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Abstract: In this article, using a fixed point index theorem on a cone, we prove the existence and
multiplicity results of positive solutions to a one-dimensional p-Laplacian problem defined on infinite
intervals. We also establish the nonexistence results of nontrivial solutions to the problem.

Keywords: p-Laplacian; multiplicity of positive solutions; exterior domain

1. Introduction

In this paper, we are concerned with the following one-dimensional p-Laplacian problem defined
on infinite intervals: 

1
rN−1 (r

N−1 ϕp(u′))′ + K(r) f (u) = 0, r ∈ (R, ∞)

u(R) = lim
r→∞

u(r) = 0,
(1)

where 1 < p < N, ϕp(s) := |s|p−2s for s ∈ R \ {0}, ϕp(0) := 0, K ∈ C1(R+,R+) with R+ = (0, ∞),
f is an odd and locally Lipschitz-continuous function on R, and R is a positive parameter.

Problem (1) arises naturally in the study of radial solutions of nonlinear elliptic equations,
with g(λ, x, u) = K(|x|) f (u) and Ω = RN \ BR(0), of the form:{

div(|∇u|p−2∇u) + g(λ, x, u) = 0 in Ω,

u = 0 on ∂Ω.
(2)

For the last several decades, there has been extensive study of Problem (2) with various
assumptions for the domain Ω and the nonlinearity g = g(λ, x, u). For example, for p = 2, Ω =

(−1, 1), and g(λ, x, u) = |x|lup, Tanaka ([1]) showed the existence of one positive even solution
and two positive non-even solutions to problem (2) when l(p − 1) ≥ 4 and l ≥ 0. Recently,
for p ∈ (1, N), Ω = RN \ BR(0) and g(λ, x, u) = λK(|x|) f (u), Shivaji, Sim, and Son ([2]) proved
the uniqueness of positive solution to Problem (2) for large λ under suitable additional assumptions
on the reaction term f satisfying f (0) < 0. More recently, for p ∈ (1, N), Ω = RN \ B1(0) and
g(λ, x, u) = λK(x)|u|p−2u + h(x), Drábek, Ho, and Sarkar ([3]) investigated the Fredholm alternative
for Problem (2) and also discussed the striking difference between the exterior domain and the entire
space. For more references, we refer the reader to [4–13] for bounded domains and to [14–23] for
unbounded domains.

By a solution u to Problem (1) with R ∈ R+, we mean u ∈ C1(R, ∞)∩ C[R, ∞) with rN−1 ϕp(u′) ∈
C1(R, ∞) satisfies (1). We make a list of hypotheses that are used in this paper.
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(F0) there exist 0 ≤ α < β ≤ ∞ such that f (u) < 0 for u ∈ (0, α), f (u) > 0 for u ∈ (α, β) and
f (u) ≤ 0 for u > β;

(F1) there exists C0 > 0 such that | f (u)| ≤ C0up−1 for u ∈ R+;

(F2) p∗K(r) + rK′(r) ≤ 0 for r ∈ R+, where p∗(= p∗(N, p)) = p(N−1)
p−1 ;

(F2)′ p∗K(r) + rK′(r) ≥ 0 for r ∈ R+;

(F3)
∫ ∞

1 [K(r)]
1
p dr < ∞;

(F4)
∫ ∞

1 rp−1K(r)dr < ∞;
(F5) there exist positive constants q1, q2, C1 and C2 such that p < q2 ≤ q1, C2r−q2 ≤ K(r) ≤

C1r−q1 for r ∈ (0, R0), and C1r−q1 ≤ K(r) ≤ C2r−q2 for r ∈ (R0, ∞). Here, R0 = (C1C−1
2 )

1
q1−q2 ∈

R+ if q1 > q2, and R0 = ∞ if q1 = q2 and C2 ≤ C1.

Remark 1.

(1) Note that (F2) (resp., (F2)′) holds if and only if d
dr [r

p∗K(r)] ≤ 0 (resp., ≥ 0) for r ∈ R+.
(2) Assume that, for some constants C and q, K(r) = Cr−q for r ∈ R+. Then, (F2) holds if q ≥ p∗;

(F2)′ holds if q ≤ p∗; (F3) and (F4) hold if q > p. Since p < N < p∗, (F2), (F3), and (F4) hold if
q ≥ p∗; (F2)′, (F3), and (F4) hold if p < q ≤ p∗. Note that, for any R ∈ R+, q > N if and only if
rN−1K(r) ∈ L1(R, ∞). Thus, in this case, (F2) implies rN−1K(r) ∈ L1(R, ∞), but rN−1K(r) may not
be in L1(R, ∞) if (F2)′ holds.

(3) (F5) implies (F3) and (F4).

This paper is motivated by the recent works of Iaia ([16–19]), Joshi ([24]), and Joshi and Iaia ([20]).
For p = 2, the existence of an infinite number of solutions with a prescribed number of zeros to
Problem (1) was proven in [16–20,24], and the nonexistence of nontrivial solutions to Problem (1) was
shown in [16,18,24]. The proofs in those papers are mainly based on the shooting method. In this
paper, for p ∈ (1, N), the nonexistence results of nontrivial solutions to Problem (1) are proven for
sufficiently large R > 0, and the existence results of positive solutions to Problem (1) are established.
Our approach for the existence results of positive solutions is based on a fixed point index theorem on
positive cones.

2. Nonexistence of Nontrivial Solutions to Problem (1)

Let u be a solution to Problem (1). Then, it is well known that u ∈ C2([R, ∞)) for p ∈ (1, 2] and
u ∈ C1([R, ∞)) ∩ C2([R, ∞) \ A) for p > 2, where A = {r ∈ [R, ∞) : u′(r) = 0}. Clearly, zero is a
trivial solution to Problem (1), since f (0) = 0.

Theorem 1. Assume that (F0),(F1), (F2), and (F3) hold. Then, there exists R∗ > 0 such that Problem (1)
has no nontrivial solutions for any R > R∗.

Proof. Assume, on the contrary, that there exists a nontrivial solution u to Problem (1). By (F1),
if u′(R) = 0, then u ≡ 0 on [R, ∞) in view of [12] (Theorem 4(δ)). Thus, u′(R) 6= 0. We may assume
that u′(R) > 0, since f is an odd function. Then, there exists M1 > R such that u′(r) > 0 for [R, M1)

and u′(M1) = 0. Set:

E1[u](r) =
p− 1

p
|u′(r)|p

K(r)
+ F(u(r)) for r ∈ [R, ∞),

where F(v) =
∫ v

0
f (s)ds for v ∈ R. Since u ∈ C2([R, M1)) is a solution to Problem (1),

d
dr

E1[u](r) = −
(p− 1)|u′(r)|p

pr(K(r))2

[
p∗K(r) + rK′(r)

]
for r ∈ [R, M1).
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By (F2), d
dr E1[u](r) ≥ 0 for r ∈ [R, M1). Consequently, E1[u] is nondecreasing in [R, M1), and:

E1[u](r) ≤ E1[u](M1) = F(u(M1)) for r ∈ [R, M1], (3)

which implies F(u(r)) < F(u(M1)) for r ∈ [R, M1]. In particular, 0 = F(u(R)) < F(u(M1)). By
(F0), there exist γ ∈ [α, β) and δ ∈ [β, ∞] such that F(u) < 0 for u ∈ (0, γ), F(u) > 0 for u ∈ (γ, δ)

and F(u) ≤ 0 for u > δ. Here, γ = 0 if α = 0, and γ ∈ (α, δ) if α > 0. Assume first that α > 0.
Since F(u(M1)) > 0, u(M1) ∈ (γ, δ), and thus, there exists a constant F0 > 0 satisfying:

F(t) > −F0 for all t ∈ (0, u(M1)]. (4)

By (3) and (4), [K(r)]
1
p ≥ p

√
p− 1

p
u′(r)

p
√

F(u(M1)) + F0
for r ∈ [R, M1]. Then:

∫ ∞

R
[K(r)]

1
p dr ≥

∫ M1

R
[K(r)]

1
p dr ≥ p

√
p− 1

p

∫ M1

R

u′(r)
p
√

F(u(M1)) + F0
dr

= p

√
p− 1

p

[
p

√
F(u(M1))

[u(M1)]p
+

F0

[u(M1)]p

]−1

.

By (F1) and from the fact u(M1) ∈ (γ, δ), it follows that:

0 <
F(u(M1))

[u(M1)]p
+

F0

[u(M1)]p
≤ C0

p
+

F0

γp .

Consequently,

0 < p

√
p− 1

p

[
p

√
C0

p
+

F0

γp

]−1

≤
∫ ∞

R
[K(r)]

1
p dr.

By (F3),
∫ ∞

R [K(r)]
1
p dr → 0 as R→ ∞, and thus, there exists R∗ > 0 such that Problem (1) has no

nontrivial solution for any R > R∗. Next, assume that α = 0. Then, u(M1) ∈ (0, δ), and (4) with F0 = 0
holds. Then, one can easily prove the desired result, by arguments similar to those in the proof for the
case α > 0. Thus, the proof is complete.

Using transformation v(t) = u(r) with t = r
p−N
p−1 , (1) can be rewritten equivalently as follows:(ϕp(v′))′ + h(t) f (v) = 0, t ∈ (0, R

p−N
p−1 ),

v(0) = v(R
p−N
p−1 ) = 0,

(5)

where h(t) =
(

p− 1
N − p

)p
t

p(N−1)
p−N K(t

p−1
p−N ) =

(
p− 1
N − p

)p
rp∗K(r).

For the sake of convenience, we make a list of classes of the weight h as follows:

• A = {h ∈ C(R+,R+) :
∫ 1

0 sp−1h(s)ds < ∞};
• B = {h ∈ C(R+,R+) :

∫ 1
0 ϕ−1

p

(∫ 1
s h(τ)dτ

)
ds < ∞};

• C = {h ∈ C(R+,R+) :
∫ 1

0 sθh(s)ds < ∞ for some θ ∈ (0, p− 1)};

• D = {h ∈ C(R+,R+) :
∫ 1

0 [h(s)]
1
p ds < ∞}.
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Remark 2.

(1) It is well known that L1(0, 1) ∩ C(R+,R+) ( C ( A ∩ B, A ( B for p ∈ (1, 2), B ( A for p > 2,
and A = B for p = 2 (see, e.g., [25]). It is obvious that h ∈ C, provided h(t) = t−ρ for some ρ < p.
Moreover, C ⊆ D. Indeed, let h ∈ C, and let p′ := p

p−1 ∈ (1, ∞). Then, θ
(
− p′

p

)
> −1, and by the

Hölder inequality,

∫ 1

0
[h(t)]

1
p dt =

∫ 1

0
(tθh(t))

1
p (tθ)

− 1
p dt ≤

[∫ 1

0
tθh(t)dt

] 1
p
[∫ 1

0
(tθ)

− p′
p dt
] 1

p′
< ∞.

(2) Assume that h(t) =
(

p− 1
N − p

)p
rp∗K(r) with t = r

p−N
p−1 . Then, (F3) holds if and only if h ∈ D, and

(F4) holds if and only if h ∈ A.
(3) In [6] (Theorem 2.4), the C1-regularity of solutions was proven, provided h ∈ A ∩ B and f (s) > 0 for

s > 0. However, if p > 2 and h ∈ A \ B, the solutions to (5) may not be in C1[0, R
p−N
p−1 ] (see, e.g., [6]

(Example 2.7)).

Lemma 1. Assume that (F0), (F1) and (F4) hold. Let v be a nontrivial solution to (5). Then, there exists
δ > 0 such that v(t) 6= 0 for t ∈ (0, δ), and v′(0) ∈ [−∞, 0) ∪ (0, ∞].

Proof. Let v be a nontrivial solution to Problem (5). Then, v ∈ C[0, R
p−N
p−1 ]∩C1(0, R

p−N
p−1 ]. First, we prove

that there exists δ > 0 such that v(t) 6= 0 for t ∈ (0, δ). Assume, on the contrary, that there exists a
strictly decreasing sequence (tn) satisfying v(tn) = 0 and tn → 0 as n → ∞. Multiplying the first
equation in (5) by v and integrating it over (tn+1, tn), by (F1),

∫ tn

tn+1

|v′(s)|pds =
∫ tn

tn+1

h(s) f (v(s))v(s)ds ≤ C0

∫ tn

tn+1

h(s)|v(s)|pds. (6)

By the Hölder inequality, for s ∈ (tn+1, tn),

|v(s)| ≤
∫ s

tn+1

|v′(τ)|dτ ≤ s
p−1

p

(∫ s

tn+1

|v′(τ)|pdτ

) 1
p

. (7)

Substituting (7) into the integrand on the right-hand side in (6),∫ tn

tn+1

|v′(s)|pds ≤ C0

∫ tn

tn+1

sp−1h(s)ds
∫ tn

tn+1

|v′(s)|pds.

By (F4), h ∈ A, and there exists N > 0 such that C0

∫ tN

0
sp−1h(s)ds <

1
2

. For any n ≥ N,

∫ tn

tn+1

|v′(s)|pds <
1
2

∫ tn

tn+1

|v′(s)|pds.

which implies v′(s) = 0 for s ∈ [tn+1, tn] for all n ≥ N. Consequently, by (7), v ≡ 0 on [0, tN ].

Since h ∈ C[tN , R
p−N
p−1 ], by Grönwall’s inequality, it can be easily proven that v ≡ 0 on [0, R

p−N
p−1 ],

which contradicts the fact that v is a nontrivial solution to Problem (5).
Since f is an odd function, we may assume that, for some δ > 0, v(t) > 0 for t ∈ (0, δ). We prove

v′(0) ∈ (0, ∞] in order to complete the proof. Since v is a solution to Problem (5), by (F0), v′ is
a monotonic function in (0, δ1) for some δ1 ∈ (0, δ). Then, lim

t→0+
v′(t) ∈ [0, ∞]. Assume, on the

contrary, that v′(0) = 0. By L’Hôpital’s rule, v′(0) = lim
t→0+

v(t)
t

= lim
t→0+

v′(t), and thus, v ∈ C1[0, R
p−N
p−1 ]
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satisfying v′(0) = 0. Define w : [0, R
p−N
p−1 ] → R by w(0) = 0 and w(t) = v(t)

t for t ∈ (0, R
p−N
p−1 ].

Then w ∈ C[0, R
p−N
p−1 ], since v′(0) = 0. For t ∈ (0, R

p−N
p−1 ],

|w(t)| =

∣∣∣∣1t
∫ t

0
ϕ−1

p

(∫ s

0
h(τ) f (v(τ))dτ

)
ds
∣∣∣∣ ≤ 1

t

∫ t

0
ϕ−1

p

(∫ s

0
h(τ)| f (v(τ))|dτ

)
ds

≤ ϕ−1
p

(∫ t

0
h(τ)| f (v(τ))|dτ

)
.

By (F1), |w(t)|p−1 ≤ C0
∫ t

0 h(τ)|v(τ)|p−1dτ = C0
∫ t

0 τp−1h(τ)|w(τ)|p−1dτ for t ∈ (0, R
p−N
p−1 ].

By Grönwall’s inequality, |w(t)|p−1 = 0 on [0, R
p−N
p−1 ], and consequently, v ≡ 0 on [0, R

p−N
p−1 ], which

contradicts the fact that v is a nontrivial solution to problem (5). Thus, the proof is complete.

Theorem 2. Assume that (F0),(F1), (F2)′, (F3), and (F4) hold. Then, there exists R∗ > 0 such that for any
R > R∗, Problem (5) (or equivalently (1)) has no nontrivial solutions.

Proof. Let v be a nontrivial solution to Problem (5). Then, v ∈ C[0, R
p−N
p−1 ] ∩ C1(0, R

p−N
p−1 ]. By Lemma 1,

we may assume that v′(0) ∈ (0, ∞] and v(t) > 0 for t ∈ (0, δ), since f is an odd function. Then, there

exists M2 ∈ (0, R
p−N
p−1 ) such that v′(t) > 0 for (0, M2) and v′(M2) = 0. Thus, v ∈ C2(0, M2). Set:

E2[v](t) =
p− 1

p
|v′(t)|p

h(t)
+ F(v(t)), t ∈ (0, R

p−N
p−1 ].

From the facts
dr
dt

=
p− 1
p− N

r
t
< 0 and

dh
dt

=

(
p− 1
N − p

)p d
dr

[
rp∗K(r)

] dr
dt

, it follows that (F2)′

holds if and only if h′ ≤ 0 on R+. Since v ∈ C2(0, M2), by (F2)′,

d
dt

E2[v](t) = −
p− 1

p
|v′(t)|ph′(t)

[h(t)]2
≥ 0 for t ∈ (0, M2),

and thus, E2[v] is nondecreasing in (0, M2). By an argument similar to those in the proof of Theorem 1,
the proof is complete.

3. Existence of Positive Solutions to Problem (1)

Let R ∈ R+ be given. Using transformation w(t) = u(r) with t = (R−1r)
p−N
p−1 , (1) can be rewritten

equivalently as follows: {
(ϕp(w′))′ + hR(t) f (w) = 0, t ∈ (0, 1),

w(0) = w(1) = 0,
(8)

where hR(t) =
(

p− 1
N − p

)p
Rpt

p(N−1)
p−N K(Rt

p−1
p−N ) ∈ C((0, 1],R+).

For convenience, we denote (F0) with α = 0 and β = ∞ by (F0)′, i.e.,

(F0)′ f (u) > 0 for u ∈ (0, ∞).

Throughout this section, we assume (F0)′ and (F5) hold, unless otherwise stated.

Remark 3. Assume that (F5) holds and that R ∈ (0, R0). Then, (F5) implies that:

C2Rp−q2 k1(t) ≤ hR(t) ≤ C1Rp−q1 k2(t) for t ∈ (0, 1], (9)

where ki(t) =
(

p− 1
N − p

)p
t

p(N−1)−qi(p−1)
p−N for i = 1, 2. Since p < q2 ≤ q1,
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p(N − 1)− q1(p− 1)
p− N

≥ p(N − 1)− q2(p− 1)
p− N

> −p,

so that hR ∈ C ( A∩ B ∩D.

Denote X = (C0[0, 1], ‖ · ‖∞), where C0[0, 1] = {w ∈ C[0, 1] : w(0) = w(1) = 0} and ‖w‖∞ =

maxt∈[0,1] |w(t)| for w ∈ C0[0, 1]. Then, X is a Banach space, and K = {w ∈ X : w is a nonnegative
and concave function} is a positive cone in X. For r > 0, we define Kr = {w ∈ K : ‖w‖∞ < r},
∂Kr = {w ∈ K : ‖w‖∞ = r}, and Kr = Kr ∪ ∂Kr. For w ∈ K, it is well known that, for any
δ ∈ (0, 1/2), w(t) ≥ δ‖w‖∞ for all t ∈ [δ, 1− δ] by the concavity of w on [0, 1] (see, e.g., [26] (Lemma 1)).

The following well-known result on the fixed point index is crucial in this section:

Lemma 2 ([27,28]). Assume that, for some r > 0, T : Kr → K is completely continuous, i.e., compact and
continuous on Kr. Then, the following results hold:

(i) if ‖Tx‖∞ > ‖x‖∞ for x ∈ ∂Kr, then i(T,Kr,K) = 0;
(ii) if ‖Tx‖∞ < ‖x‖∞ for x ∈ ∂Kr, then i(T,Kr,K) = 1.

Let R ∈ R+ be given. Define TR : K → K by, for w ∈ K,

TR(w)(t) =


∫ t

0 ϕ−1
p

(∫ AR,w
s hR(τ) f (w(τ))dτ

)
ds, 0 ≤ t ≤ AR,w,∫ 1

t ϕ−1
p

(∫ s
AR,w

hR(τ) f (w(τ))dτ
)

ds, AR,w ≤ t ≤ 1,

where AR,w is a constant satisfying:

∫ AR,w

0
ϕ−1

p

(∫ AR,w

s
hR(τ) f (w(τ))dτ

)
ds =

∫ 1

AR,w

ϕ−1
p

(∫ s

AR,w

hR(τ) f (w(τ))dτ

)
ds.

Since hR ∈ B, it is well known that TR is well defined, TR(K) ⊆ K, and TR is completely
continuous on K (see, e.g., [4] (Lemma 3)). Clearly, TR(AR,w) = ‖TR(w)‖∞ for all R ∈ R+ and all
w ∈ K. It can be easily seen that (8) has a positive solution w if and only if TR has a fixed point w
in K \ {0}.

Let f (m) = min{ f (y) : 1
4 m ≤ y ≤ m} and f (m) = max{ f (y) : 0 ≤ y ≤ m} for m ∈ R+. Define

continuous functions R1, R2 : R+ → R+ by:

R1(m) =
mp−1

f (m)Ap−1
1

and R2(m) =
mp−1

f (m)Ap−1
2

for m ∈ R+.

Here:

A1 = min

{∫ 1
2

1
4

ϕ−1
p

(∫ 1
2

s
k1(τ)dτ

)
ds,
∫ 3

4

1
2

ϕ−1
p

(∫ s

1
2

k1(τ)dτ

)
ds

}
and:

A2 = max

{∫ 1
2

0
ϕ−1

p

(∫ 1
2

s
k2(τ)dτ

)
ds,
∫ 1

1
2

ϕ−1
p

(∫ s

1
2

k2(τ)dτ

)
ds

}
.

Remark 4. It is easily verified that ( f )c = 0 if fc = 0, and ( f )c = ∞ if fc = ∞. Here, fc := lim
s→+c

f (s)
sp−1

for c ∈ {0, ∞}. Consequently, lim
m→+c

R2(m) = ∞ if fc = 0, and lim
m→+c

R1(m) = 0 if fc = ∞. Since

R1(m) > R2(m) > 0 for all m ∈ R+, for i = 1, 2, lim
m→+c

Ri(m) = ∞ if fc = 0, and lim
m→+c

Ri(m) = 0 if

fc = ∞ for c ∈ {0, ∞}.

Lemma 3. Assume that (F0)′ and (F5) hold. Let m ∈ R+ be fixed. Then, for any R ∈ (0, R0) satisfying
C2Rp−q2 > R1(m),

i(TR,Km,K) = 0. (10)
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Proof. Let R ∈ (0, R0) satisfying C2Rp−q2 > R1(m) be fixed, and let w ∈ ∂Km. Then, 1
4 m ≤ w(t) ≤ m

for t ∈ [ 1
4 , 3

4 ], and:

f (w(t)) ≥ f (m) =
mp−1

R1(m)Ap−1
1

for t ∈ [
1
4

,
3
4
]. (11)

We have two cases: either (i)AR,w ∈ [ 1
2 , 1) or (ii) AR,w ∈ (0, 1

2 ). We only consider the case (i),
since the case (ii) can be dealt with in a similar manner. Since C2Rp−q2 > R1(m), from (9) and (11),
it follows that:

‖TR(w)‖∞ = TR(w)(AR,w) =
∫ AR,w

0
ϕ−1

p

(∫ AR,w

s
hR(τ) f (w(τ))dτ

)
ds

≥
∫ 1

2

1
4

ϕ−1
p

(∫ 1
2

s
C2Rp−q2 k1(τ)

mp−1

R1(m)Ap−1
1

dτ

)
ds

>
m
A1

∫ 1
2

1
4

ϕ−1
p

(∫ 1
2

s
k1(τ)dτ

)
ds ≥ m = ‖w‖∞.

By Lemma 2, (10) holds for any R ∈ (0, R0) satisfying C2Rp−q2 > R1(m). Thus, the proof is
complete.

Lemma 4. Assume that (F0)′ and (F5) hold. Let m ∈ R+ be fixed. Then, for any R ∈ (0, R0) satisfying
C1Rp−q1 < R2(m),

i(TR,Km,K) = 1. (12)

Proof. Let R ∈ (0, R0) satisfying C1Rp−q1 < R2(m) be fixed, and let w ∈ ∂Km. Then:

f (w(t)) ≤ f (m) =
mp−1

R2(m)Ap−1
2

for t ∈ [0, 1]. (13)

We only consider AR,w ∈ (0, 1
2 ), since the case AR,w ∈ [ 1

2 , 1) can be dealt with in a similar manner.
Since C1Rp−q1 < R2(m), from (9) and (13), it follows that:

‖TR(w)‖∞ = TR(u)(AR,w) =
∫ AR,u

0
ϕ−1

p

(∫ AR,u

s
hR(τ) f (w(τ))dτ

)
ds

≤
∫ 1

2

0
ϕ−1

p

(∫ 1
2

s
C1Rp−q1 k2(τ)

mp−1

R2(m)Ap−1
2

dτ

)
ds

<
m
A2

∫ 1
2

0
ϕ−1

p

(∫ 1
2

s
k2(τ)dτ

)
ds ≤ m = ‖w‖∞.

By Lemma 2, (12) holds for any R ∈ (0, R0) satisfying C1Rp−q1 < R2(m), and thus, the proof is
complete.

By Lemmas 3 and 4, the result that (8) (or equivalently (1)) has arbitrarily many positive solutions
can be obtained. For example, we have the following Theorems 3–8. Since the proofs are similar,
we only give the proof of Theorem 6 in detail.

Theorem 3. Assume that (F0)′ and (F5) and that there exist R ∈ (0, R0), m1, and m2 such that 0 < m1 < m2

(resp., 0 < m2 < m1), C2Rp−q2 > R1(m1) and C1Rp−q1 < R2(m2). Then, (8) has a positive solution w
satisfying m1 < ‖w‖∞ < m2 (resp., m2 < ‖w‖∞ < m1).

Theorem 4. Assume that (F0)′ and (F5) and that there exist R ∈ (0, R0), m1, m2 and M1 (resp., M2) such
that 0 < m1 < m2 < M1 (resp., 0 < m2 < m1 < M2), C2Rp−q2 > R1(m1), C1Rp−q1 < R2(m2), and
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C2Rp−q2 > R1(M1) (resp., C1Rp−q1 < R2(M2)). Then, (8) has two positive solutions w1, w2 satisfying
m1 < ‖w1‖∞ < m2 < ‖w2‖∞ < M1 (resp., m2 < ‖w1‖∞ < m1 < ‖w2‖∞ < M2).

Theorem 5. Assume that (F0)′ and (F5) hold and that there exist R ∈ (0, R0), m1, m2, M1 and M2 such that
0 < m2 < m1 < M2 < M1 (resp., 0 < m1 < m2 < M1 < M2), C2Rp−q2 > R1(m1), C2Rp−q2 > R1(M1),
C1Rp−q1 < R2(M2), and C1Rp−q1 < R2(m2). Then, (8) has three positive solutions w1, w2, w3 satisfying
m2 < ‖w1‖∞ < m1 < ‖w2‖∞ < M2 < ‖w3‖∞ < M1 (resp., m1 < ‖w1‖∞ < m2 < ‖w2‖∞ < M1 <

‖w3‖∞ < M2).

Theorem 6. Assume that (F0)′ and (F5) hold and that f0 = f∞ = 0. Then, there exists R∗ > 0 such that for
any R ∈ (0, R∗), (8) has two positive solutions.

Proof. From f0 = f∞ = 0, it follows that lim
m→0+

R1(m) = lim
m→∞

R1(m) = ∞. Then, there exists m∗1 ∈ R+

satisfying R1(m∗1) = min{R1(m) : m ∈ R+} ∈ R+. Set R∗ = min{R0, ( R1(m∗1)
C2

)
1

p−q2 }. For any R ∈
(0, R∗), there exist m1 = m1(R) and M1 = M1(R) such that 0 < m1 < m∗1 < M1 and C2Rp−q2 >

R1(m1) = R1(M1). By Lemma 3,

for any R ∈ (0, R∗), i(TR,Km,K) = 0 for m ∈ {m1, M1}. (14)

On the other hand, since f0 = f∞ = 0, lim
m→0+

R2(m) = lim
m→∞

R2(m) = ∞. For any R ∈ (0, R∗), there

exist m′1 ∈ (0, m1) and M′1 ∈ (M1, ∞) such that C1Rp−q1 < R2(m′1) = R2(M′1). By Lemma 4,

for any R ∈ (0, R∗), i(TR,Km,K) = 1 for m ∈ {m′1, M′1} (15)

Then, by (14) and (15) and the additivity property of the fixed point index, for any R ∈ (0, R∗),

i(TR,Km1 \ Km′1
,K) = −1 and i(TR,KM′1

\ KM1 ,K) = 1.

In view of the solution property of the fixed point index, for any R ∈ (0, R∗), there exist u1 ∈
Km1 \ Km′1

and u2 ∈ KM′1
\ KM1 such that TR(ui) = ui for i = 1, 2. Thus, (8) has two positive solutions

for any R ∈ (0, R∗).

Note that if either (i) f0 = 0 and f∞ ∈ R+ or (ii) f0 ∈ R+ and f∞ = 0, then there exists ε > 0
satisfying R1(m) > ε for all m ∈ R+. By an argument similar to those in the proof of Theorem 6,
we have the following theorem:

Theorem 7. Assume that (F0)′ and (F5) hold and that either (i) f0 = 0 and f∞ ∈ R+ or (ii) f0 ∈ R+ and
f∞ = 0. Then, there exists R∗ > 0 such that (8) has a positive solution for any R ∈ (0, R∗).

If f0 = 0 and f∞ = ∞ (resp., f0 = ∞ and f∞ = 0), by Remark 4, lim
m→+0

R2(m) = ∞ and

lim
m→+∞

R1(m) = 0 (resp., lim
m→+0

R1(m) = 0 and lim
m→+∞

R2(m) = ∞). Then, for any R ∈ R+, there exist

m1, m2 satisfying 0 < m2 < m1 (resp., 0 < m1 < m2), R2(m2) > C1Rp−q1 , and R1(m1) < C2Rp−q2 .
In view of Theorem 3, we have the following theorem:

Theorem 8. Assume that (F0)′ and (F5) hold and that either (i) f0 = 0 and f∞ = ∞ or (ii) f0 = ∞ and
f∞ = 0. Then, (8) has a positive solution for all R ∈ R+.

In the results so far, we assumed that f is positive for all u > 0, since it always satisfies (F0)′. If
we assume that f has a positive falling zero instead of (F0)′, i.e., f satisfies the following:

(F0)′′ there exists β ∈ R+ such that f (u) > 0 for u ∈ (0, β) and f (u) < 0 for u ∈ (β, ∞),
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then lim
m→β−

R2(m) = ∞, so that we can obtain results similar to Theorems 3–8 above as follows:

Theorem 9. Assume that (F0)′′ and (F5) and that there exist R ∈ (0, R0) and m1 such that 0 < m1 < β and
C2Rp−q2 > R1(m1). Then, (8) has a positive solution w satisfying m1 < ‖w‖∞ < β.

Theorem 10. Assume that (F0)′′ and (F5) and that there exist R ∈ (0, R0), m1 and m2 such that 0 < m2 <

m1 < β, C2Rp−q2 > R1(m1) and C1Rp−q1 < R2(m2). Then, (8) has two positive solutions w1, w2 satisfying
m2 < ‖w1‖∞ < m1 < ‖w2‖∞ < β.

Theorem 11. Assume that (F0)′′ and (F5) hold and that there exist R ∈ (0, R0), m1, m2 and M1 such that
0 < m1 < m2 < M1 < β, C2Rp−q2 > R1(m1), C2Rp−q2 > R1(M1), and C1Rp−q1 < R2(m2). Then, (8) has
three positive solutions w1, w2, w3 satisfying m1 < ‖w1‖∞ < m2 < ‖w2‖∞ < M1 < ‖w3‖∞ < β.

Theorem 12. Assume that (F0)′′ and (F5) hold and that f0 = 0. Then, there exists R∗ > 0 such that for any
R ∈ (0, R∗), (8) has two positive solutions.

Theorem 13. Assume that (F0)′′ and (F5) hold and that f0 ∈ R+. Then, there exists R∗ > 0 such that (8)
has a positive solution for any R ∈ (0, R∗).

Theorem 14. Assume that (F0)′′ and (F5) hold and that f0 = ∞. Then, (8) has a positive solution for all
R ∈ R+.

Finally, the examples to illustrate the results obtained in this paper are given.

Example 1.

(1) Let f (s) =

{
sα1 , for s ∈ [0, 1),
sα2 , for s ∈ [1, ∞),

and let K(r) = r−q for r ∈ R+, where p ∈ (1, N), q > p, and

0 < α2 < p− 1 < α1. Then, (F0)′, (F2) (or (F2)′), (F5), and f0 = f∞ = 0 are satisfied. By Theorem
1 (or Theorem 2) and Theorem 6, there exist positive constants R∗ and R∗ such that (1) has two positive
solutions for R ∈ (0, R∗), and it has no nontrivial solutions for R > R∗.

(2) Let K(r) = r−3 for r ∈ R+, and let p = N − 1 = 2. Then, in the assumption (F5) and in (9),
q1 = q2 = 3, C1 = C2 = 1, R0 = ∞, and k1(t) = k2(t) = t−1 ∈ C \ L1(0, 1). By direct calculation,
A1 = 1

4 (1− ln 2) and A2 = 1
2 . Let:

f (s) =


s2, for s ∈ [0, 24 A2

1),
26 A3

1s
1
2 , for s ∈ [24 A2

1, 28),
2−6 A3

1s2, for s ∈ [28, ∞).

Then, f0 = 0 and f∞ = ∞. Thus, by Remark 4, lim
m→+0

Ri(m) = ∞ and lim
m→+∞

Ri(m) = 0 for i = 1, 2.

Moreover, since f (m) = f (m) and f (m) = f (m/4), R2(m) (resp., R1(m)) is decreasing in (0, 24 A2
1) (resp.,

(0, 26 A2
1)), increasing in (24 A2

1, 28) (resp., (26 A2
1, 210)), and decreasing in (28, ∞) (resp., (210, ∞)). Since

R1(26 A2
1) = (4A3

1)
−1 < (2A3

1)
−1 = R2(28), for each R ∈ (2A3

1, 4A3
1), there exist m2 < 24 A2

1 < m1 <

26 A2
1 < M2 < 28 < M1 satisfying R−1 < R2(m2), R−1 > R1(m1), R−1 < R2(M2) and R−1 > R1(M1).

Consequently, by Theorem 5 and Theorem 8, Problem (1) has three positive solutions for R ∈ (2A3
1, 4A3

1), and it
has a positive solution for all R ∈ R+.
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