ :=
{

lim
ε→0

εN
(
(s + 1)

1
ε ,s
)
=

1
Πm

}
. (127)

Let ω ∈ Ω∗ and δ > 0. There exists some constant r2(ω, δ) > 0 such that for ε < r2:∣∣∣∣εN
(
(s + 1)

1
ε ,s
)
− 1

Πm

∣∣∣∣ < δ

T + η
, (128)

and if t ∈ [s + η, T + η]: ∣∣∣∣(t− s)εN
(
(s + 1)

1
ε ,s
)
− t− s

Πm

∣∣∣∣ < δ(t− s)
T + η

≤ δ. (129)

Let ε < ηr2 (recall η > 0) and ε2 := ε
t−s . Then, ε2 < ηr2

η = r2, and therefore:∣∣∣∣(t− s)ε2N
(
(s + 1)

1
ε2

,s
)
− t− s

Πm

∣∣∣∣ < δ (130)

⇒
∣∣∣∣εN

(
t

1
ε ,s
)
− t− s

Πm

∣∣∣∣ < δ. (131)
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Therefore, for ε < ηr2 and t ∈ [s + η, T]:∣∣∣εN
(
(t + η)

1
ε ,s
)
− εN

(
t

1
ε ,s
)
− η

Πm

∣∣∣ < 2δ (132)

⇒
∣∣∣∣∣ sup
t∈[s+η,T]

[
εN
(
(t + η)

1
ε ,s
)
− εN

(
t

1
ε ,s
)]
− η

Πm

∣∣∣∣∣ ≤ 2δ < 3δ. (133)

We have proved that Zn
a.e.→ Z. By uniform integrability of {Zn}, we get that limn→∞ E(Zn) = E(Z)

and therefore since the sequence {εn} is arbitrary:

lim
ε→0

εE
[

sup
t∈[s+η,T]

[
N
(
(t + η)

1
ε ,s
)
− N

(
t

1
ε ,s
)]]

=
η

Πm
. (134)

We now prove that the limit points of {Vε} are continuous.

Lemma 3. Let Assumptions 1 and 2 hold true. Then, {Vε} is Y1-C-relatively compact.

Proof. The proof is presented for the case J = R+. The proof for the case J = [0, T∞] is exactly the

same. By Lemma 2, it is relatively compact. By Theorem 6, it is sufficient to show that js(Vε(s, •) f ) P→ 0.
Let δ > 0 and fix T > 0. For u ∈ [s, T], we have:

js(Vε(s, •) f , u) ≤ sup
t∈[s,T]

||Vε(s, t) f −Vε(s, t−) f || (135)

= max
k∈
[∣∣∣∣1,Ns

(
T

1
ε ,s
)∣∣∣∣]
∣∣∣∣Vε

(
s, Tε,s

k (s)
)

f −Vε

(
s, Tε,s

k (s)−
)

f
∣∣∣∣ (136)

(using Lemma 1) = max
k∈
[∣∣∣∣1,Ns

(
T

1
ε ,s
)∣∣∣∣]
||Vε

(
s, Tε,s

k (s)−
)
(Dε(xk−1(s), xk(s)) f − f )|| (137)

≤ eγ(T−s) max
(x,y)∈J2

||Dε(x, y) f − f || ≤ CTε, (138)

with CT := eγ(T−s) sup
ε,x,y
||Dε

1(x, y) f || (by Assumption 1). (139)

Since:

js(Vε(s, •) f ) =
∫ T

s
e−u(js(Vε(s, •) f , u) ∧ 1)du +

∫ ∞

T
e−u(js(Vε(s, •) f , u) ∧ 1)du (140)

≤ CTε + e−T , (141)

we get js(Vε(s, •) f ) a.e.→ 0 (choose T big enough, then ε small enough).

4.4. Martingale Characterization of the Random Evolution

To prove the weak law of large numbers for the random evolution, we use a martingale method
similar to what is done in [10] (Section 4.2.1), but adapted rigorously to the inhomogeneous setting.
We first introduce the quantity f1, solution to a suitable “Poisson equation”:
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Definition 13. Let Assumption 1 hold true. For f ∈ Y1, x ∈ J, t ∈ J, let f ε(x, t) := f + ε f1(x, t), where f1

is the unique solution of the equation:

(P− I) f1(•, t)(x) = Πm[Â(t)− a(x, t)] f (142)

a(x, t) :=
1

Πm

(
m1(x)Ax(t) + PD0

1(x, •)(x)
)

(143)

Â(t) := Πa(•, t), (144)

namely f1(x, t) = ΠmR0[Â(t) f − a(•, t) f ](x), where R0 := (P − I + Π)−1 is the fundamental matrix
associated to P.

Remark 3. The existence of f1 is guaranteed because Π[Â(t) − a(•, t)] f = 0 by construction (see [22],
Proposition 4). In fact, in [22], the operators Π and P are defined on Bb

R(J) but the results hold true if we work
on Bb

E(J), where E is any Banach space such that [Â(t)− a(x, t)] f ∈ E (e.g., E = Y1 if f ∈ D̂, E = Y if
f ∈ Y1). To see that, first observe that P and Π can be defined the same way on Bb

E(J) as they were on Bb
R(J).

Then, take ` ∈ E∗ such that ||`|| = 1 and g ∈ Bb
E(J) such that ||g||Bb

E(J)
= maxx ||g(x)||E = 1. We therefore

have that: ||` ◦ g||Bb
R(J)
≤ 1, and since we have the uniform ergodicity on Bb

R(J), we have that:

sup
||`||=1

||g||
Bb

E(J)=1

x∈J

|Pn(` ◦ g)(x)−Π(` ◦ g)(x)| ≤ ||Pn −Π||B(Bb
R(J))

→ 0. (145)

By linearity of `, P, Π we get that |Pn(` ◦ g)(x) − Π(` ◦ g)(x)| = |`(Png(x) − Πg(x))|.
However, because ||Png(x)−Πg(x)||E = sup||`||=1 |`(Png(x)−Πg(x))| and that this supremum is attained
(see, e.g., [23], Section III.6), then:

sup
||`||=1

||g||
Bb

E(J)=1

x∈J

|`(Png(x)−Πg(x))| = sup
||g||

Bb
E(J)=1

x∈J

||Png(x)−Πg(x)||E (146)

= sup
||g||

Bb
E(J)=1

||Png−Πg||Bb
E(J)

= ||Pn −Π||B(Bb
E(J))

, (147)

and thus we also have ||Pn −Π||B(Bb
E(J))

→ 0, i.e., the uniform ergodicity in Bb
E(J). Now, according to the

proofs of Theorems 3.4 and 3.5, Chapter VI of [24], ||Pn −Π||B(Bb
E(J))

→ 0 is the only thing we need to prove
that P + Π− I is invertible on:

BΠ
E (J) := { f ∈ Bb

E(J) : Π f = 0}, (148)

the space E plays no role. Further, (P + Π− I)−1 ∈ B(BΠ
E (J)) by the bounded inverse theorem.

We now introduce the martingale (M̃ε
t (s))t≥0 which plays a central role in the following.

Lemma 4. Let Assumption 1 hold true. Define recursively for ε ∈ (0, 1], s ∈ J:

Vε
0 (s) := I (149)

Vε
n+1(s) := Vε

n (s)Γxn(s)
(
Tε,s

n (s), Tε,s
n+1(s)

)
Dε(xn(s), xn+1(s)), (150)
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i.e., Vε
n (s) = Vε(s, Tε,s

n (s)); and for f ∈ Y1 (we recall that f ε(x, t) := f + ε f1(x, t)):

Mε
n(s) f := Vε

n (s) f ε(xn(s), Tε,s
n (s))− f ε(x(s), s)

−
n−1

∑
k=0

E[Vε
k+1(s) f ε(xk+1(s), Tε,s

k+1(s))−Vε
k (s) f ε(xk(s), Tε,s

k (s))|Fk(s)],
(151)

so that (Mε
n(s) f )n∈N is a Fn(s)-martingale by construction. Let for t ∈ J(s):

M̃ε
t (s) f := Mε

Ns

(
t

1
ε ,s
)
+1

(s) f (152)

F̃ ε
t (s) := F

Ns

(
t

1
ε ,s
)
+1

(s), (153)

where Fn(s) := σ [xk(s), Tk(s) : k ≤ n] ∨ σ(P − null sets) and F
Ns

(
t

1
ε ,s
)
+1

(s) is defined the usual way

(provided we have shown that Ns

(
t

1
ε ,s
)
+ 1 is a Fn(s)-stopping time ∀t ∈ J(s)). Then, ∀` ∈ Y∗, ∀s ∈ J,

∀ε ∈ (0, 1], ∀ f ∈ Y1, (`(M̃ε
t (s) f ), F̃ ε

t (s))t∈J(s) is a real-valued square-integrable martingale.

Proof. By construction (`(Mε
n(s) f ),Fn(s)) is a martingale. Let θε

s (t) := Ns

(
t

1
ε ,s
)
+ 1. ∀t ∈ J(s), θε

s (t)
is a Fn(s)-stopping time, because:

{θε
s (t) = n} =

{
Ns

(
t

1
ε ,s
)
= n− 1

}
=
{

Tn−1(s) ≤ t
1
ε ,s
}
∩
{

Tn(s) > t
1
ε ,s
}
∈ Fn(s). (154)

Let t1 ≤ t2 ∈ J(s). We have that (`(Mε
θε

s (t2)∧n(s) f ),Fn(s)) is a martingale. Assume we have shown
that it is uniformly integrable, then we can apply the optional sampling theorem for UI martingales to
the stopping times θε

s (t1) ≤ θε
s (t2) a.e and get:

E[`(Mε
θε

s (t2)∧θε
s (t2)

(s) f )|Fθε
s (t1)

(s)] = `(Mε
θε

s (t1)∧θε
s (t2)

(s) f ) a.e. (155)

⇒ E[`(Mε
θε

s (t2)
(s) f )|Fθε

s (t1)
(s)] = `(Mε

θε
s (t1)

(s) f ) a.e. (156)

⇒ E[`(M̃ε
t2
(s) f )|F̃ ε

t1
(s)] = `(M̃ε

t1
(s) f ) a.e., (157)

which shows that (`(M̃ε
t (s) f ), F̃ ε

t (s))t∈J(s) is a martingale. Now, to show the uniform integrability,
according to [20], it is sufficient to show that supn E(||Mε

θε
s (t2)∧n(s) f ||2) < ∞. However:

||Mε
θε

s (t2)∧n(s) f || ≤ 2eγ(t2+τ̄−s)(|| f ||+ || f1||) + 2eγ(t2+τ̄−s)(|| f ||+ || f1||)(θε
s (t2) ∧ n) (158)

≤ 2eγ(t2+τ̄−s)(|| f ||+ || f1||)(1 + θε
s (t2)), (159)

where || f1|| := sup x∈J
u∈[0,t2+τ̄]

|| f1(x, u)|| (|| f1|| < ∞ by Assumption 1). The fact that E(θε
s (t2)

2) < ∞

(Assumptions 1) concludes the proof.

Remark 4. In the following, we use the fact that, as found in [25] (Theorem 3.1), for sequences (Xn), (Yn)

of random variables with value in a separable metric space with metric d, if Xn ⇒ X and d(Xn, Yn) ⇒ 0,
then Yn ⇒ X. In our case, (Xn), (Yn) take value in D(J(s), Y) and to show that d(Xn, Yn) ⇒ 0, we use the
fact that:

d(Xn, Yn) ≤ sup
t∈[s,T]

||Xn(t)−Yn(t)||+ e−T ∀T ∈ J(s), if J = R+ (160)

d(Xn, Yn) ≤ sup
t∈[s,T∞−τ̄]

||Xn(t)−Yn(t)||, if J = [0, T∞], (161)



Mathematics 2019, 7, 447 24 of 62

and therefore that it is sufficient to have:

sup
t∈[s,T]

||Xn(t)−Yn(t)||
a.e.→ 0 (respectively, in probability), ∀T ∈ J(s) (162)

to obtain d(Xn, Yn)
a.e.→ 0 (respectively, in probability).

Lemma 5. Let Assumption 1 hold true. For f ∈ D̂ and s ∈ J, M̃ε
•(s) f has the asymptotic representation:

M̃ε
•(s) f = Vε(s, •) f − f − εΠm

Ns

(
t

1
ε ,s
)

∑
k=1

Vε(s, Tε,s
k (s))Â

(
Tε,s

k (s)
)

f + O(ε) a.e., (163)

where O(εp) is an element of the space D(J(s), Y) and is defined by the following property: ∀r > 0, ∀T ∈
Q+ ∩ J(s), ε−p+r supt∈[s,T] ||O(εp)|| ⇒ 0 as ε→ 0 (so that Remark 4 is satisfied).

Proof. For the sake of clarity, let:

f ε
k := f ε(xk(s), Tε,s

k (s)) f1,k := f1(xk(s), Tε,s
k (s)) (164)

Let T ∈ J(s). First, we have that:

Vε

Ns

(
t

1
ε ,s
)
+1

(s) f ε

Ns

(
t

1
ε ,s
)
+1

= Vε

Ns

(
t

1
ε ,s
)
+1

(s) f + O(ε) (165)

because supt∈[s,T] ||Vε

Ns

(
t

1
ε ,s
)
+1

(s) f
1,Ns

(
t

1
ε ,s
)
+1
|| ≤ eγ(T+τ̄−s)|| f1||. Again and as in Lemma 4,

we denote || f1|| := sup x∈J
u∈[0,T+τ]

|| f1(x, u)||, and || f1|| < ∞ by Assumption 1. Now, we have:

Vε
k+1(s) f ε

k+1 −Vε
k (s) f ε

k = Vε
k (s)( f ε

k+1 − f ε
k ) + Vε

k+1(s) f ε
k+1 −Vε

k (s) f ε
k+1, (166)

and:

E[Vε
k (s)( f ε

k+1 − f ε
k )|Fk(s)] = εVε

k (s)E[( f1,k+1 − f1,k)|Fk(s)], (167)

as Vε
k (s) is Fk(s)− Bor(B(Y)) measurable. Now, we know that every discrete time Markov process

has the strong Markov property, so the Markov process (xn, Tn) has it. For k ≥ 1, the times N(s) + k
are Fn(0)-stopping times. Therefore, for k ≥ 1:

E[( f1,k+1 − f1,k)|Fk(s)] = E[( f1,k+1 − f1,k)|Tk(s), xk(s)] (168)

= ∑
y∈J

∫ ∞

0
f1
(
y, Tε,s

k (s) + εu
)

QTk(s)(xk(s), y, du)− f1,k. (169)

Consider the following derivatives with respect to t:

a′(x, t) :=
1

Πm
m1(x)A′x(t), (170)

Â′(t) := Πa′(•, t) (171)

f ′1(x, t) := ΠmR0[Â′(t) f − a′(•, t) f ](x), (172)
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which exist because R0 ∈ B(BΠ
Y1
(J)) and f ∈ ∩x∈JD(A′x). Using the Fundamental theorem of Calculus

for the Bochner integral (v→ f ′1(y, v) ∈ L1
Y([a, b]) ∀[a, b] by Assumption 1) we get:

E[( f1,k+1 − f1,k)|Tk(s), xk(s)] (173)

= ∑
y∈J

∫ ∞

0

[
f1
(
y, Tε,s

k (s)
)
+
∫ Tε,s

k (s)+εu

Tε,s
k (s)

f ′1(y, v)dv

]
QTk(s)(xk(s), y, du)− f1

(
xk(s), Tε,s

k (s)
)

(174)

= (PTk(s) − I) f1
(
•, Tε,s

k (s)
)
(xk(s)) (175)

+ ∑
y∈J

∫ ∞

0

[∫ εu

0
f ′1(y, Tε,s

k (s) + v)dv
]

QTk(s)(xk(s), y, du) (176)

= (PTk(s) − I) f1
(
•, Tε,s

k (s)
)
(xk(s)) + O(ε). (177)

because, by Assumption 1:

∑
y∈J

∫ ∞

0

[∫ εu

0
f ′1(y, Tε,s

k (s) + v)dv
]

QTk(s)(xk(s), y, du) ≤ ε|| f ′1||τ̄. (178)

We note that the contribution of the terms of order O(ε2) inside the sum will make the sum of
order O(ε), since for some constant CT :

sup
t∈[s,T]

Ns

(
t

1
ε ,s
)

∑
k=1

||O(ε2)|| ≤ Ns

(
T

1
ε ,s
)

CTε2 = O(ε) (179)

because εNs

(
T

1
ε ,s
)

a.e.→ T−s
Πm . Altogether, we have for k ≥ 1, using the definition of f1:

E[Vε
k (s)( f ε

k+1 − f ε
k )|Fk(s)] = εVε

k (s)(PTk(s) − I) f1
(
•, Tε,s

k (s)
)
(xk(s)) + O(ε2) (180)

= εΠmVε
k (s)

[
Â(Tε,s

k (s))− a(xk(s), Tε,s
k (s))

]
f (181)

+ εVε
k (s)(PTk(s) − P) f1

(
•, Tε,s

k (s)
)
(xk(s)) + O(ε2). (182)

The term involving PTk(s) − P above will vanish as k → ∞ by Assumption 1, as ||Pt − P|| → 0.
We also have for the first term (k = 0):

E[Vε
0 (s)( f ε

1 − f ε
0 )|Fk(s)] = O(ε) (≤ 2ε|| f1||). (183)

Now, we have to compute the terms corresponding to Vε
k+1(s) f ε

k+1 − Vε
k (s) f ε

k+1. We show that
the term corresponding to k = 0 is O(ε) and that for k ≥ 1:

E[Vε
k+1(s) f ε

k+1 −Vε
k (s) f ε

k+1|Fk(s)] = εΠmVε
k (s)a(xk(s), Tε,s

k (s)) f + “negligible terms”. (184)
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For the term k = 0, we have, using Assumption 1, the definition of Vε
k and Theorem 3:

Vε
1 (s) f ε

1 −Vε
0 (s) f ε

1 = Vε
1 (s) f − f + O(ε) (185)

= Γx(s)
(
s, Tε,s

1 (s)
)

Dε(x(s), x1(s)) f − f + O(ε) (186)

= Γx(s)
(
s, Tε,s

1 (s)
)
(Dε(x(s), x1(s)) f − f ) + Γx(s)

(
s, Tε,s

1 (s)
)

f − f + O(ε) (187)

⇒ E[Vε
1 (s) f ε

1 −Vε
0 (s) f ε

1 |F0(s)] ≤ eγτ̄ max
x,y
||Dε(x, y) f − f ||

+
∫ ∞

0
εu sup

x,t∈[s,s+τ]

||Ax(t)||B(Y1,Y)|| f ||Y1 FT0(s)(x, du)
(188)

≤ ε

(
eγτ̄ sup

ε,x,y
||Dε

1(x, y) f ||+ || f ||Y1 τ̄||Ax(t)||B(Y1,Y)

)
= O(ε). (189)

Now, we have for k ≥ 1:

Vε
k+1(s)−Vε

k (s) = Vε
k (s)

[
Γxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
Dε(xk(s), xk+1(s))− I

]
. (190)

By Assumption 1, we have supε,x,y ||Dε
1(x, y)g|| < ∞ for g ∈ Y1. Therefore, we get using

Theorem 3, for g ∈ Y1:

Dε(xk(s), xk+1(s))g = g +
∫ ε

0
Du

1 (xk(s), xk+1(s))gdu (191)

and Γxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
g = g +

∫ Tε,s
k+1(s)

Tε,s
k (s)

Γxk(s)(T
ε,s
k (s), u)Axk(s)(u)gdu. (192)

Because f ∈ D̂, we get that Â(t) f ∈ Y1, a(x, t) f ∈ Y1 ∀t, x. Since R0 ∈ B(BΠ
Y1
(J)), we get that

f1,k+1 ∈ Y1 and therefore:

Γxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
Dε(xk(s), xk+1(s)) f1,k+1 = Γxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
f1,k+1 + O(ε) (193)

= f1,k+1 +
∫ Tε,s

k+1(s)

Tε,s
k (s)

Γxk(s)(T
ε,s
k (s), u)Axk(s)(u) f1,k+1du + O(ε). (194)

Therefore, taking the conditional expectation, we get:

E[Vε
k+1(s) f1,k+1 −Vε

k (s) f1,k+1|Fk(s)] (195)

= Vε
k (s) ∑

y∈J

∫ ∞

0

[∫ εu

0
Γxk(s)(T

ε,s
k (s), Tε,s

k (s) + v)Axk(s)(T
ε,s
k (s) + v) f1,k+1dv

]
×QTk(s)(xk(s), y, du) + O(ε)

(196)

= O(ε) (≤ εCτ̄ for some constant C by Assumption 1), (197)

and so:

E[Vε
k+1(s) f ε

k+1 −Vε
k (s) f ε

k+1|Fk(s)] = E[Vε
k+1(s) f −Vε

k (s) f |Fk(s)] + O(ε2). (198)

Now, because f ∈ D̂ and by Assumption 1 (which ensures that the integral below exists):

Dε(xk(s), xk+1(s)) f = f + εD0
1(xk(s), xk+1(s)) f +

∫ ε

0
(ε− u)Du

2 (xk(s), xk+1(s)) f du. (199)
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Thus, using boundedness of Dε
2 (again Assumption 1):

Γxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
Dε(xk(s), xk+1(s)) f

= Γxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
f + εΓxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
D0

1(xk(s), xk+1(s)) f + O(ε2).
(200)

The first term above has the representation (by Theorem 5):

Γxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
f = f +

∫ Tε,s
k+1(s)

Tε,s
k (s)

Axk(s)(u) f du

+
∫ Tε,s

k+1(s)

Tε,s
k (s)

∫ u

Tε,s
k (s)

Γxk(s)(T
ε,s
k (s), r)Axk(s)(r)Axk(s)(u) f drdu.

(201)

Taking the conditional expectation and using the fact that supu∈[0,T+τ̄]
x∈J

||Ax(u) f ||Y1 < ∞, we can

show as we did before that:

E
[∫ Tε,s

k+1(s)

Tε,s
k (s)

∫ u

Tε,s
k (s)

Γxk(s)(T
ε,s
k (s), r)Axk(s)(r)Axk(s)(u) f drdu

∣∣∣∣∣Fk(s)

]
= O(ε2). (202)

The second term has the following representation, because f ∈ D̂ (which ensures that D0
1(x, y) f ∈

Y1) and using Theorem 3:

εΓxk(s)

(
Tε,s

k (s), Tε,s
k+1(s)

)
D0

1(xk(s), xk+1(s)) f (203)

= εD0
1(xk(s), xk+1(s)) f + ε

∫ Tε,s
k+1(s)

Tε,s
k (s)

Γxk(s)
(
Tε,s

k (s), u
)

Axk(s)(u)D0
1(xk(s), xk+1(s)) f du (204)

= εD0
1(xk(s), xk+1(s)) f + O(ε2). (205)

Thus, we have overall:

E[Vε
k+1(s) f −Vε

k (s) f |Fk(s)]

= Vε
k (s)E

[∫ Tε,s
k+1(s)

Tε,s
k (s)

Axk(s)(u) f du + εD0
1(xk(s), xk+1(s)) f

∣∣∣∣∣Fk(s)

]
+ O(ε2).

(206)

We have by the strong Markov property (because k ≥ 1):

E
[

D0
1(xk(s), xk+1(s)) f | Fk(s)

]
= PTk(s)D

0
1(xk(s), •)(xk(s)) f , (207)

and:

E
[∫ Tε,s

k+1(s)

Tε,s
k (s)

Axk(s)(u) f du

∣∣∣∣∣ xk(s), Tk(s)

]
(208)

= ∑
y∈J

∫ ∞

0

[∫ Tε,s
k (s)+εu

Tε,s
k (s)

Axk(s)(v) f dv

]
QTk(s)(xk(s), y, du) (209)

= ∑
y∈J

∫ ∞

0

[
εuAx(Tε,s

k (s)) f +
∫ εu

0
(εu− v)A′xk(s)

(Tε,s
k (s) + v) f dv

]
QTk(s)(xk(s), y, du) (210)

= εm1(xk(s), Tk(s))Axk(s)(T
ε,s
k (s)) f + O(ε2), (211)
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as supu∈[0,T+τ̄] ||A′x(u) f || < ∞. Thus, finally, we get:

E[Vε
k+1(s) f ε

k+1 −Vε
k (s) f ε

k+1|Fk(s)] = εΠmVε
k (s)a(xk(s), Tε,s

k (s)) f

+ εVε
k (s)

[
(m1(xk(s), Tk(s))−m1(xk(s)))Axk(s)(T

ε,s
k (s)) f

]
+ εVε

k (s)
[
(PTk(s) − P)D0

1(xk(s), •)(xk(s)) f
]
+ O(ε2).

(212)

In the expression above, Assumption 1 ensures that the terms containing (P − PTk(s)) and
(m1(xk(s), Tk(s))−m1(xk(s))) will vanish as k→ ∞, and therefore we get overall:

M̃ε
t (s) f = Vε

Ns

(
t

1
ε ,s
)
+1

(s) f − f − εΠm

Ns

(
t

1
ε ,s
)

∑
k=1

Vε(s, Tε,s
k (s))Â

(
Tε,s

k (s)
)

f + O(ε). (213)

Now, let θε
s (t) := Ns

(
t

1
ε ,s
)
+ 1. Using Assumption 1 (in particular uniform boundedness of

sojourn times):

Vε
θε

s (t)
(s) f = Vε(s, t)Γxθε

s (t)−1(s)
(t, Tε,s

θε
s (t)

(s))Dε(xθε
s (t)−1(s), xθε

s (t)(s)) f (214)

⇒ ||Vε
θε

s (t)
(s) f −Vε(s, t) f || ≤ eγ(t−s)||Γxθε

s (t)−1(s)
(t, Tε,s

θε
s (t)

(s))Dε(xθε
s (t)−1(s), xθε

s (t)(s)) f − f || (215)

≤ eγ(t+τ̄−s)||Dε(xθε
s (t)−1(s), xθε

s (t)(s)) f − f ||+ eγ(t−s)||Γxθε
s (t)−1(s)

(t, Tε,s
θε

s (t)
(s)) f − f || (216)

≤ εeγ(t+τ̄−s) sup
(x,y)∈J2

ε∈[0,1]

||Dε
1(x, y) f ||+ eγ(t−s)(Tε,s

θε
s (t)

(s)− t) sup
x∈J

t∈[0,T+τ̄]

||Ax(t)||B(Y1,Y)|| f ||Y1 (217)

≤ εeγ(t+τ̄−s) sup
(x,y)∈J2

ε∈[0,1]

||Dε
1(x, y) f ||+ εeγ(t−s)τ̄ sup

x∈J
t∈[0,T+τ̄]

||Ax(t)||B(Y1,Y)|| f ||Y1 . (218)

Therefore:

Vε

Ns

(
t

1
ε ,s
)
+1

(s) f = Vε(s, t) f + O(ε). (219)

We now show that the martingale M̃ε
•(s) f converges to 0 as ε→ 0.

Lemma 6. Let Assumption 1 hold true. Let f ∈ Y1, s ∈ J. For every ` ∈ Y∗, `(M̃ε
•(s) f ) ⇒ 0. Further,

if {M̃ε
•(s) f } is relatively compact (in D(J(s), Y)), then M̃ε

•(s) f ⇒ 0.

Proof. Take any sequence εn → 0. Weak convergence in D(J(s),R) is equivalent to weak convergence
in D([s, T),R) for every T ∈ J(s). Thus, let us fix T ∈ J(s). Let ` ∈ Y∗. Then, `(M̃εn• (s) f ) is a
real-valued martingale by Lemma 4. To show that `(M̃εn• (s) f )⇒ 0, we are going to apply Theorem 3.11
of [21], chapter VIII. First, `(M̃εn• (s) f ) is square-integrable by Lemma 4. From the proof of Lemma 5,
we have that:

Mεn
k+1(s) f −Mεn

k (s) f = ∆Vεn
k+1(s) f εn

k+1 −E[∆Vεn
k+1(s) f εn

k+1|Fk(s)] (220)

where ∆Vεn
k+1(s) f εn

k+1 := Vεn
k+1(s) f εn

k+1 −Vεn
k (s) f εn

k , (221)
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and that:

sup

k≤Ns

(
t

1
ε ,s
) ||∆Vεn

k+1(s) f εn
k+1|| ≤ CTεn a.e. (222)

for some uniform constant CT dependent on T, so that:∣∣∣∆`(M̃εn
t (s) f )

∣∣∣ = ∣∣∣` (∆M̃εn
t (s) f

)∣∣∣ ≤ 2||`|| sup

k≤Ns

(
t

1
ε ,s
) ||∆Vεn

k+1(s) f εn
k+1|| a.e. (223)

≤ 2||`||CTεn a.e. (224)

The latter shows that the jumps are uniformly bounded by 2||`||CT and that

sup
t<T

∣∣∣∆`(M̃εn
t (s) f )

∣∣∣ P→ 0. (225)

To show that `(M̃ε
•(s) f )⇒ 0, it remains to show that the following predictable quadratic variation

goes to 0 in probability: 〈
`(M̃εn

• (s) f )
〉

t

P→ 0 for all t ∈ [s, T). (226)

Using the definition of M̃εn• (s) f in Lemma 4, we get that:

〈
`(M̃εn

• (s) f )
〉

t
=

Ns

(
t

1
εn ,s

)
∑
k=0

E
[
`2(Mεn

k+1(s) f −Mεn
k (s) f )

∣∣∣Fk(s)
]

. (227)

Therefore: ∣∣∣〈`(M̃εn
• (s) f )

〉
t

∣∣∣ ≤ 4C2
T ||`||2ε2

nNs

(
t

1
εn ,s
)

a.e.→ 0, (228)

because εnNs

(
t

1
εn ,s
)

a.e.→ t−s
Πm . Now, to show the second part of the lemma, we observe that if M̃εn• (s) f ⇒

M̃0
•(s, f ) for some converging sequence εn → 0, we get that `(M̃εn• (s) f ) ⇒ `(M̃0

•(s, f )) by Problem
13, Section 3.11 of [20] together with the continuous mapping theorem. Therefore, `(M̃0

•(s, f )) is
equal to the zero process, up to indistinguishability. In particular, it yields that ∀t ∈ J(s), ∀` ∈ Y∗:
`(M̃0

t (s, f )) = 0 a.e. Now, according to [26], we know that the dual space of every separable Banach
space has a countable total subset, more precisely there exists a countable subset S ⊆ Y∗ such that
∀g ∈ Y:

(`(g) = 0 ∀` ∈ S)⇒ g = 0. (229)

Since P[`(M̃0
t (s, f )) = 0, ∀` ∈ S] = 1, we get M0

t (s, f ) = 0 a.e., i.e., M̃0
•(s, f ) is a modification

of the zero process. Since both processes have a.e. right-continuous paths, they are in fact
indistinguishable (see, e.g., [27]). Thus, M̃0

•(s, f ) = 0 a.e.

4.5. Weak Law of Large Numbers

To prove our next WLLN theorem—the main result of this section—we need the following:



Mathematics 2019, 7, 447 30 of 62

Assumptions 3.

Â is the generator of a regular Y-propagator Γ̂. (230)

In the applications we consider in Section 6, the above assumption is very easily checked as
we can exhibit Γ̂ almost immediately after looking at Â. This assumption is used to be able to use
Theorem 4, which gives uniqueness of solutions to the Cauchy problem:{

d
dt G(t) f = G(t)Â(t) f ∀t ∈ J(s), f ∈ Y1

G(s) = Gs
(231)

For the cases where Γ̂ cannot be exhibited, we refer to [18], Chapter 5, Theorems 3.1 and 4.3 for
requirements on Â to obtain the well-posedness of the Cauchy problem.

Theorem 8. Under Assumptions 1 and 2, and Assumption 3 above, we get that Γ̂ is B(Y)-exponentially
bounded (with constant γ). Further, for every s ∈ J, we have the weak convergence in the Skorokhod topology
(Ds, d):

Vε(s, •)⇒ Γ̂(s, •), (232)

where (Ds, d) is defined similarly to (D, d) in [14], with R+ replaced by J(s).

Proof. By Lemma 3, we know that {Vε(s, •)} is Y1-C-relatively compact. Take { fp} a countable
family of D̂ that is dense in both Y1 and Y. Marginal relative compactness implies countable relative
compactness and therefore, {Vε(s, •) fp}p∈N is C-relatively compact in D(J(s), Y)∞, and actually in
D(J(s), Y∞) since the limit points are continuous. Take a weakly converging sequence εn. By the proof
of Theorem 4.1 (see [14]), we can find a probability space (Ω′,F ′,P′) and Ds-valued random variables
V′εn(s, •), V′0(s, •) on it, such that:

V′εn(s, •)→ V′0(s, •) in (Ds, d), on Ω′, (233)

||V′0(s, t)||B(Y) ≤ eγ(t−s) ∀t ∈ J(s), on Ω′, (234)

V′εn(s, •) d
= Vεn(s, •) in (Ds, d), ∀n. (235)

We can extend the probability space (Ω′,F ′,P′) so that it supports a Markov renewal process
(x′k, T′k)k≥0 such that:

(V′εn(s, •), (x′k, T′k)k≥0)
d
= (Vεn(s, •), (xk, Tk)k≥0) in (Ds, d)× (J×R+)

∞, ∀n. (236)

Now, let us take some fp and show that on Ω′ we have the following convergence in the
Skorohod topology:

εn

N′s

(
t

1
εn ,s

)
∑
k=1

V′εn(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp →
1

Πm

∫ •
s

V′0(s, u)Â(u) fpdu. (237)
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We have on Ω′:

d

εn

N′s

(
t

1
εn ,s

)
∑
k=1

V′εn(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp,
1

Πm

∫ •
s

V′0(s, u)Â(u) fpdu

 (238)

≤ d

εn

N′s

(
t

1
εn ,s

)
∑
k=1

V′εn(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp, εn

N′s

(
t

1
εn ,s

)
∑
k=1

V′0(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp


︸ ︷︷ ︸

(i)

+ (239)

d

εn

N′s

(
t

1
εn ,s

)
∑
k=1

V′0(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp,
1

Πm

∫ •
s

V′0(s, u)Â(u) fpdu


︸ ︷︷ ︸

(ii)

. (240)

Let T ∈ J(s). By continuity of Â, we get that V′εn(s, •)Â(•) fp → V′0(s, •)Â(•) fp. Since the latter
limit is continuous, the convergence in the Skorohod topology is equivalent to convergence in the local
uniform topology, that is:

sup
t∈[s,T]

||V′εn(s, t)Â(t) fp −V′0(s, t)Â(t) fp|| → 0. (241)

Therefore, we get on Ω′:

sup
t∈[s,T]

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣εn

N′s

(
t

1
εn ,s

)
∑
k=1

V′εn(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp − εn

N′s

(
t

1
εn ,s

)
∑
k=1

V′0(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ (242)

≤ εnN′s
(

t
1

εn ,s
)

sup
t∈[s,T]

||V′εn(s, t)Â(t) fp −V′0(s, t)Â(t) fp|| → 0, (243)

since εnN′s
(

t
1

εn ,s
)
→ t−s

Πm ≤
T−s
Πm . By Remark 4 we get (i)→ 0. For (ii), we observe that we can refine

as we wish the partition {Tεn ,s
k (s)′} uniformly in k, since Tεn ,s

k+1(s)
′ − Tεn ,s

k (s)′ ≤ εnτ̄ almost surely.
Therefore, we get the convergence of the Riemann sum to the Riemann integral uniformly on [s, T], i.e.,

sup
t∈[s,T]

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣εn

N′s

(
t

1
εn ,s

)
∑
k=1

V′0(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp −
1

Πm

∫ t

s
V′0(s, u)Â(u) fpdu

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
n→∞→ 0. (244)

Finally, we get on Ω′, by continuity of the limit points:

V′εn(s, •) fp − fp −Πmεn

N′s

(
t

1
εn ,s

)
∑
k=1

V′εn(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) fp (245)

→ V′0(s, •) fp − fp −
∫ •

s
V′0(s, u)Â(u) fpdu. (246)
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Since we have:

(V′εn(s, •), (x′k, T′k)k≥0)
d
= (Vεn(s, •), (xk, Tk)k≥0) in (Ds, d)× (J×R+)

∞, ∀n, (247)

by Lemmas 5 and 6, we get that:

V′0(s, •) fp − fp −
∫ •

s
V′0(s, u)Â(u) fpdu = 0 (248)

for all p on some set of probability one Ω′0 ⊆ Ω′. Let g ∈ Y1 and t ∈ J(s). Since { fp} is dense in Y1,

there exists a sequence gp ⊆ { fp}
Y1→ g. We have on Ω′0:∣∣∣∣∣∣∣∣V′0(s, t)g− g−
∫ t

s
V′0(s, u)Â(u)g

∣∣∣∣∣∣∣∣ (249)

≤ ||V′0(s, t)g−V′0(s, t)gp||+
∣∣∣∣∣∣∣∣V′0(s, t)gp − g−

∫ t

s
V′0(s, u)Â(u)g

∣∣∣∣∣∣∣∣ (250)

≤ 2eγ(t−s)||gp − g||+
∫ t

s
||V′0(s, u)Â(u)gp −V′0(s, u)Â(u)g||du (251)

≤ 2eγ(t−s)||gp − g||+ eγ(t−s)||gp − g||Y1

∫ t

s
||Â(u)||B(Y1,Y)du→ 0, (252)

using Assumption 1. Therefore, on Ω′0, we have ∀g ∈ Y1:

V′0(s, •)g = g +
∫ •

s
V′0(s, u)Â(u)gdu. (253)

By continuity of Â on Y1 (Assumption 1), and exponential boundedness + continuity of V′0:
t→ V′0(s, t)Â(t)g ∈ C(J(s), Y) on Ω′0 and therefore we have on Ω′0:

∂

∂t
V′0(s, t)g = V′0(s, t)Â(t)g ∀t ∈ J(s), ∀g ∈ Y1 (254)

V′0(s, s) = I. (255)

By Assumption 3, and Theorem 4, V′0(s, t)(ω′)g = Γ̂(s, t)g, ∀ω′ ∈ Ω′0, ∀g ∈ Y1, ∀t ∈ J(s).
By density of Y1 in Y, the previous equality is true in Y.

5. Central Limit Theorem

In the previous section, we obtain in Theorem 8 a WLLN for the random evolution. The goal of
this section is to obtain a CLT. The main result is Theorem 11, which states that—in a suitable operator
Skorohod topology—we have the weak convergence:

ε−1/2(Vε(s, •)− Γ̂(s, •))⇒ Iσ(s, •), (256)

where Iσ(s, •) is a “Gaussian operator” defined in Theorem 11. In the WLLN result in Theorem 8, it is
relatively obvious that the convergence would hold on the space Ds. Here, because of the rescaling
by ε−1/2, it is not a priori obvious. In fact, the above weak convergence proves to hold in the space
DY2→Y

s , which is defined very similarly to Ds:

DY2→Y
s := {S ∈ B(Y2, Y)J(s) : S f ∈ D(J(s), Y) ∀ f ∈ Y2}, (257)

where (Y2, || · ||Y2) is a Banach space continuously embedded in (Y1, || · ||Y1). We need the Banach
space Y2 ⊆ Y1 because the limiting Gaussian operator Iσ takes value in CY2→Y

s , but not in CY1→Y
s ,
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as shown in Lemma 7. It is proved that the volatility vector σ defined in Proposition 5 (which governs
the convergence of Vε to Γ̂, as shown in Theorem 11) comes from three independent sources, which is
what we expected intuitively:

• σ(1) comes from the variance of the sojourn times {Tn+1 − Tn}n≥0.
• σ(2) comes from the jump operators D.
• σ(3) comes from the “state process” {xn}n≥0.

For example, if there is only 1 state in J, then σ(2) = σ(3) = 0 and σ only comes from the
randomness of the times {Tn}. If, on the other hand, the times Tn are assumed to be deterministic,
then σ(1) = 0. If the random evolution is continuous (D = I), then σ(2) = 0. This decomposition of
the volatility σ in three independent sources is obtained using the concept of so-called orthogonal
martingale measures (see, e.g., [28], Definition I-1), which is the heart of this section.

To get the main result of Theorem 11, we need a series of preliminary results: Theorem 9
establishes the weak convergence of the martingale ε−

1
2 `(M̃ε

•(s) f ) as ε→ 0 for ` ∈ Y∗, Proposition 5
and Theorem 10 allow expressing the limit of the previous martingale in a neat way using
so-called orthogonal martingale measures and weak Banach-valued stochastic integrals introduced in
Definition 14 (which are an extension of the weak Banach-valued stochastic integrals of [29]). Lemmas 7
and 8 give well-posedness of a Cauchy problem, which is used in the proof of Theorem 11, and show
that the correct space to establish the convergence of ε−1/2(Vε(s, •)− Γ̂(s, •)) is indeed DY2→Y

s .

Theorem 9. Let ` ∈ Y∗, s ∈ J and f ∈ D̂. Under Assumptions 1– 3, we have the following weak convergence
in the space D(J(s),R):

ε−
1
2 `(M̃ε

•(s) f )⇒ N`
•(s, f ), (258)

where N`
•(s, f ) is a continuous Gaussian martingale with characteristics (0, σ̂`(s, •, f )2, 0) given by:

σ̂`(s, t, f )2 =
∫ t

s
Π[σ̂`(•, s, u, f )2]du (259)

σ̂`(x, s, t, f )2 := (260)
1

Πm

(
σ2(x)`2(Γ̂(s, t)Ax(t) f ) + Pvar[`(Γ̂(s, t)D0

1(x, •) f )](x) + Pvar[`(Γ̂(s, t) f1(•, t))](x)
)

, (261)

where σ2(x) := m2(x)−m2
1(x) and Pvar is the following non-linear variance operator:

Pvarg(x) := Pg2(x)− (Pg(x))2 for x ∈ J, g ∈ Bb
R(J). (262)

Proof. Because the proof of this theorem is long, we explain the main parts of the proof before actually
beginning the proof. The main idea is to prove that the quadratic variation of

〈
ε−

1
2 `(M̃ε

•(s) f )
〉

t
converges to σ̂`(s, t, f )2 in probability. We express the martingale-difference as the sum of two terms in
Equations (265) and (266). Then, we calculate the expected values of the square of the functional of each
term (see Equation (267)), as done in Equations (282), (287) and (288). Thus, our martingale-difference
can be expressed in the form of Equations (298) and (299), or Equations (300) and (301) after k→ +∞.
Therefore, the quadratic variation

〈
ε−

1
2 `(M̃ε

•(s) f )
〉

t
is expressed as shown in Equations (303)–(305).

To show the last convergence in Equation (308), we express the difference between the left-hand side
and the right-hand side in Equation (309) by two terms, Terms (i) and (ii), as in Equations (310) and
(312), respectively. Finally, we show that Terms (i) and (ii) both converge to 0 in probability.

Now, let us go into details of the proof. Weak convergence in D(J(s),R) is equivalent to weak
convergence in D([s, T),R) for every T ∈ J(s). Thus, let us fix T ∈ J(s). To apply Theorem 3.11 of [21],
chapter VIII, we first need to show that the jumps of the martingale ε−

1
2 `(M̃ε

•(s) f ) are uniformly
bounded. By the proof of Lemma 6, we know that these jumps are uniformly bounded by CTε

1
2 , where
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CT is some constant dependent on T. The theorem we want to apply also requires the two following
conditions, for all t in some dense subset of [s, T):

1.
〈

ε−
1
2 `(M̃ε

•(s) f )
〉

t

P→ σ̂`(s, t, f )2

2. condition “[δ̂5 − D]”, which is equivalent by Equation (3.5) of [21], chapter VIII to:

ε−
1
2 sup

u≤t

∣∣∣∆`(M̃ε
u(s) f )

∣∣∣ P→ 0. (263)

Condition (2) is true since, as mentioned above, the jumps of the martingale ε−
1
2 `(M̃ε

•(s) f ) are
uniformly bounded by CTε

1
2 . Now, we need to show (1). The same way as in the proof of Lemma 6,

we use the definition of M̃ε
•(s) f in Lemma 4 to get:

〈
ε−

1
2 `(M̃ε

•(s) f )
〉

t
= ε−1

Ns

(
t

1
ε ,s
)

∑
k=0

E
[
`2(Mε

k+1(s) f −Mε
k(s) f )

∣∣∣Fk(s)
]

. (264)

We have by definition, using the same notations as in the proof of Lemma 6:

Mε
k+1(s) f −Mε

k(s) f = ∆Vε
k+1(s) f ε

k+1 −E[∆Vε
k+1(s) f ε

k+1|Fk(s)] (265)

where ∆Vε
k+1(s) f ε

k+1 := Vε
k+1(s) f ε

k+1 −Vε
k (s) f ε

k . (266)

It follows that, denoting Ek the conditional expectation with respect to Fk(s):

Ek

[
`2(Mε

k+1(s) f −Mε
k(s) f )

]
= Ek[`

2(∆Vε
k+1(s) f ε

k+1)]− `2 (Ek[∆Vε
k+1(s) f ε

k+1]
)

. (267)

To make the following lines of computation more readable, we let:

Pk f1,k := PTk(s) f1
(
•, Tε,s

k
)
(xk(s)) PkD0

1,k := PTk(s)D
0
1(xk(s), •)(xk(s)) (268)

m′n,k := mn(xk(s), Tk(s)) mn,k := mn(xk(s)) (269)

Ak := Axk(s)(T
ε,s
k (s)) a′k :=

1
Πm

(
m′1,k Ak + PkD0

1,k

)
. (270)

Using the proof of Lemma 5, we get:

`2 (Ek[∆Vε
k+1(s) f ε

k+1]
)
= ε2`2 (Vε

k (s)Pk f1,k −Vε
k (s) f1,k + ΠmVε

k (s)a′k f
)
+ O(ε4) (271)

= ε2`2(Vε
k (s)Pk f1,k) + ε2`2(Vε

k (s) f1,k)︸ ︷︷ ︸
(A)

− 2ε2`(Vε
k (s)Pk f1,k)`(Vε

k (s) f1,k)︸ ︷︷ ︸
(B)

(272)

+ ε2`2(Vε
k (s)m

′
1,k Ak f ) + ε2`2(Vε

k (s)PkD0
1,k f ) + 2ε2`(Vε

k (s)m
′
1,k Ak f )`(Vε

k (s)PkD0
1,k f )︸ ︷︷ ︸

(C)

(273)

+ 2ε2`(ΠmVε
k (s)a′k f )`(Vε

k (s)Pk f1,k −Vε
k (s) f1,k)︸ ︷︷ ︸

(D)

+O(ε4). (274)

On the other hand, we have:

Ek[`
2(∆Vε

k+1(s) f ε
k+1)] = Ek[`

2((Vε
k+1(s)−Vε

k (s)) f ε
k+1 + Vε

k (s)( f ε
k+1 − f ε

k ))] (275)

= Ek[`
2((Vε

k+1(s)−Vε
k (s)) f ε

k+1)] +Ek[`
2(Vε

k (s)( f ε
k+1 − f ε

k ))] (276)

+ 2Ek[`((Vε
k+1(s)−Vε

k (s)) f ε
k+1)]Ek[`(Vε

k (s)( f ε
k+1 − f ε

k ))]︸ ︷︷ ︸
=(D)+O(ε4)

. (277)
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The fact that the last term is equal to (D) + O(ε4) is what we have shown in the proof of
Lemma 5. Now:

Ek[`
2(Vε

k (s)( f ε
k+1 − f ε

k ))] = ε2Ek[`
2(Vε

k (s) f1,k+1)] + ε2`2(Vε
k (s) f1,k)︸ ︷︷ ︸
(A)

(278)

− 2ε2Ek[`(Vε
k (s) f1,k+1)]`(Vε

k (s) f1,k)︸ ︷︷ ︸
=(B)+O(ε4)

. (279)

The fact that the last term is equal to (B) +O(ε4) comes from the fact in the proof of Lemma 5 we
show that Ek[`(Vε

k (s) f1,k+1)] = `(Vε
k (s)Pk f1,k) + O(ε). In the same way, we can prove that:

ε2Ek[`
2(Vε

k (s) f1,k+1)] = ε2Pk`
2(Vε

k (s) f1(•, Tε,s
k (s)))(xk(s)) + O(ε4). (280)

Thus, overall:

Ek[`
2(Vε

k (s)( f ε
k+1 − f ε

k ))] = ε2Pk`
2(Vε

k (s) f1(•, Tε,s
k (s)))(xk(s)) + (A) + (B) + O(ε4). (281)

It remains to compute the term Ek[`
2((Vε

k+1(s)−Vε
k (s)) f ε

k+1)]. We can show the same way as in
the proof of Lemma 5 that:

Ek[`
2((Vε

k+1(s)−Vε
k (s)) f ε

k+1)] = Ek[`
2((Vε

k+1(s)−Vε
k (s)) f )] + O(ε4). (282)

We get, using what we have computed in the proof of Lemma 5, that:

Ek[`
2((Vε

k+1(s)−Vε
k (s)) f )] (283)

= Ek

[
`2

(
Vε

k (s)
∫ Tε,s

k+1(s)

Tε,s
k (s)

Axk(s)(u) f du + εVε
k (s)D0

1(xk(s), xk+1(s)) f

)]
+ O(ε4) (284)

= Ek

[
`2

(
Vε

k (s)
∫ Tε,s

k+1(s)

Tε,s
k (s)

Axk(s)(u) f du

)]
+ ε2Ek

[
`2
(

Vε
k (s)D0

1(xk(s), xk+1(s)) f
)]

(285)

+ 2εEk

[
`

(
Vε

k (s)
∫ Tε,s

k+1(s)

Tε,s
k (s)

Axk(s)(u) f du

)]
Ek

[
`
(

Vε
k (s)D0

1(xk(s), xk+1(s)) f
)]

+ O(ε4) (286)

= Ek

[
`2

(
Vε

k (s)
∫ Tε,s

k+1(s)

Tε,s
k (s)

Axk(s)(u) f du

)]
+ ε2Ek

[
`2
(

Vε
k (s)D0

1(xk(s), xk+1(s)) f
)]

(287)

+ (C) + O(ε4). (288)

Again, using the same method as in the proof of Lemma 5, we have:

Ek

[
`2

(
Vε

k (s)
∫ Tε,s

k+1(s)

Tε,s
k (s)

Axk(s)(u) f du

)]
= Ek

[
`2
(

Vε
k (s)(T

ε,s
k+1(s)− Tε,s

k (s))Ak f
)]

+ ok(ε
2) (289)

= Ek

[
(Tε,s

k+1(s)− Tε,s
k (s))2`2 (Vε

k (s)Ak f )
]
+ O(ε4) (290)

= ε2m′2,k`
2(Vε

k (s)Ak f ) + O(ε4). (291)

Furthermore:

Ek[`
2(Vε

k (s)D0
1(xk(s), xk+1(s)) f )] = Pk`

2(Vε
k (s)D0

1(xk(s), •) f )(xk(s)), (292)
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Thus:

Ek[`
2((Vε

k+1(s)−Vε
k (s)) f ε

k+1)] = ε2m′2,k`
2(Vε

k (s)Ak f ) (293)

+ Pk`
2(Vε

k (s)D0
1(xk(s), •) f )(xk(s)) + (C) + O(ε4). (294)

Now, we gather all the terms (so that (A), (B), (C), and (D) cancel each other):

Ek

[
`2(Mε

k+1(s) f −Mε
k(s) f )

]
= ε2σ′2k `2(Vε

k (s)Ak f ) (295)

+ ε2Pk`
2(Vε

k (s)D0
1(xk(s), •) f )(xk(s))− ε2`2(Vε

k (s)PkD0
1,k f ) (296)

+ ε2Pk`
2(Vε

k (s) f1(•, Tε,s
k (s)))(xk(s))− ε2`2(Vε

k (s)Pk f1,k) + O(ε4), (297)

where σ′2k := m′2,k −m′21,k. We can also write the last result in terms of the nonlinear variance operator
Pvar

k associated to the kernel PTk(s):

Ek

[
`2(Mε

k+1(s) f −Mε
k(s) f )

]
= ε2σ2

k `
2(Vε

k (s)Ak f ) + ε2Pvar
k [`(Vε

k (s)D0
1(xk(s), •) f )](xk(s)) (298)

+ ε2Pvar
k [`(Vε

k (s) f1(•, Tε,s
k (s)))](xk(s)) + O(ε4). (299)

As k→ ∞ and by assumption, PTk(s) will tend to P, σ′2k to σ2
k := m2,k −m2

1,k and therefore we get:

〈
ε−

1
2 `(M̃ε

•(s) f )
〉

t
=ε

Ns

(
t

1
ε ,s
)

∑
k=0

(
σ2

k `
2(Vε

k (s)Ak f ) + Pvar[`(Vε
k (s)D0

1(xk(s), •) f )](xk(s)) (300)

+Pvar[`(Vε
k (s) f1(•, Tε,s

k (s)))](xk(s))
)
+ O(ε). (301)

To obtain the convergence of the latter predictable quadratic variation process, we first
“replace”—in the previous Riemann sum—the random times Tε,s

k (s) and counting process Ns

(
t

1
ε ,s
)

by
their deterministic equivalents tε

k(s, t) and nε(s, t) defined by:

nε(s, t) :=
⌊

t− s
εΠm

⌋
tε
k(s, t) :=

(
s + k

t− s
nε(s, t)

)
∧ t. (302)

It is possible to do so using Assumption 1 and up to some technicalities. We do so for technical
reasons to be able to use a SLLN for weakly correlated random variables [30], as specified below.
We get:

〈
ε−

1
2 `(M̃ε

•(s) f )
〉

t
= ε

nε(s,t)

∑
k=0

(
σ2

k `
2(Vε(s, tε

k(s, t))Axk(s)(t
ε
k(s, t)) f ) (303)

+ Pvar[`(Vε(s, tε
k(s, t))D0

1(xk(s), •) f )](xk(s)) (304)

+Pvar[`(Vε(s, tε
k(s, t)) f1(•, tε

k(s, t)))](xk(s))) + o(1). (305)

The second step is the following: denote for sake of clarity the inside of the Riemann sum by φ:

φ(Vε, tε
k(s, t), xk(s)) := σ2

k `
2(Vε(s, tε

k(s, t))Axk(s)(t
ε
k(s, t)) f ) (306)

+ Pvar[`(Vε(s, tε
k(s, t))D0

1(xk(s), •) f )](xk(s)) + Pvar[`(Vε(s, tε
k(s, t)) f1(•, tε

k(s, t)))](xk(s)). (307)

We want to show that:

ε
nε(s,t)

∑
k=0

φ(Vε, tε
k(s, t), xk(s))

P→ 1
Πm

∫ t

s
Πφ(Γ̂, u, •)du. (308)
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To do so, we write the decomposition:

ε
nε(s,t)

∑
k=0

φ(Vε, tε
k(s, t), xk(s))−

1
Πm

∫ t

s
Πφ(Γ̂, u, •)du = (309)

ε
nε(s,t)

∑
k=0

φ(Vε, tε
k(s, t), xk(s))− ε

nε(s,t)

∑
k=0

φ(Γ̂, tε
k(s, t), xk(s))︸ ︷︷ ︸

(i)

(310)

+ ε
nε(s,t)

∑
k=0

φ(Γ̂, tε
k(s, t), xk(s))−

1
Πm

∫ t

s
Πφ(Γ̂, u, •)du︸ ︷︷ ︸

(ii)

. (311)

First, let us show that the term (i) converges in probability to 0. We have:∣∣∣∣∣ε nε(s,t)

∑
k=0

φ(Vε, tε
k(s, t), xk(s))− ε

nε(s,t)

∑
k=0

φ(Γ̂, tε
k(s, t), xk(s))

∣∣∣∣∣ (312)

≤ εnε(s, t) sup
u∈[s,t]

x∈J

∣∣∣φ(Vε, u, x)− φ(Γ̂, u, x)
∣∣∣ . (313)

In the proof of Theorem 8, we obtain that {Vε(s, •)Â(•) f } is C-relatively compact. Similarly,
we also have that ∀(x, y) ∈ J× J, {Vε(s, •)Ax(•) f }, {Vε(s, •)D0

1(x, y) f } and {Vε(s, •) f1(x, •)} are
C-relatively compact, and therefore they converge jointly, weakly in D(J(s), Y) to:

(Γ̂(s, •)Ax(•) f , Γ̂(s, •)D0
1(x, y) f , Γ̂(s, •) f1(x, •)). (314)

Using the continuous mapping theorem and the fact that the limit points belong to C(J(s), Y)
(and so that the limit of the sum is equal to the sum of the limits), we get that:

φ(Vε, •, x)⇒ φ(Γ̂, •, x). (315)

Since φ(Γ̂, •, x) is continuous, convergence in the Skorohod topology is equivalent to convergence
in the local uniform topology and therefore we get that supu∈[s,t] |φ(Vε, u, x) − φ(Γ̂, u, x)| ⇒ 0.
The previous weak convergence to 0 also holds in probability and that completes the proof that
(i) converges in probability to 0, since εnε(s, t) is bounded uniformly in ε. To show that the term
(ii) converges a.e. to 0, we write:

ε
nε(s,t)

∑
k=0

φ(Γ̂, tε
k(s, t), xk(s)) = ∑

x∈J
ε

nε(s,t)

∑
k=0

φ(Γ̂, tε
k(s, t), x)1{xk(s)=x}. (316)

We have to prove that:

ε
nε(s,t)

∑
k=0

φ(Γ̂, tε
k(s, t), x)1{xk(s)=x}

a.e.→ π(x)
Πm

∫ t

s
φ(Γ̂, u, x)du. (317)

To do so, we use Corollary 11 of [30]. It is a SLLN for weakly correlated random variables Yk.
It tells us that if supk var(Yk) < ∞ and if cov(Ym, Yn) ≤ α(|m− n|) with ∑n≥1

α(n)
n < ∞, then we have:

lim
n→∞

1
n

n

∑
k=1

(Yk −E(Yk)) = 0 a.e. (318)
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In fact, it turns out that we need a generalized version of this corollary, which can be obtained
exactly the same way as in the original proof. We need:

lim
n→∞

1
n

n

∑
k=1

ank(Yk −E(Yk)) = 0 a.e. (319)

for deterministic, nonnegative and uniformly bounded coefficients ank. Note that we can drop
the nonnegativity assumption on the anks by requiring that |cov(Ym, Yn)| ≤ α(|m − n|), and not
only cov(Ym, Yn) ≤ α(|m − n|). Here, we let Yk := 1{xk(s)=x} so that supk var(Yk) < ∞
and aεk := φ(Γ̂, tε

k(s, t), x), which are indeed deterministic, nonnegative and uniformly bounded.
Before showing cov(Ym, Yn) ≤ α(|m− n|) for some suitable α, let us show that limn→∞ E(Yn) = π(x)
and, thus, by convergence of the Riemann sum:

lim
ε→0

ε
nε(s,t)

∑
k=1

aεkE(Yk) =
π(x)
Πm

∫ t

s
φ(Γ̂, u, x)du. (320)

As mentioned in the proof of Lemma 5, the process (xn, Tn)n∈N has the strong Markov property
and therefore, since xk(s) = xN(s)+k and that for k ≥ 1, N(s) + k is a stopping time of the augmented
filtration Fn(0), where:

Fn(s) := σ [xk(s), Tk(s) : k ≤ n] ∨ σ(P− null sets), (321)

then we have for k, m ≥ 1, noting hx(y) := 1{x=y}:

E(Yk+m) = E(E(hx(xk+m(s))|Fk(s))) = E(Pk,k+m
Tk(s)

hx(xk(s))), (322)

which, by Assumption 1, converges as m→ ∞ to Πhx = π(x). Now, it remains to study cov(Ym, Yn).
We have for m > n, again using the strong Markov property of the process (xn, Tn):

E(YmYn) = E(1{xm(s)=x}1{xn(s)=x}) = E(1{xn(s)=x}E(1{xm(s)=x}|xn(s), Tn(s))) (323)

= E(1{xn(s)=x}P
m−n
Tn(s)

hx(x)) (324)

= E(1{xn(s)=x}(Pm−n
Tn(s)

hx(x)−Πhx(x))) +E(1{xn(s)=x}Πhx(x)). (325)

The proof of Lemma 6 then shows that cov(Ym, Yn) ≤ 2ψ(m− n), which completes the proof that
Term (ii) converges a.e. to 0.

The following result allows us to represent the limiting process N`
•(s, f ) obtained above in a very

neat fashion, using orthogonal martingale measures (see [28], Definition I-1).

Proposition 5. Let ` ∈ Y∗, s ∈ J and f ∈ D̂. Under Assumptions 1 and 3, we have the following equality in
distribution in D(J(s),R) (using the notations of Theorem 9):

N`
•(s, f ) d

= ∑
x,y∈J

∫ •
s
` (σs(x, y, u, f ))T W(x, y, du) (326)

=
3

∑
k=1

∑
x,y∈J

∫ •
s
`
(

σ
(k)
s (x, y, u, f )

)
W(k)(x, y, du), (327)
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where W = {W(k) : k = 1, 2, 3} is a vector of orthogonal martingale measures on J× J× J(s) with intensities
1

Πm P(x, y)π(x)dt, `(σs(x, y, t, f )) is the vector with components `(σ(k)
s (x, y, t, f )) (k = 1, 2, 3) given by:

σ
(1)
s (x, y, t, f ) = σ(x)Γ̂(s, t)Ax(t) f , (328)

σ
(2)
s (x, y, t, f ) = Γ̂(s, t)D0

1(x, y) f − ∑
y∈J

P(x, y)Γ̂(s, t)D0
1(x, y) f , (329)

σ
(3)
s (x, y, t, f ) = Γ̂(s, t) f1(y, t)− ∑

y∈J
P(x, y)Γ̂(s, t) f1(y, t). (330)

Proof. Take any probability space supporting three independent real-valued Brownian motions {B(k) :
k = 1, 2, 3}. Define for t ∈ J(s):

m(k)
t :=

∫ t

s

√
∑

x,y∈J
`2(σ

(k)
s (x, y, u, f ))

1
Πm

P(x, y)π(x)dB(k)
u , k = 1, 2, 3. (331)

We therefore have:〈
m(i), m(j)

〉
t
= δij

∫ t

s
∑

x,y∈J
`2(σ

(i)
s (x, y, u, f ))

1
Πm

P(x, y)π(x)du, i, j = 1, 2, 3. (332)

According to [28] (Theorem III-10), there exists an extension of the original space supporting
{W(k) : k = 1, 2, 3} orthogonal martingale measures on J× J× J(s) with intensity 1

Πm P(x, y)π(x)dt
such that:

m(k)
t =

∫ t

s
∑

x,y∈J
`(σ

(k)
s (x, y, u, f ))W(k)(x, y, du), k = 1, 2, 3. (333)

∑3
k=1 m(k)

• is a continuous Gaussian martingale with characteristics (0, σ̂`(s, •, f )2, 0) (using the

notations of Theorem 9). Therefore, N`
•(s, f ) d

= ∑3
k=1 m(k)

• in D(J(s),R), which completes the proof.

The above characterization of N`
•(s, f ) is relevant especially because it allows us to express the

limiting process of `(ε−
1
2 M̃ε
•(s) f ) in the form `(·), allowing us to express the limiting process of

ε−
1
2 M̃ε
•(s) f in terms of the weak random integral defined in [29] (Definition 3.1). In fact, we need

a slight generalization of the latter integral to vectors, which is given in the following Definition 14
(the case n = 1 in the following definition coincides precisely with [29], Definition 3.1). We also note
that the above representation of the Gaussian martingale N`

•(s, f ) allows us to see that the volatility
vector σ (which governs the convergence of Vε to Γ̂, as shown in the main result in Theorem 11) comes
from three independent sources, which is what we expected intuitively:

• σ(1) comes from the variance of the sojourn times {Tn+1 − Tn}n≥0 (component σ(x)).
• σ(2) comes from the jump operators D.
• σ(3) comes from the “state process” {xn}n≥0.

Definition 14. Let M = {M(k) : k = 1..n} be a vector of martingale measures on (E,R), where E is a Lusin
space and R a ring of subsets of E (see [28], Definition I-1). Let σ : E×R+ → Yn be the vector σ(x, t) :=
{σ(k)(x, t) : k = 1..n} (x ∈ E, t ∈ R+), and the square-mean measures ρ(k)(A× [0, t]) := E[M(k)(A, t)2]

(A ∈ R, t ∈ R+). We say that σ is stochastically integrable with respect to M on A × [s, t] (A ∈ R,
s ≤ t ∈ R+) if ∀` ∈ Y∗:

n

∑
k=1

∫
A×[s,t]

`2(σ(k)(x, u))ρ(k)(dx, du) < ∞, (334)
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and there exists a Y-valued random variable α such that ∀` ∈ Y∗:

`(α) =
∫

A×[s,t]
`(σ(x, u))T M(dx, du) =

n

∑
k=1

∫
A×[s,t]

`(σ(k)(x, u))M(k)(dx, du) a.e. (335)

In this case, we write:

α =
∫

A×[s,t]
σ(x, u)T M(dx, du). (336)

The previous definition now allows us to express the limiting process of ε−
1
2 M̃ε
•(s) f in D(J(s), Y)

for all f ∈ D̂.

Theorem 10. Let s ∈ J and ` ∈ Y∗. Under Assumptions 1–3, we have the following weak convergence in
D(J(s),R∞) for each countable family { fp}p∈N ⊆ D̂:

(
ε−

1
2 `(M̃ε

•(s) fp)
)

p∈N
⇒
(

∑
x,y∈J

∫ •
s
`(σs(x, y, u, fp))

TW(x, y, du)

)
p∈N

, (337)

where σs(x, y, t, f ) is the vector with components σ
(k)
s (x, y, t, f ) given in Proposition 5, W = {W(k) : k =

1, 2, 3} is a vector of orthogonal martingale measures on J × J × J(s) with intensities 1
Πm P(x, y)π(x)dt.

Further, if in addition ε−
1
2 M̃ε
•(s) is D̂-relatively compact, we have the following weak convergence in

D(J(s), Y∞) for each countable family { fp}p∈N ⊆ D̂:

(
ε−

1
2 M̃ε
•(s) fp

)
p∈N
⇒
(

∑
x,y∈J

∫ •
s

σs(x, y, u, fp)
TW(x, y, du)

)
p∈N

, (338)

where each integral on the right-hand side of the above is a weak random integral in the sense of Definition 14.

Proof. We split the proof into two steps. For Step 1, we fix f ∈ D̂ and prove the weak convergence in
D(J(s), Y):

ε−
1
2 M̃ε
•(s) f ⇒ ∑

x,y∈J

∫ •
s

σs(x, y, u, f )TW(x, y, du). (339)

In Step 2, we prove the joint convergence in D(J(s), Y∞).

Step 1. Let a sequence εn → 0 such that ε
− 1

2
n M̃εn• (s) f ⇒ M̃•(s, f ) for some D(J(s), Y)- valued

random variable M̃•(s, f ). By the Skorohod representation theorem, there exists a probability space
(Ω′,F ′,P′) and random variables with the same distribution as the original ones, denoted by the
subscript ’, such that the previous convergence holds a.e. By Theorem 9, for all ` ∈ Y∗, `(M̃′•(s, f )) is
a continuous Gaussian martingale with characteristics (0, σ̂`(s, •, f )2, 0). By the proof of Proposition 5,
we can consider on an extension (Ω′′,F ′′,P′′) of (Ω′,F ′,P′), {W ′(k) : k = 1, 2, 3} orthogonal martingale
measures on J× J× J(s) with intensity 1

Πm P(x, y)π(x)dt such that ∀` ∈ Y∗:

`(M̃′•(s, f )) =
∫ •

s
∑

x,y∈J
`(σs(x, y, t, f ))TW ′(x, y, du) a.e. (340)
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By definition of the weak random integrals in the sense of Definition 14, we get:

M̃′•(s, f ) = ∑
x,y∈J

∫ •
s

σs(x, y, u, f )TW ′(x, y, du). (341)

Actually, there is a subtlety that we voluntarily skipped: a priori, it is not obvious that the
orthogonal martingale measures {W ′(k) : k = 1, 2, 3} do not depend on `, i.e., we can represent all
Gaussian martingales {`(M̃′•(s, f )) : ` ∈ Y∗} according to the same vector W ′. To see that it is the case,
observe that the joint distribution of the Gaussian martingales {`(M̃′•(s, f )) : ` ∈ Y∗} is completely
determined by their pairwise predictable quadratic co-variations. Take `1, `2 ∈ Y∗. Then, `1 + `2 ∈ Y∗

and `1− `2 ∈ Y∗, therefore we can compute by Theorem 9 the quantity
〈
`1(M̃′•(s, f )), `2(M̃′•(s, f ))

〉
t

according to: 〈
`1(M̃′•(s, f )), `2(M̃′•(s, f ))

〉
t
=

1
4

(
σ̂`1+`2(s, t, f )2 − σ̂`1−`2(s, t, f )2

)
(342)

=
3

∑
k=1

∑
x,y∈J

∫ t

s
`1

(
σ
(k)
s (x, y, u, f )

)
`2

(
σ
(k)
s (x, y, u, f )

) 1
Πm

P(x, y)π(x)du. (343)

The latter gives us that we can indeed represent all Gaussian martingales {`(M̃′•(s, f )) : ` ∈ Y∗}
according to the same vector W ′.

Step 2. The limit points are continuous, thus weak convergence in D(J(s), Y∞) is equivalent
to weak convergence in D(J(s), Y)∞. Similar to what we do for `1, `2, the joint distribution of the
Gaussian martingales {`(M̃′•(s, fp)) : p ∈ N} is completely determined by their pairwise predictable

quadratic co-variations. We can compute by Theorem 9 the quantity
〈
`(M̃′•(s, fi)), `(M̃′•(s, f j))

〉
t

according to: 〈
`(M̃′•(s, fi)), `(M̃′•(s, f j))

〉
t
=

1
4

(
σ̂`(s, t, fi + f j)

2 − σ̂`(s, t, fi − f j)
2
)

(344)

=
3

∑
k=1

∑
x,y∈J

∫ t

s
`
(

σ
(k)
s (x, y, u, fi)

)
`
(

σ
(k)
s (x, y, u, f j)

) 1
Πm

P(x, y)π(x)du. (345)

The latter gives us that we can indeed represent all Gaussian martingales {`(M̃′•(s, fp)) : ` ∈
Y∗, p ∈ N} according to the same vector W ′.

Let (Y2, || · ||Y2) be a separable Banach space continuously embedded in (Y1, || · ||Y1) such that
Y2 ⊆ D̂. We now show our main result, which is the weak convergence of the process:

ε−1/2(Vε(s, •)− Γ̂(s, •)) (346)

in a suitable topology, which is the space DY2→Y
s defined similarly to Ds, the following way:

DY2→Y
s := {S ∈ B(Y2, Y)J(s) : S f ∈ D(J(s), Y) ∀ f ∈ Y2}. (347)

We will need the following regularity:

Assumptions 4.

For j ∈ {2, 3}, there exists separable Banach spaces (Yj, || · ||Yj) continuously embedded in Yj−1 such that

Y2 ⊆ D̂ and such that the following hold true for j ∈ {2, 3}:

• Yj contains a countable family which is dense in Yj−1.
• Γ̂ is a regular Y2-propagator with respect to the Banach spaces Y2 and Y3.
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• Ax(t) ∈ B(Yj, Yj−1) and supu∈[0,t] ||Ax(u)||B(Yj ,Yj−1)
< ∞ ∀t ∈ J, ∀x ∈ J.

• A′x(t) ∈ B(Y2, Y) and supu∈[0,t] ||A′x(u)||B(Y2,Y) < ∞ ∀t ∈ J, ∀x ∈ J.

• D0
1(x, y) ∈ B(Yj, Yj−1) ∀x, y ∈ J.

Remark 5. We previously introduced the notion of “regular” Y-propagator. This notion implicitly involves the
Banach spaces Y and Y1. Therefore, by “Γ̂ is a regular Y2-propagator with respect to the Banach spaces Y2 and
Y3” we mean the same thing as our previously introduced notion of regularity, but with the roles of Y and Y1

being, respectively, replaced by Y2 and Y3.
A few comments: We need the Banach space Y2 ⊆ Y1 because the limiting Gaussian operator Iσ of our

main result Theorem 11 takes value in CY2→Y
s , but not in CY1→Y

s , as shown in Lemma 7. We need the Banach
space Y3 ⊆ Y2 for the same reason we need Y1 ⊆ Y in the WLLN result in Theorem 8: to get well-posedness of a
Cauchy problem and conclude on the unicity of the limit. This technical point is established in Lemma 8.

Lemma 7. Let s ∈ J and (Ω,F ,P) be a probability space which supports W = {W(k) : k = 1, 2, 3}, a vector
of orthogonal martingale measures on J× J× J(s) with intensities 1

Πm P(x, y)π(x)dt. With the definition of σ

in Proposition 5, define:

Iσ(s, t) f := ∑
x,y∈J

∫ t

s
σs(x, y, u, Γ̂(u, t) f )TW(x, y, du), ∀ f ∈ Y2, t ∈ J(s). (348)

Under Assumptions 1, 3 and 4, Iσ(s, •) is a CY2→Y
s -valued random variable. Further, for all T ∈ J(s)∩Q+,

there exists a constant CT such that for a.e. ω ∈ Ω:

sup
t∈[s,T]

||Iσ(s, t)||B(Y2,Y) ≤ CT ∑
x,y∈J,k=1..3

sup
t∈[s,T]

|W(k)(x, y, t)|. (349)

Proof. First, we recall the fact that if h ∈ C1(R), then by Ito’s lemma, for every x, y ∈ J and k = 1, 2, 3
we have almost surely:

∫ t

s
h(u)W(k)(x, y, du) = h(t)W(k)(x, y, t)− h(s)W(k)(x, y, s)−

∫ t

s
h′(u)W(k)(x, y, u)du (350)

⇒
∣∣∣∣∫ t

s
h(u)W(k)(x, y, du)

∣∣∣∣ ≤ 3(1 + t− s) sup
u∈[s,t]

(|h(u)|+ |h′(u)|)|W(k)(x, y, u)| a.s. (351)

In our case, we have for f ∈ Y2:

d
du

σ
(1)
s (x, y, u, Γ̂(u, t) f ) = σ(x)Γ̂(s, u)Â(u)Ax(u)Γ̂(u, t) f

+ σ(x)Γ̂(s, u)A′x(u)Γ̂(u, t) f − σ(x)Γ̂(s, u)Ax(u)Â(u)Γ̂(u, t) f ,
(352)

d
du

σ
(2)
s (x, y, u, Γ̂(u, t) f ) = Γ̂(s, u)Â(u)D0

1(x, y)Γ̂(u, t) f

− ∑
y∈J

P(x, y)Γ̂(s, u)Â(u)D0
1(x, y)Γ̂(u, t) f − Γ̂(s, u)D0

1(x, y)Â(u)Γ̂(u, t) f

+ ∑
y∈J

P(x, y)Γ̂(s, u)D0
1(x, y)Â(u)Γ̂(u, t) f .

(353)

For the derivative of σ(3), denote:

g1(y, u) := (Γ̂(u, t) f )1(y, u) = Πm(P + Π− I)−1[Â(u)Γ̂(u, t) f − a(•, u)Γ̂(u, t) f ](y), (354)
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so that:

g′1(y, u) = Πm(P + Π− I)−1[Â′(u)Γ̂(u, t) f − Â(u)2Γ̂(u, t) f

− a′(•, u)Γ̂(u, t) f + a(•, u)Â(u)Γ̂(u, t) f ](y),
(355)

a′(x, u) =
1

Πm
m1(x)A′x(u), (356)

Â′(u) = Πa′(•, u), (357)

where we recall that:

a(x, t) :=
1

Πm

(
m1(x)Ax(t) + PD0

1(x, •)(x)
)

. (358)

With these notations, we have:

d
du

σ
(3)
s (x, y, u, Γ̂(u, t) f ) = Γ̂(s, u)Â(u)g1(y, u) + Γ̂(s, u)g′1(y, u)

− ∑
y∈J

P(x, y)(Γ̂(s, u)Â(u)g1(y, u) + Γ̂(s, u)g′1(y, u)).
(359)

By Equation (351) and Assumption 4, for every t ≤ T ∈ J(s), there exists a constant CT such that
for every ` ∈ Y∗, every f ∈ Y2 we have for a.e. ω ∈ Ω:∣∣∣∣∣ ∑

x,y∈J

∫ t

s
`(σs(x, y, u, Γ̂(u, t) f ))TW(x, y, du)

∣∣∣∣∣ ≤ ||`||CT || f ||Y2 ∑
x,y∈J,k=1..3

sup
t∈[s,T]

|W(k)(x, y, t)|. (360)

According to [26], the unit ball of the dual of every separable Banach space Y contains a norming
subset, namely a countable subset S ⊆ Y∗ such that for every f ∈ Y, || f || = sup`∈S |`( f )|. In our case
and using Definition 14, it means that we get for every t ≤ T ∈ J(s), every f ∈ Y2 and a.e. ω ∈ Ω:

||Iσ(s, t) f || =
∣∣∣∣∣
∣∣∣∣∣ ∑
x,y∈J

∫ t

s
σs(x, y, u, Γ̂(u, t) f )TW(x, y, du)

∣∣∣∣∣
∣∣∣∣∣ (361)

= sup
`∈S

∣∣∣∣∣ ∑
x,y∈J

∫ t

s
`(σs(x, y, u, Γ̂(u, t) f ))TW(x, y, du)

∣∣∣∣∣ ≤ CT || f ||Y2 ∑
x,y∈J,k=1..3

sup
t∈[s,T]

|W(k)(x, y, t)|. (362)

Lemma 8. Let s ∈ J and fix { fp} a countable dense family of Y3, as well as a probability space (Ω,F ,P)
supporting the orthogonal martingale measures W of Theorem 10. Consider the following Cauchy problem on
(Ω,F ,P), for a CY2→Y

s -valued random variable Zs, where σ is defined in Proposition 5:

Zs(t) fp −
∫ t

s
Zs(u)Â(u) fpdu = ∑

x,y∈J

∫ t

s
σs(x, y, u, fp)

TW(x, y, du), ∀t ∈ J(s), ∀p, a.s. (363)

If we assume that the previous problem has at least one solution Zs, and that Assumptions 1, 3 and 4 hold
true, then we have Zs(•) = Iσ(s, •).

Proof. First, let us prove uniqueness. Let Z1, Z2 be two solutions and let Z := Z1 − Z2. Then, we have:

Z(•) fp −
∫ •

s
Z(u)Â(u) fpdu = 0, ∀p, a.s. (364)
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Consider the following Cauchy problem, very similar to Theorem 4, where Gs ∈ B(Y2, Y), G is an
operator G : J(s)→ B(Y2, Y) that is Y2-strongly continuous and Y− d

dt represents the derivative with
respect to the Y-norm (unless specified otherwise, all norms, limits, and derivatives are taken with
respect to Y, which we prefer to specify explicitly here as we are dealing with several Banach spaces):{

Y− d
dt G(t) f = G(t)Â(t) f ∀t ∈ J(s), ∀ f ∈ Y3

G(s) = Gs ∈ B(Y2, Y)
(365)

Because by assumption Γ̂ is a regular Y2-propagator with respect to the Banach spaces Y2 and Y3,
we can prove—similar to the proof of Theorem 4—that the previous Cauchy problem has a unique
solution G(t) = GsΓ̂(s, t). In our context, let Ω0 be the subset of probability one on which we have:

Z(•) fp −
∫ •

s
Z(u)Â(u) fpdu = 0, ∀p. (366)

By density of { fp} in Y3 and because Z(t) takes value in B(Y2, Y) and Â(t) ∈ B(Y3, Y2) for all
t, we can extend the previous equality for all f ∈ Y3 on Ω0. Observing that Z takes value in CY2→Y

s ,
we can use the unicity of the solution to the Cauchy problem discussed above, and we get Z(•) = 0 on
Ω0. This proves uniqueness.

It is proved below that Iσ(s, •) (using the notation of Lemma 7) is the unique solution to our
Cauchy problem. Indeed, Lemma 7 gives us that Iσ(s, •) takes value in CY2→Y

s . It remains to show
that it satisfies Equation (363). Let ` ∈ Y∗. Since f → σs(x, y, u, f ) ∈ B(Y1, Y) and since Γ̂ is a regular
Y2-propagator by assumption, we get for all f ∈ Y2:

Y− d
dt
`(σs(x, y, u, Γ̂(u, t) f )) = `(σs(x, y, u, Γ̂(u, t)Â(t) f )). (367)

We get for all p, using the stochastic Fubini theorem:

`(Iσ(s, t) fp)− ∑
x,y∈J

∫ t

s
`(σs(x, y, u, fp))

TW(x, y, du) (368)

= ∑
x,y∈J

∫ t

s
`(σs(x, y, u, Γ̂(u, t) fp))

TW(x, y, du)− ∑
x,y∈J

∫ t

s
`(σs(x, y, u, fp))

TW(x, y, du) (369)

= ∑
x,y∈J

∫ t

s

∫ r

s

d
dr

`(σs(x, y, u, Γ̂(u, r) fp))
TW(x, y, du)dr (370)

= ∑
x,y∈J

∫ t

s

∫ r

s
`(σs(x, y, u, Γ̂(u, r)Â(r) fp))

TW(x, y, du)dr (371)

=
∫ t

s
`(Iσ(s, r)Â(r) fp)dr. (372)

According to [26], the unit ball of the dual of every separable Banach space Y contains a
norming subset, namely a countable subset S ⊆ Y∗ such that for every f ∈ Y, || f || = sup`∈S |`( f )|.
We therefore obtain:

Iσ(s, t) fp −
∫ t

s
Iσ(s, r)Â(r) fpdr = ∑

x,y∈J

∫ t

s
σs(x, y, u, fp)

TW(x, y, du), ∀t ∈ J(s), ∀p, a.s., (373)

which completes the proof.

We now state the main result of this section:
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Theorem 11. Let s ∈ J. Assume that Assumptions 1–4 (see 1 for Assumptions 1–2, Assumprton 3, and
Assumprton 4) hold true, that ε−1/2(Vε(s, •)− Γ̂(s, •)) is Y2-relatively compact and that, for all T ∈ J(s)∩Q+,
the sequence of real-valued random variables {Mε

s,T}ε∈(0,1] is tight, where:

Mε
s,T := sup

t∈[s,T]
ε−1/2||Vε(s, t)− Γ̂(s, t)||B(Y2,Y). (374)

Then, we have the following weak convergence in (DY2→Y
s , d):

ε−1/2(Vε(s, •)− Γ̂(s, •))⇒ Iσ(s, •), (375)

where Iσ(s, •) is the CY2→Y
s -valued random variable defined by:

Iσ(s, t) f := ∑
x,y∈J

∫ t

s
σs(x, y, u, Γ̂(u, t) f )TW(x, y, du), ∀ f ∈ Y2, t ∈ J(s), (376)

where W = {W(k) : k = 1, 2, 3} is a vector of orthogonal martingale measures on J× J× J(s) with intensity
1

Πm P(x, y)π(x)dt and σ is defined in Proposition 5.

Proof. Denote Wε(s, •) := ε−1/2(Vε(s, •) − Γ̂(s, •)). Take { fp} a countable family of Y3 that is
dense in both Y3 and Y2. Marginal relative compactness implies countable relative compactness
and therefore, {Wε(s, •) fp}p∈N is relatively compact in D(J(s), Y)∞. Actually, {Wε(s, •) fp}p∈N is
C-relatively compact in D(J(s), Y)∞, and therefore in D(J(s), Y∞). This is because the jumps of
Wε(s, •) are the jumps of ε−1/2Vε(s, •) which are uniformly bounded by CTε1/2 on each interval
[s, T] for some constant CT which depends only on T (see the proof of Lemma 3). Take a weakly
converging sequence εn. By the proof of Theorem 4.1 (see [14]), we can find a probability space
(Ω′,F ′,P′) and DY2→Y

s -valued random variables W ′εn(s, •), W ′0(s, •) on it, such that on Ω′ we have the
sure convergence:

W ′εn(s, •)→W ′0(s, •) in (DY2→Y
s , d), (377)

W ′εn(s, •) d
= Wεn(s, •) in (DY2→Y

s , d), ∀n. (378)

We can extend the probability space (Ω′,F ′,P′) so that it supports a Markov renewal process
(x′k, T′k)k≥0 such that:

(W ′εn(s, •), (x′k, T′k)k≥0)
d
= (Wεn(s, •), (xk, Tk)k≥0) in (DY2→Y

s , d)× (J×R+)
∞, ∀n. (379)

By continuity of Γ̂, Â we have the following representation of the Riemann sum, for all f ∈ Y3

(actually, for all f ∈ Y1):

∫ •
s

Γ̂(s, u)Â(u) f du = εΠm

Ns

(
t

1
ε ,s
)

∑
k=1

Γ̂(s, Tεn ,s
k (s))Â

(
Tεn ,s

k (s)
)

f + O(ε). (380)

Therefore, by Lemma 5 we have the representation, for all f ∈ Y3 (actually, for all f ∈ Y1):

ε−1/2
n M̃εn

• (s) f = Wεn(s, •) f − εnΠm

Ns

(
t

1
ε ,s
)

∑
k=1

Wεn(s, Tεn ,s
k (s))Â

(
Tεn ,s

k (s)
)

f + O(ε1/2
n ) a.e. (381)
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As in the proof of Theorem 8, using continuity of W ′0, we have the following convergence in the
Skorohod topology on Ω′, for all f ∈ Y3:

εn

N′s

(
t

1
εn ,s

)
∑
k=1

W ′εn(s, Tεn ,s
k (s)′)Â(Tεn ,s

k (s)′) f → 1
Πm

∫ •
s

W ′0(s, u)Â(u) f du. (382)

Similar to what is done in the proof of Theorem 10, we can extend the probability space (Ω′,F ′,P′)
to a probability space (Ω′′,F ′′,P′′), which supports the orthogonal martingale measures W(k)(x, y, dt)
of Theorem 10. Since we have:

(W ′εn(s, •), (x′k, T′k)k≥0)
d
= (Wεn(s, •), (xk, Tk)k≥0) in (DY2→Y

s , d)× (J×R+)
∞, ∀n, (383)

using Equation (381) and Theorem 10, we get for all p, e.g., on some set of probability one Ω′′0 ⊆
Ω′′, that:

W ′0(s, •) fp −
∫ •

s
W ′0(s, u)Â(u) fpdu = ∑

x,y∈J

∫ •
s

σs(x, y, u, fp)
TW(x, y, du). (384)

The result of Lemma 8 concludes the proof.

6. Financial Applications

Financial applications are given to illiquidity modeling using regime-switching time-
inhomogeneous Levy price dynamics, to regime-switching Levy driven diffusion based price dynamics,
and to a generalized version of the multi-asset model of price impact from distress selling, for which
we retrieve and generalize their diffusion limit result for the price process.

6.1. Regime-Switching Inhomogeneous Lévy Based Stock Price Dynamics and Application to
Illiquidity Modeling

For specific examples in this section, we state all the proofs related to regularity of the propagator,
compact containment criterion, etc. It is worth noting that we focus below on the Banach space
Y = C0(Rd), but that, in the article [15], other Lp-type Banach spaces denoted by L̄p

ρ(ν) are considered
(in addition to C0(Rd)), for which a suitable weighted sup-norm is introduced (see their Lemma 2.6).

We first give a brief overview of the proposed model and the intuition behind it, and then we go
into more formal details, presenting precisely all the various variables of interest, checking assumptions
we have made up to this point, etc. We consider a regime-switching inhomogeneous Lévy-based
stock price model, very similar in the spirit to the recent article [4]. In short, an inhomogeneous Lévy
process differs from a classical Lévy process in the sense that it has time-dependent (and absolutely
continuous) characteristics. We let {Lx}x∈J be a collection of such Rd-valued inhomogeneous Lévy
processes with characteristics (bx

t , cx
t , νx

t )x∈J, and we define:

Γx(s, t) f (z) := E[ f (Lx
t − Lx

s + z)], z ∈ Rd, x ∈ J, (385)

Dε(x, y) f (z) := f (z + εα(x, y)), z ∈ Rd, x, y ∈ J, (386)

for some bounded function α. We give below a financial interpretation of this function α, as well as
reasons we consider a regime-switching model. In this setting, f represents a contingent claim on
a (d-dimensional) risky asset S having regime-switching inhomogeneous Lévy dynamics driven by
the processes {Lx}x∈J: on each random time interval [Tε,s

k (s), Tε,s
k+1(s)), the risky asset is driven by

the process Lxk(s). Indeed, we have the following representation, for ω′ ∈ Ω (to make clear that the
expectation below is taken with respect to ω embedded in the process L and not ω′):
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Vε(s, t)(ω′) f (z) =

E

 f

z +

Ns

(
t

1
ε ,s
)
(ω′)+1

∑
k=1

∆Lk +

Ns

(
t

1
ε ,s
)
(ω′)

∑
k=1

εα(xk−1(s)(ω′), xk(s)(ω′))


 ,

(387)

where we have denoted for clarity:

∆Lk = ∆Lk(ε, ω′) := Lxk−1(s)(ω′)
Tε,s

k (s)(ω′)∧t − Lxk−1(s)(ω′)
Tε,s

k−1(s)(ω
′)

. (388)

The random evolution Vε(s, t) f represents in this case the present value of the contingent claim
f of maturity t on the risky asset S, conditionally on the regime switching process (xn, Tn)n≥0:
indeed, remember that Vε(s, t) f is random, and that its randomness (only) comes from the Markov
renewal process. Our main results in Theorems 8 and 11 allow approximating the impact of the
regime-switching on the present value Vε(s, t) f of the contingent claim. Indeed, we get the following
normal approximation, for small ε:

Vε(s, t) f ≈ Γ̂(s, t) f︸ ︷︷ ︸
1st order

regime-switching approx.

+
√

εIσ(s, t) f︸ ︷︷ ︸
noise due to

regime-switching

(389)

The above approximation allows quantifying the risk inherent to regime-switchings occurring at
a high frequency governed by ε. The parameter ε reflects the frequency of the regime-switchings and
can therefore be calibrated to market data by the risk manager. For market practitioners, because of the
computational cost, it is often convenient to have asymptotic formulas that allow them to approximate
the present value of a given derivative, and by extent the value of their whole portfolio. In addition,
the asymptotic normal form of the regime-switching cost allows the risk manager to derive approximate
confidence intervals for his portfolio, as well as other quantities of interest such as reserve policies
linked to a given model.

In the recent article [4], an application to illiquidity is presented: the authors interpreted the state
process {xn} as a “proxy for market liquidity with states (or regimes) representing the level of liquidity activity”.
In their context, however, x(t) is taken to be a continuous-time Markov chain, which is a specific case of
semi-Markov process with exponentially distributed sojourn times Tn+1 − Tn. With creative choices of
the Markov renewal kernel, one could choose alternative distributions for the “waiting times” between
regimes, thus generalizing the setting of [4]. In [4], the equivalent of our quantities α(x, y) are the
constants γxy, which represent an impact on the stock price at each regime-switching time. The authors
stated: “Typically, there is a drop of the stock price after a liquidity breakdown”. This justifies the use of the
operators D.

In addition to the liquidity modeling of [4], another application of our framework could be to view
the different states as a reflection of uncertainty on market data induced by, for example, a significant
bid-ask spread on the observed market data. The different characteristics (bx

t , cx
t , νx

t )x∈J would, in this
context, reflect this uncertainty induced by the observables. The random times {Tn} would then
correspond to times at which the observed market data (e.g., call option prices, or interest rates) switch
from one value to another. As these switching times are typically very small (∼ms), an asymptotic
expansion as ε→ 0 would make perfect sense in order to get an approximation of the stock price at
a scale� ms, e.g., ∼min.

Now, let us formalize the model a bit more precisely. We let Y := C0(Rd,R), Y1 := Cm
0 (Rd,R)

for some m ≥ 2. Let (Ω,F ,P) a probability space and let us begin with (Lt)t∈J a Rd-valued
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(time-inhomogeneous) Markov process on it with transition function ps,t(z, A) (z ∈ Rd, A ∈ Bor(Rd))
and starting point z0 ∈ Rd (in the sense of [31], II.10.2). Formally, ∀(s, u), (u, t) ∈ ∆J , ∀A ∈ Bor(Rd),
p satisfies:

1. ∀z ∈ Rd, ps,t(z, ·) is a probability measure.
2. z→ ps,t(z, A) is Bor(Rd)− Bor([0, 1]) measurable.
3. ps,s(z, A) = 1A(z).
4.

∫
Rd ps,u(z, dy)pu,t(y, A) = ps,t(z, A) (Chapman–Kolmogorov).

One example of such time-inhomogeneous Markov processes are additive processes (in the sense
of [31], I.1.6). This class of processes differs from Lévy processes only on the fact that increments are
not assumed to be stationary. Additive processes are translation invariant (or spatially homogeneous)
and we have (by [31], II.10.4) ps,t(z, A) = P(Lt − Ls ∈ A− z). We focus on additive processes in the
following as they are rich enough to cover many financial applications. We define for (s, t) ∈ ∆J and
f ∈ Bb

R(R
d):

Γ(s, t) f (z) := E[ f (Lt − Ls + z)] =
∫
Rd

ps,t(z, dy) f (y). (390)

It can be proved that Γ is a regular B(Y)-contraction propagator and ∀n ∈ N we have Γ(s, t) ∈
B(Cn

0 (Rd,R)) and ||Γ(s, t)||B(Cn
0 (Rd ,R)) ≤ 1. The Lévy–Khintchine representation of such a process

(Lt)t∈J (see [32], 14.1) ensures that there exists unique (Bt)t∈J ⊆ Rd, (Ct)t∈J a family of d× d symmetric
nonnegative-definite matrices and (ν̄t)t∈J a family of measures on Rd such that:

E[ei〈u,Lt〉] = eψ(u,t), with : (391)

ψ(u, t) := i 〈u, Bt〉 −
1
2
〈u, Ctu〉+

∫
Rd
(ei〈u,y〉 − 1− i 〈u, y〉 1|y|≤1)ν̄t(dy). (392)

(Bt, Ct, ν̄t)t∈J are called the spot characteristics of L. They satisfy the following
regularity conditions:

• ∀t ∈ J, ν̄t{0} = 0 and
∫
Rd(|y|2 ∧ 1)ν̄t(dy) < ∞

• (B0, C0, ν̄0) = (0, 0, 0) and ∀(s, t) ∈ ∆J : Ct − Cs is symmetric nonnegative-definite and ν̄s(A) ≤
ν̄t(A) ∀A ∈ Bor(Rd).

• ∀t ∈ J and as s → t, Bs → Bt, 〈u, Csu〉 → 〈u, Ctu〉 ∀u ∈ Rd and ν̄s(A) → ν̄t(A) ∀A ∈ Bor(Rd)

such that A ⊆ {z ∈ Rd : |z| > ε} for some ε > 0.

If ∀t ∈ J,
∫
Rd |y|1|y|≤1ν̄t(dy) < ∞, we can replace Bt by B0

t in the Lévy–Khintchine representation
of L, where B0

t := Bt −
∫
Rd y1|y|≤1ν̄t(dy). We denote by (B0

t , Ct, ν̄t)0
t∈J this other version of the spot

characteristics of L.
Let J = [0, T∞]. We can consider a specific case of additive processes, called processes

with independent increments and absolutely continuous characteristics (PIIAC), or inhomogeneous
Lévy processes in [33], for which there exists (bt)t∈J ⊆ Rd, (ct)t∈J a family of d × d symmetric
nonnegative-definite matrices and (νt)t∈J a family of measures on Rd satisfying:

∫ T∞

0

(
|bs|+ ||cs||+

∫
Rd
(|y|2 ∧ 1)νs(dy)

)
ds < ∞ (393)

Bt =
∫ t

0
bsds (394)

Ct =
∫ t

0
csds (395)

ν̄t(A) =
∫ t

0
νs(A)ds ∀A ∈ Bor(Rd), (396)



Mathematics 2019, 7, 447 49 of 62

where ||ct|| denotes any norm on the space of d × d matrices. (bt, ct, νt)t∈J are called the local
characteristics of L. We can notice by [33] that PIIAC are semi-martingales, which is not the case of all
additive processes. According to [33], we have the following representation for L:

Lt =
∫ t

0
bsds +

∫ t

0

√
csdWs +

∫ t

0

∫
Rd

y1|y|≤1(N − ν̄)(dsdy) + ∑
s≤t

∆Ls1|∆Ls |>1, (397)

where for A ∈ Bor(Rd): ν̄([0, t]× A) := ν̄t(A) and N the Poisson measure of L (N− ν̄ is then called the
compensated Poisson measure of L). (Wt)t∈J is a d-dimensional Brownian motion on Rd, independent
from the jump part.

√
ct here stands for the unique symmetric nonnegative-definite square root of

ct. Sometimes it is convenient to write a Cholesky decomposition ct = hthT
t and replace

√
ct by ht

in the previous representation (in this case, the Brownian motion W would have to be replaced by
another Brownian motion W̃, the point being that both

∫ t
0
√

csdWs and
∫ t

0 hsdW̃s are processes with
independent Gaussian increments with mean 0 and variance

∫ t
0 csds). It can be shown (see [15]) that

the infinitesimal generator of the propagator Γ is given by:

A(t) f (z) =
d

∑
j=1

bt(j)
∂ f
∂zj

(z) +
1
2

d

∑
j,k=1

ct(j, k)
∂2 f

∂zj∂zk
(z)

+
∫
Rd

(
f (z + y)− f (z)−

d

∑
j=1

∂ f
∂zj

(z)y(j)1|y|≤1

)
νt(dy),

(398)

and that C2
0(Rd,R) ⊆ D(A(t)) = D(A). If b0

t := bt −
∫
Rd y1|y|≤1νt(dy) is well-defined:

A(t) f (z) =
d

∑
j=1

b0
t (j)

∂ f
∂zj

(z) +
1
2

d

∑
j,k=1

ct(j, k)
∂2 f

∂zj∂zk
(z) +

∫
Rd
( f (z + y)− f (z))νt(dy). (399)

As a first example, we can consider the inhomogeneous Poisson process, for which d = 1,
local characteristics (b0

t , ct, νt)0 = (0, 0, λ(t)δ1), where the intensity function λ ∈ BR∗+(J) s.t.∫ T∞
0 λ(s)ds < ∞. We have, letting Λst :=

∫ t
s λ(u)du:

ps,t(z, z + n) =
1
n!

Λn
ste
−Λst , for z, n ∈ R×N and ps,t(z, z + n) = 0 if n /∈ N (400)

A(t) f (z) = λ(t)( f (z + 1)− f (z)). (401)

As a second example, we can consider a risk process L (used in insurance, for example):

dLt = rtdt− dZt (402)

Zt =
Nt

∑
i=1

Zi, (403)

where (Nt)t∈J is an inhomogeneous Poisson process, (rt)t∈J ⊆ Rd+ is the premium intensity function
and the Zi’s are iid random variables, independent from N with common law ν that represent the
random payments that an insurance company has to pay. In this case, the local characteristics
(b0

t , ct, νt)0 = (rt, 0, λ(t)ν). We get:

A(t) f (z) =
d

∑
j=1

rt(j)
∂ f
∂zj

(z) + λ(t)
∫
Rd
( f (z− y)− f (z))ν(dy). (404)
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We can also consider a Brownian motion with time-dependent variance-covariance matrix ct and
drift rt (local characteristics (b0

t , ct, νt)0 = (rt, ct, 0)):

dLt = rtdt +
√

ctdWt (405)

A(t) f (z) =
d

∑
j=1

rt(j)
∂ f
∂zj

(z) +
1
2

d

∑
j,k=1

ct(j, k)
∂2 f

∂zj∂zk
(z). (406)

To define the corresponding random evolution, we let L be an inhomogeneous Lévy process
taking value in Rd×|J|, independent of the semi-Markov process (x(t))t∈R+

. In this case, the R-valued
Lévy processes {Lj,x : j = 1..d, x ∈ J} are not necessarily independent but they have independent
increments over non-overlapping time-intervals. Denote {Lx : x ∈ J} the corresponding Rd-valued
inhomogeneous Lévy processes, with local characteristics (bx

t , cx
t , νx

t ). Define for z ∈ Rd, (s, t) ∈ ∆J ,
x ∈ J:

Γx(s, t) f (z) := E[ f (Lx
t − Lx

s + z)] =
∫
R

px
s,t(z, dy) f (y). (407)

We define the jump operators, for z ∈ Rd by:

Dε(x, y) f (z) := f (z + εα(x, y)), (408)

where α ∈ Bb
Rd(J2), so that Dε

1(x, y) f (z) = ∑d
j=1 αj(x, y) ∂ f

∂zj
(z + εα(x, y)) and Y1 ⊆ D(D1). Assume

that the R-valued inhomogeneous Lévy processes {Lj,x : j = 1..d, x ∈ J} admit a second moment,
namely they satisfy:

∫ t

0

∫
|y|≥1

y2ν
j,x
s (dy)ds < ∞, ∀t ∈ J, j = 1..d, x ∈ J, (409)

then it can be proved (see below) that the compact containment criterion is satisfied: {Vε} ∈ Y1-CCC
(Assumption 2). Assumption 1 will be satisfied provided the characteristics are smooth enough.
Regarding Assumption 3, it is clear that Â is the generator of the (inhomogeneous) Lévy propagator
with “weighted” local characteristics (b̂t, ĉt, ν̂t) given by:

b̂t =
1

Πm ∑
x∈J

(m1(x)bx
t + Pα(x, •)(x))π(x) (410)

ĉt =
1

Πm ∑
x∈J

m1(x)π(x)cx
t (411)

ν̂t(dy) =
1

Πm ∑
x∈J

m1(x)π(x)νx
t (dy). (412)

In particular, we notice that ν̂t is indeed a Lévy measure on Rd.
Proof that Γ is a propagator and that ∀n ∈ N we have Γ(s, t) ∈ B(Cn

0 (Rd,R)) and
||Γ(s, t)||B(Cn

0 (Rd ,R)) ≤ 1. Γ satisfies the propagator equation because of the Chapman–Kolmogorov

equation. Now, let us show that ∀n ∈ N we have Γ(s, t) ∈ B(Cn
0 (Rd,R)) and ||Γ(s, t)||B(Cn

0 (Rd ,R)) ≤ 1.

Let Y := C0(Rd,R). Let us first start with C0(Rd,R). Let f ∈ C0(Rd,R). By ([31]), we get the
representation Γ(s, t) f (z) =

∫
Rd µs,t(dy) f (z+ y), where µs,t is the distribution of Lt− Ls, i.e., µs,t(A) =

P(Lt − Ls ∈ A) for A ∈ Bor(Rd). Let z ∈ Rd and take any sequence (zn)n∈N ⊆ Rd: zn → z and
denote gn := y → f (zn + y) ∈ C0(Rd,R) and g := y → f (z + y) ∈ C0(Rd,R). By continuity
of f , gn → g pointwise. Further, ||gn|| = || f || ∈ L1

R(R
d, Bor(Rd), µs,t). Therefore, by Lebesgue

dominated convergence theorem, we get limn→∞ Γ(s, t) f (zn) =
∫
Rd limn→∞ µs,t(dy) f (zn + y) =∫

Rd µs,t(dy) f (z + y) = Γ(s, t) f (z). Therefore, Γ(s, t) f ∈ C(Rd,R). By the same argument but
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now taking any sequence (zn)n∈N ⊆ Rd: |zn| → ∞, we get lim|z|→∞ Γ(s, t) f (z) = 0 and therefore
Γ(s, t) f ∈ C0(Rd,R). Further, we get:

|Γ(s, t) f (z)| =
∣∣∣∣∫Rd

µs,t(dy) f (z + y)
∣∣∣∣ ≤ ∫Rd

µs,t(dy)| f (z + y)| ≤
∫
Rd

µs,t(dy)|| f || = || f ||. (413)

and therefore ||Γ(s, t)||B(C0(Rd ,R)) ≤ 1. Let z ∈ Rd, f ∈ Cq
0(Rd,R) (q ≥ 1). Take any sequence

(hn)n∈N ⊆ R∗: hn → 0, j ∈ [|1, d|] and fn,j(z) := f (z1, ..., zj + hn, ..., zd). Then:

1
hn

((Γ(s, t) f )n,j(z)− Γ(s, t) f (z)) =
∫
Rd

µs,t(dy)
1
hn

( fn,j(z + y)− f (z + y)). (414)

Let gn := y → 1
hn
( fn,j(z + y) − f (z + y)) ∈ C0(Rd,R) and g := y → ∂ f

∂zj
(z + y) ∈ C0(Rd,R).

We have gn → g pointwise since f ∈ C1
0(Rd,R). By the Mean Value theorem, ∃γj(n, z, y) ∈

[−|hn|, |hn|] : gn(y) =
∂ f
∂zj

(z1 + y1, ..., zj + yj + γj(n, z, y), ..., zd + yd), and therefore |gn(y)| ≤
∣∣∣∣∣∣ ∂ f

∂zj

∣∣∣∣∣∣ ∈
L1
R(R

d, Bor(Rd), µs,t). Therefore, by Lebesgue dominated convergence theorem, we get:

∂Γ(s, t) f
∂zj

(z) =
∫
Rd

µs,t(dy)
∂ f
∂zj

(z + y). (415)

Using the same argument as for C0(Rd,R), we get that Γ(s, t) f ∈ C1
0(Rd,R) since ∂ f

∂zj
∈ C1

0(Rd,R)
∀j ∈ [|1, d|]. Repeating this argument by computing successively every partial derivative up to
order q by the relationship ∂αΓ(s, t) f (z) =

∫
Rd µs,t(dy)∂α f (z + y) ∀α ∈ Nd,q, we get Γ(s, t) f ∈

Cq
0(Rd,R). Further, the same way we got ||Γ(s, t) f || ≤ || f || for f ∈ C0(Rd,R), we get for f ∈

Cq
0(Rd,R): ||∂αΓ(s, t) f || ≤ ||∂α f || ∀α ∈ Nd,q. Therefore, maxα∈Nd,q

||∂αΓ(s, t) f || ≤ maxα∈Nd,q
||∂α f ||

⇒ ||Γ(s, t) f ||Cq
0(Rd ,R) ≤ || f ||Cq

0(Rd ,R) ⇒ ||Γ(s, t)||B(Cq
0(Rd ,R)) ≤ 1.

Proof that Γ is (Y1, || · ||Y1)-strongly s-continuous, Y-strongly t-continuous. Let (s, t) ∈ ∆J ,
f ∈ Y1 and h ∈ [−s, t− s]:

||Γ(s + h, t) f − Γ(s, t) f ||Y1 = max
α∈Nd,m

||∂αΓ(s + h, t) f − ∂αΓ(s, t) f || (416)

= max
α∈Nd,m

||Γ(s + h, t)∂α f − Γ(s, t)∂α f ||. (417)

Let α ∈ Nd,m and {hn}n∈N ⊆ [−s, t− s] any sequence such that hn → 0. Let Sn := Lt − Ls+hn and

S := Lt − Ls. We have Sn
P→ S by stochastic continuity of additive processes. By the Skorokhod’s

representation theorem, there exists a probability space (Ω′,F ′,P′) and random variables {S′n}n∈N,

S′ on it such that Sn
D
= S′n, S D

= S′ and S′n
a.e.→ S′. Let z ∈ Rd, we therefore get:

|Γ(s + hn, t)∂α f (z)− Γ(s, t)∂α f (z)| = |E′[∂α f (z + S′n)− ∂α f (z + S′)]| (418)

≤ E′|∂α f (z + S′n)− ∂α f (z + S′)| (419)

⇒ ||Γ(s + hn, t)∂α f − Γ(s, t)∂α f || ≤ sup
z∈Rd

E′|∂α f (z + S′n)− ∂α f (z + S′)| (420)

≤ E′[sup
z∈Rd
|∂α f (z + S′n)− ∂α f (z + S′)|]. (421)

Further, since ∂α f ∈ Y, ∂α f is uniformly continuous on Rd and ∀ε > 0, ∃δ > 0: |z− y| < δ ⇒
|∂α f (z)− ∂α f (y)| < ε. Because S′n

a.e.→ S′, for a.e. ω′ ∈ Ω′, ∃N(ω′) ∈ N : n ≥ N(ω′) ⇒ |S′n(ω′)−
S′(ω′)| = |z + S′n(ω′)− S′(ω′)− z| < δ ∀z ∈ Rd ⇒ |∂α f (z + S′n(ω′))− ∂α f (z + S′(ω′))| < ε ∀z ∈
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Rd. Therefore, we have that gn := supz∈Rd |∂α f (z + S′n)− ∂α f (z + S′)| a.e.→ 0. Further |gn| ≤ 2||∂α f || ∈
L1
R(Ω

′,F ′,P′). By Lebesgue dominated convergence theorem, we get:

lim
n→∞

E′[sup
z∈Rd
|∂α f (z + S′n)− ∂α f (z + S′)|] = 0. (422)

We can notice that the proof strongly relies on the uniform continuity of f , and therefore on the
topological properties of the space C0(Rd,R) (which Cb(Rd,R) does not have). We prove that Γ is
Y-strongly t-continuous exactly the same way, but now considering Yn := Lt+hn − Ls and any sequence
{hn}n∈N ⊆ K such that hn → 0, where K := [s− t, T∞ − t] if J = [0, T∞] and K := [s− t, 1] if J = R+.

Proof that Γ is regular. By Taylor’s theorem, we get ∀ f ∈ Y1, t ∈ J, z, y ∈ Rd:∣∣∣∣∣ f (z + y)− f (z)−
d

∑
j=1

∂ f
∂zj

(z)y(j)

∣∣∣∣∣ ≤ 1
2
|y|2

d

∑
j,k=1

∣∣∣∣∣
∣∣∣∣∣ ∂2 f
∂zj∂zk

∣∣∣∣∣
∣∣∣∣∣ ≤ d2

2
|y|2|| f ||Y1 (423)

⇒||AΓ(t) f || ≤ || f ||Y1

[
d

∑
j=1
|bt(j)|+ 1

2

d

∑
j,k=1
|ct(j, k)|+ 2νt{|y| > 1}+ d2

2

∫
|y|≤1

|y|2νt(dy)

]
(424)

⇒||AΓ(t)||B(Y1,Y) ≤
d

∑
j=1
|bt(j)|+ 1

2

d

∑
j,k=1
|ct(j, k)|+ 2νt{|y| > 1}+ d2

2

∫
|y|≤1

|y|2νt(dy), (425)

observing that νt{|y| > 1} +
∫
|y|≤1 |y|

2νt(dy) < ∞ by assumption. Therefore, by integrability
assumption on the local characteristics and Theorem 3, we get the propagator evolution equations and
therefore the regularity of Γ.

Proof that Vε ∈ Y1-CCC. We are going to apply Proposition 4. We showed Vε is
a B(Y1)-contraction, so it remains to show the uniform convergence to 0 at infinity. We have the
following representation, for ω′ ∈ Ω (to make clear that the expectation is with respect to ω and not
ω′):

Vε(s, t)(ω′) f (z) = E

 f

z +

Ns

(
t

1
ε ,s
)
(ω′)+1

∑
k=1

∆Lk +

Ns

(
t

1
ε ,s
)
(ω′)

∑
k=1

εα(xk−1(s)(ω′), xk(s)(ω′))


 , (426)

where we have denoted for clarity ∆Lk = ∆Lk(ε, ω′) := Lxk−1(s)(ω′)
Tε,s

k (s)(ω′)∧t − Lxk−1(s)(ω′)
Tε,s

k−1(s)(ω
′)

. In the following we

drop the index ω′. Denote the d components of the inhomogeneous Lévy process Lx by L(j),x (j = 1..d).
The multivariate version of Chebyshev’s inequality yields for any d-vector of L2 integrable random
variables Xj:

P
[

d

∑
j=1

(Xj −E(Xj))
2 ≥ δ2

]
≤ 1

δ2

d

∑
j=1

var(Xj). (427)

We apply this inequality to the d-vector

Ns

(
t

1
ε ,s
)
+1

∑
k=1

∆Lk having components

Xj :=

Ns

(
t

1
ε ,s
)
+1

∑
k=1

∆L(j)
k , where ∆L(j)

k is the jth component of ∆Lk. If we denote by
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(b(j),x
t , c(j),x

t , ν
(j),x
t ) the local characteristics of L(j),x, we have ([32], proposition 3.13):

E(Xj) =

Ns

(
t

1
ε ,s
)
+1

∑
k=1

E(∆L(j)
k ) =

Ns

(
t

1
ε ,s
)
+1

∑
k=1

∫ Tε,s
k (s)∧t

Tε,s
k−1(s)

[
b(j),xk−1(s)

u +
∫
|y|≥1

yν
(j),xk−1(s)
u (dy)

]
du, (428)

and so:

|E(Xj)| ≤
∫ t

s

[
b∗u +

∫
|y|≥1

|y|ν∗u(dy)
]

du, (429)

where b∗u := ∑j=1..d,x∈J |b
(j),x
u | and ν∗u := ∑j=1..d,x∈J ν

(j),x
u . Similarly, we have:

var(∆L(j)
k ) =

∫ Tε,s
k (s)∧t

Tε,s
k−1(s)

[
c(j),xk−1(s)

u +
∫
R

y2ν
(j),xk−1(s)
u (dy)

]
du (430)

≤
∫ Tε,s

k (s)∧t

Tε,s
k−1(s)

[
c∗u +

∫
R

y2ν∗u(dy)
]

du, (431)

where c∗u := ∑j=1..d,x∈J c(j),x
u . Now, since L is a Rd×|J| valued inhomogeneous Lévy process,

the R valued inhomogeneous Lévy processes L(j),x are not necessarily independent but they have
independent increments over non-overlapping time intervals. This yields:

var(Xj) = var


Ns

(
t

1
ε ,s
)
+1

∑
k=1

∆L(j)
k

 =

Ns

(
t

1
ε ,s
)
+1

∑
k=1

var(∆L(j)
k ) ≤

∫ t

s

[
c∗u +

∫
R

y2ν∗u(dy)
]

du. (432)

Overall, we get that for every δ > 0, there exists kδ = kδ,s,t, f > 0 such that:

P


∣∣∣∣∣∣∣∣∣

Ns

(
t

1
ε ,s
)
(ω′)+1

∑
k=1

∆Lk

∣∣∣∣∣∣∣∣∣ > kδ

 <
δ

2|| f || . (433)

Define the set:

B :=


∣∣∣∣∣∣∣∣∣

Ns

(
t

1
ε ,s
)
(ω′)+1

∑
k=1

∆Lk

∣∣∣∣∣∣∣∣∣ > kδ

 . (434)

We have:

|E [1B f (z + ·)]| ≤ || f ||P(B) <
δ

2
. (435)

On the other hand, there exists cδ > 0: |z| > cδ ⇒ | f (z)| < δ
2 . Define, as in the

traffic case, Aε := {εNs

(
t

1
ε ,s
)
≤ n00} so that P(Aε) ≥ 1 − ∆. We have for ω′ ∈ Aε and

|z| > Cδ := cδ + ||α||n00 + kδ:

|E [1Bc f (z + ·)]| < δ

2
P(Bc) ≤ δ

2
, (436)
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so that overall, for ω′ ∈ Aε and |z| > Cδ (uniform in ω′, ε) we have:∣∣Vε(s, t)(ω′) f (z)
∣∣ < δ, (437)

which completes the proof.

6.2. Regime-Switching Lévy Driven Diffusion Based Price Dynamics

We consider the same financial setting as in Section 6.1, with the exception that the dynamics
of the stock price will be driven by a Lévy driven diffusion process, and not a time-inhomogeneous
Lévy process. As in [15] (Section 4.1), consider for x ∈ J the function Φx ∈ C1,1

b (Rd ×R+,Rd ×Rd)

and {Lx}x∈J a collection of Rd-valued classical Lévy processes with local characteristics (bx, cx, νx).
Let Zx a solution of the SDE (actually, for any initial condition Zx

0 = z ∈ Rd, the SDE admits a unique
strong solution, cf. [15], Lemma 4.6.):

dZx
t = Φx(Zx

t− , t)dLx
t , (438)

and define as in Section 6.1:

Γx(s, t) f (z) := E[ f (Zx
t )|Zx

s = z]. (439)

This general setting includes many popular models in finance, for example the Heston model.
Time-inhomogeneity of Φ also enables one to consider the time-dependent Heston model, which is
characterized by time-dependent parameters. The Delayed Heston model considered in [34] can be
seen as a specific example of the class of time-dependent Heston models, and therefore fits into this
framework. Indeed, let St and Vt be the price and variance process, respectively. The time-dependent
Heston dynamics read:

dSt = (rt − qt)Stdt + St
√

Vt

√
1− ρ2

t dW(1)
t + St

√
VtρtdW(2)

t , (440)

dVt = γt(θ
2
t −Vt)dt + δt

√
VtdW(2)

t , (441)

where γt, ρt, rt, qt, δt, and θt are deterministic processes and W(1), W(2) independent Brownian
motions. Then, letting the R3-valued Lévy process Lt := (t, W(1)

t , W(2)
t )T and Zt := (St, Vt, t)T ,

we have dZt = Φ(Zt− , t)dLt, where for z = (z1, z2, z3)
T ∈ R3:

Φ(z, t) :=

 (rt − qt)z1 z1
√

z2

√
1− ρ2

t z1
√

z2ρt

γt(θ2
t − z2) 0 δt

√
z2

1 0 0


Then, we can consider regime-switching extensions of the latter time-dependent Heston dynamics

by allowing the various coefficients γt, ρt, rt, qt, δt, and θt (and therefore the matrix Φ) to depend on
the regime x ∈ J. It also has to be noted that the previously defined Φ is not in C1,1

b , which is required
in [15] to prove the strong continuity of Γ, as mentioned below. Nevertheless, in practice, it is always
possible to consider bounded approximations of the latter Φ.
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Let Y := C0(Rd,R) and Y1 := Cm
0 (Rd,R) for some m ≥ 2 as in Section 6.1. Lemma 4.6,

the corresponding proof and Remark 4.1 of [15] give us strong continuity of Γ and for f ∈ Y1:

Ax(t) f (z) =
d

∑
j=1

[bxΦx(z, t)](j)
∂ f
∂zj

(z) +
1
2

d

∑
j,k=1

[cxΦx(z, t)](j, k)
∂2 f

∂zj∂zk
(z)

+
∫
Rd

(
f (z + Φx(z, t)y)− f (z)−

d

∑
j=1

∂ f
∂zj

(z)[Φx(z, t)y](j)1|y|≤1

)
νx(dy).

(442)

In particular, taking Lx
t = t we retrieve the so-called traffic random evolution of [9,27]. If νx = 0 for

all x, Â is the generator of the Lévy driven diffusion propagator with “weighted” local characteristics
(b̂, ĉ, 0) and driver Φ̂ implicitly defined by the following equations:

b̂Φ̂(z, t) =
1

Πm ∑
x∈J

(m1(x)[bxΦx(z, t)] + Pα(x, •)(x))π(x) (443)

ĉΦ̂(z, t) =
1

Πm ∑
x∈J

m1(x)π(x)[cxΦx(z, t)]. (444)

If Φx = Φ does not depend on x, then Â is the generator of the Lévy driven diffusion
propagator with driver Φ and “weighted” local characteristics (b̂, ĉ, ν̂) defined implicitly by the
following equations:

b̂Φ(z, t) =
1

Πm ∑
x∈J

(m1(x)bxΦ(z, t) + Pα(x, •)(x))π(x) (445)

ĉΦ(z, t) =
1

Πm ∑
x∈J

m1(x)π(x)cxΦ(z, t) (446)

ν̂(dy) =
1

Πm ∑
x∈J

m1(x)π(x)νx(dy). (447)

6.3. Multi-Asset Model of Price Impact from Distressed Selling: Diffusion Limit

Take, again, Y := C0(Rd,R). The setting of the recent article [11] fits exactly into our framework.
In this article, they consider a discrete-time stock price model for d stocks (Si)1≤i≤d. It is assumed
that a large fund V holds αi units of each asset i. Denoting the ith stock price and fund value at time
tk by, respectively, Si

k := Si
tk

and Vk := Vtk , we have Vk = ∑d
j=1 αjS

j
k, and the following dynamics are

assumed for the stock prices:

ln

(
Si

k+1

Si
k

)
= ε2mi + εZi

k+1 + ln
(
1 + gi(V̄∗k+1)− gi(V̄k)

)
, (448)

gi :=
αi
Di

g, mi := µi −
1
2

σii, (449)

V̄∗k+1 =
1

V0

d

∑
j=1

αjS
j
keε2mj+εZj

k+1 , V̄k =
Vk
V0

, (450)

where ε2 = tk+1 − tk is the constant time-step, {Zk}k≥1 := {Zi
k : 1 ≤ i ≤ d}k≥1 are i.i.d. Rd-valued

centered random variables with covariance matrix σ (i.e., E(Zi
k)=0, E(Zi

kZj
k) = σij ∀k); g : R → R is

increasing, concave, equal to 0 on [β0, ∞) and g(βliq) = −1, where 0 < βliq < β0; Di > 0 represents
the depth of the market in asset i, and µi are constants. It is also assumed that:

||g||∞ <
1
2

min
i

Di
|αi|

, (451)
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so that the stock prices remain positive. The idea is that when the fund value V reaches a certain “low”
level β0V0, market participants will start selling the stocks involved in that fund, inducing a correlation
between the stocks, which “adds” to their fundamental correlations: this is captured by the function g
(which, if equal to 0, gives us the “standard” Black and Scholes setting).

The above setting is a particular case of our framework, where Γx = I for all x ∈ J, and the
operators D have the following form:

Dε(x, y) f (z) := f ◦ exp
(

z + ε2m + εy + φ(h(z + ε2m + εy)− h(z))
)

, x, y ∈ J, (452)

where ◦ denotes composition of functions, z ∈ Rd, m is the vector with coordinates mi, h : Rd → Rd

has coordinate functions hi defined by:

hi(z) = gi

(
1

V0

d

∑
j=1

αje
zj

)
, (453)

φ : Rd → Rd has coordinate functions φi defined by:

φi(z) = ln(1 + zi), (454)

and finally where we have extended the definition of exp : Rd → Rd by the convention that exp(z) is
the vector with coordinates exp(zi). We notice that the operator D defined above does not depend on
x, and so we let Dε(y) f := Dε(x, y) f . By i.i.d. assumption on the random variables {Zk}, the process
{xn} is chosen such that it is a Markov chain with all rows of the transition matrix P equal to each
other, meaning that xn+1 is independent of xn: in this context the ergodicity of the Markov chain
is immediate, and we have P = Π. It remains to choose the finite state space J: we assume that
the random variables Zi

k can only take finitely many values, say M, and we denote {γp}p=1..M these
possible values. In the paper [11], the authors considered that these random variables can have arbitrary
distributions: here we approximate these distributions by finite state distributions. Note that in practice
(e.g., on a computer), all distributions are in fact approximated by finite-state distributions, since the
finite floating-point precision of the computer only allows finitely many values for a random variable.
The parameter M in fact plays no role in the analysis below. We let J := {γ1, γ2, ..., γM−1, γM}d.
We have, for x := (x1, x2, ..., xd) ∈ J and y := (y1, y2, ..., yd) ∈ J:

P[xn+1 = y|xn = x] = π(y), xn := (Z1
n, Z2

n, ..., Zd
n). (455)

In [11], the times Tn = n are deterministic (so that Tn+1 − Tn = 1), but in our context we allow
them to be possibly random, which can be seen for example as an “illiquidity extension” of the
model in [11], similar to what we have done in Section 6.1. In addition, our very general framework
allows one to be creative with the choices of the operators D and Γ, leading to possibly interesting
extensions of the model [11] presented above. For example, one could simply “enlarge” the Markov
chain {xn} and consider the same model but with regime-switching parameters µ and σ, and one could

carry on all the analysis below at almost no extra technical and computational cost. Since
∂φj
∂zi

= δij
1

1+zi
,

we let φ′j :=
∂φj
∂zj

, and we get:
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Dε
1(y) f (z) =

d

∑
j=1

∂ f̃
∂zj

(sε
z(y))

∂[sε
z(y)]j
∂ε

(456)

=
d

∑
j=1

∂ f̃
∂zj

(sε
z(y))

[
2εmj + yj + φ′j(h(z + ε2m + εy)− h(z)) (457)

×g′j

(
1

V0

d

∑
p=1

αpezp+ε2mp+εyp

)
1

V0

d

∑
p=1

αp(2εmp + yp)ezp+ε2mp+εyp

]
, (458)

where f̃ := f ◦ exp, and:

sε
z(y) := z + ε2m + εy + φ(h(z + ε2m + εy)− h(z)). (459)

Since φj(0) = 0 and φ′j(0) = 1, it results that:

D0
1(y) f (z) =

d

∑
j=1

∂ f̃
∂zj

(z)

[
yj + g′j

(
1

V0

d

∑
p=1

αpezp

)
1

V0

d

∑
p=1

αpypezp

]
. (460)

From the last expression, and remembering that each component Zi
n of xn := (Z1

n, Z2
n, ..., Zd

n) is
centered, we get:

Â(t) =
1

Πm ∑
x∈J

π(x)P[D0
1(x, •) f ](x) =

1
Πm ∑

y∈J
D0

1(y) f π(y) =
1

Πm
E[D0

1(xn) f ] (461)

=
1

Πm
E
[

d

∑
j=1

∂ f̃
∂zj

(z)

(
Zj

n + g′j

(
1

V0

d

∑
p=1

αpezp

)
1

V0

d

∑
p=1

αpZp
nezp

)]
(462)

=
1

Πm

d

∑
j=1

∂ f̃
∂zj

(z)

(
E[Zj

n] + g′j

(
1

V0

d

∑
p=1

αpezp

)
1

V0

d

∑
p=1

αpE[Z
p
n ]ezp

)
= 0. (463)

Let us denote the vector of initial log-spot prices s0 which elements are ln(Si
0) (1 ≤ i ≤ d), as well

as the d-dimensional price process St(z) : Rd → Rd with elements:

Si
t(z) := exp

[
zi +

N0(t)

∑
k=1

ln

(
Si

k
Si

k−1

)]
. (464)

In this context, the spot price changes at each jump time of the Markov renewal process (xn, Tn).
As mentioned above, in [11], the times Tn = n are deterministic, so that N0(t) = btc. In our context,
the random evolution V(0, t) f and its rescaled version Vε(0, t) f are simply equal to a functional of the
spot price:

V(0, t) f (s0) = f (St(s0)), Vε(0, t) f (s0) = f (S t
ε
(s0)). (465)

Because Â = 0, Theorem 8 tells us that the limit of f (S t
ε
) is trivial: f (S t

ε
)⇒ f . In addition, we get:

σ
(1)
0 (x, y, t, f ) = σ

(3)
0 (x, y, t, f ) = 0, (466)

σ
(2)
0 (x, y, t, f ) = D0

1(y) f , (467)
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so that by Theorem 11, we have the convergence in the Skorohod topology:

ε−1/2( f (S t
ε
)− f )⇒ ∑

y∈J

∫ t

0
D0

1(y) f W(y, du), (468)

where {W(y, dt) : y ∈ J} are orthogonal martingale measures on J× J with intensity 1
Πm π(y)dt. This

leads to the approximation:

f (S t
ε
) ≈ f +

√
ε ∑

y∈J

∫ t

0
D0

1(y) f W(y, du). (469)

Because the “first-order” limit is trivial, it calls to study the “second-order” limit, or diffusion
limit, i.e., the convergence of f (S t

ε2
). This is indeed what is done in [11]. A complete and rigorous

treatment of the diffusion limit case for time-inhomogeneous random evolutions is below the scope
of this thesis. This is done in the homogeneous case in [10] (Section 4.2.2), or in a simplified context
in [6,8]. Nevertheless, in the model we are presently focusing on, we can characterize the diffusion
limit. The martingale representation of Lemma 5 is trivial as Â = 0. We define another rescaled random

evolution Lε(s, t) which is defined exactly as Vε(s, t), but with Ns

(
t

1
ε ,s
)

replaced by Ns

(
t

1
ε2 ,s
)

in the

product. In our context:

Lε(0, t) f (s0) = f (S t
ε2
(s0)). (470)

Using the same techniques as in Lemma 5 (but going one more order in the “Taylor” expansion
and writing f ε(x, t) := f + ε f1(x, t) + ε2 f2(x, t) for suitable function f2), we can get a martingale
representation of the form:

Martingale = Lε(s, t) f − f − ε2Πm

Ns

(
t

1
ε2 ,s

)
∑
k=1

Lε(s, Tε,s
k (s))B̂

(
Tε,s

k (s)
)

f + O(ε) a.e., (471)

for a suitable operator B̂. In fact, after a few lines of computation, we get:

B̂(t) =
1

Πm
Πb(•, t), (472)

b(x, t) :=
1
2

m2(x)A2
x(t) + m1(x)PAx(t)D0

1(x, •)(x) +
1
2

PD0
2(x, •)(x) (473)

+ m1(x)P f ′1(•, t)(x), x ∈ J. (474)

In our present model, B̂(t) = B̂ is independent of time and the above reduces to:

B̂ f =
1

2Πm ∑
y∈J

π(y)D0
2(y) f =

1
2Πm

E[D0
2(xn) f ], f ∈ C3

0(Rd). (475)

Denote:

k j(ε; y) :=
∂[sε

z(y)]j
∂ε

= 2εmj + yj + φ′j(h(z + ε2m + εy)− h(z)) (476)

× g′j

(
1

V0

d

∑
p=1

αpezp+ε2mp+εyp

)
1

V0

d

∑
p=1

αp(2εmp + yp)ezp+ε2mp+εyp . (477)
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With this notation, we have:

Dε
2(y) f (z) =

d

∑
j=1

∂ f̃
∂zj

(sε
z(y))k

′
j(ε; y) +

d

∑
j,m=1

∂2 f̃
∂zj∂zm

(sε
z(y))k j(ε; y)km(ε; y), (478)

and therefore:

E[D0
2(xn) f (z)] =

d

∑
j=1

∂ f̃
∂zj

(z)E[k′j(0; xn)] +
d

∑
j,m=1

∂2 f̃
∂zj∂zm

(z)E[k j(0; xn)km(0; xn)]. (479)

We have:

k j(0; y)km(0; y) =

[
yj + g′j

(
1

V0

d

∑
p=1

αpezp

)
1

V0

d

∑
p=1

αpypezp

]
(480)

×
[

ym + g′m

(
1

V0

d

∑
p=1

αpezp

)
1

V0

d

∑
p=1

αpypezp

]
. (481)

Denoting g′j := g′j
(

1
V0

∑d
p=1 αpezp

)
for clarity, we get:

E[k j(0; xn)km(0; xn)] = σjm +
1

V0
g′j

d

∑
p=1

αpσmpezp (482)

+
1

V0
g′m

d

∑
p=1

αpσjpezp +
1

V2
0

g′jg
′
m

d

∑
p,q=1

αpαqσpqezp+zq . (483)

At this point, it can be noted that the above result should coincide with the quantity cj,m of [11]
(Proposition 5.1), and it does! Note, however, that, because the times {Tn} are random in our context,
the above quantity is multiplied by (Πm)−1 in B̂, i.e., the inverse of a weighted average of the mean
values of the inter-arrival times Tn − Tn−1. If Tn = n as in [11], then Tn − Tn−1 = 1 and so Πm = 1:
our framework is therefore a generalization of the one in [11]. One interesting information coming
from the above result is that in case of zero “fundamental correlations” σij = 0 for i 6= j, we get for
j 6= m, denoting σ2

i := σii:

E[k j(0; xn)km(0; xn)] =
1

V0
g′jαmσ2

mezm +
1

V0
g′mαjσ

2
j ezj +

1
V2

0
g′jg
′
m

d

∑
p=1

(αpσpezp)2 6= 0. (484)

This is the point of the model: distressed selling (modeled by the function g) induces
a correlation between assets even if their fundamental correlation are equal to zero. It now remains
to compute the quantities E[k′j(0; xn)]. After some tedious computations, we get, denoting again

g′j := g′j
(

1
V0

∑d
p=1 αpezp

)
(and similarly for g′′j ):

E[k′j(0; xn)] = 2mj +
1

V2
0
(g′′j − (g′j)

2)
d

∑
p,q=1

αpαqσpqezp+zq +
1

V0
g′j

d

∑
p=1

2αpµpezp . (485)

Denote now:

ãij(z) :=
1

Πm
E[ki(0; xn)k j(0; xn)] b̃i(z) :=

1
2Πm

E[k′i(0; xn)]. (486)
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The generator B̂ is therefore given by:

B̂ f (z) =
d

∑
i=1

b̃i(z)
∂ f̃
∂zi

(z) +
1
2

d

∑
i,j=1

ãij(z)
∂2 f̃

∂zi∂zj
(z), f ∈ C3

0(Rd) (487)

=
d

∑
i=1

ezi

[
b̃i(z) +

1
2

ãii(z)
]

︸ ︷︷ ︸
bi(z)

∂ f
∂zi

(z) +
1
2

d

∑
i,j=1

ezi+zj ãij(z)︸ ︷︷ ︸
aij(z)

∂2 f
∂zi∂zj

(z). (488)

We get in consequence, still denoting gi := gi

(
1

V0
∑d

p=1 αpezp
)

for clarity:

aij(z) =
1

Πm
ezi+zj σij +

1
Πm

ezi+zj
1

V0
g′i

d

∑
p=1

αpσjpezp (489)

+
1

Πm
ezi+zj

1
V0

g′j
d

∑
p=1

αpσipezp +
1

Πm
ezi+zj

1
V2

0
g′i g
′
j

d

∑
p,q=1

αpαqσpqezp+zq , (490)

and:

bi(z) =
1

Πm
ezi µi +

1
Πm

ezi
1

2V2
0

g′′i
d

∑
p,q=1

αpαqσpqezp+zq +
1

Πm
ezi

1
V0

g′i
d

∑
p=1

αp( µp︸︷︷︸
(∗)

+σip)ezp , (491)

which is exactly equal to the result of [11], Theorem 4.2, at the small exception that in their drift
result for bi(z), the µp above denoted by (∗) is replaced by a mp, where we recall that mp = µp − 1

2 σ2
p .

We checked our computations and did not seem to find a mistake, therefore, to the best of our
knowledge, the coefficient in (∗) should indeed be µp and not mp. We will leave this small issue for
further analysis. By Equation (471), any limiting operator L(0, •) of Lε(0, •) satisfies:

Martingale = L(0, •) f − f −
∫ •

0
L(0, s)B̂ f ds a.e.. (492)

Because of the above specific form of B̂, it can be proved as in [11] (assuming g ∈ C3
0(R)),

using the results of [20], that the martingale problem related to (B̂, δs0) is well-posed, and therefore
using Equation (492) that (S t

ε2
(s0))t≥0 converges weakly in the Skorohod topology as ε → 0 to the

d-dimensional process (Pt)t≥0 solution of:

dPt = b(Pt)dt + c(Pt)dWt, P0 = S0, (493)

where W is a standard d-dimensional Brownian motion and a(z) = c(z)c(z)T . This result is
a generalization of the one of [11] as in our context, the times {Tn} at which the price jumps are
random. The consequence of this randomness is that the driving coefficients b and c of the limiting
diffusion process (Pt)t≥0 are multiplied by, respectively, (Πm)−1 and (Πm)−1/2. If Tn = n as in [11],
then Πm = 1 and we retrieve exactly their result. As mentioned above, our very general framework
allows one to be creative with the choices of the operators D and Γ, leading to possibly interesting
extensions of the considered model. For example, one could simply “enlarge” the Markov chain {xn}
and consider the same model but with regime-switching parameters µ and σ, leading to diffusion limit
results at almost no extra technical and computational cost.
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