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Abstract: This paper analyzes the counterintuitive behaviors of adopted twelve distance-based
similarity measures between intuitionistic fuzzy sets. Among these distance-based similarity
measures, the largest number of components of the distance in the similarity measure is four.
We propose six general counterintuitive test problems to analyze their counterintuitive behaviors.
The results indicate that all the distance-based similarity measures have some counterintuitive test
problems. Furthermore, for the largest number of components of the distance-based similarity
measure, four types of counterintuitive examples exist. Therefore, the counterintuitive behaviors are
inevitable for the distance-based similarity measures between intuitionistic fuzzy sets.
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1. Introduction

Fuzzy sets (FSs) theory, proposed by Zadeh [1], has successfully been applied in various fields.
As a generalization of FSs, intuitionistic fuzzy sets (IFSs) proposed by Atanassov [2] is characterized
by a membership function and a non-membership function. IFSs have been widely applied in cluster
analysis [3–5], decision-making [6–11], medical diagnosis [12,13] and pattern recognition [14–19].

A similarity measure between two IFSs represents the alignment of the two sets. There are a large
number of papers discussing various similarity measures between two IFSs [20–30]. A comprehensive and
accurate survey of state-of-the-art research on IFSs and similarity measures are given by Atanassov [31]
and Pedrycz and Chen [9]. The degree of similarity measure is an important tool for cluster analysis [3],
decision-making [6,9,11], medical diagnosis [13] and pattern recognition [14–19,22]. One of the typical
definitions of a similarity measure is the one-minus distance between two vectors [17,21–30]. The first
distances over intuitionistic fuzzy sets are introduced by Atanassov [32]. Szmidt and Kacprzyk [33]
adopted the normalized Hamming distance and the normalized Euclidean distance to present the similarity
measures for IFSs. Furthermore, Szmidt and Kacprzyk [33] used hesitancy along with the membership
and non-membership values of the elements in the sets being compared. The components of Chen’s [21]
similarity measure and Dengfeng and Chuntian’s [23] similarity measure are concerned with the difference
between degrees of support. The components of the Hong and Kim’s [26] similarity measure, Mitchell’s [17]
similarity measure, the first Liang and Shi’s [30] similarity measure, Hung and Yang’s [27] three similarity
measures and Li, Zhongxian and Degin’s [29] similarity measure are the combination of the difference
between membership degrees and the difference between non-membership degrees. The components of
the Li and Xu’s [24] similarity measure are the combination of the difference between membership degrees,
the difference between non-membership degrees and the difference between degrees of support. The second
Liang and Shi’s [30] similarity measure is concerned with the combination of the difference between the
first quartiles of intervals of membership degree and the difference between the third quartiles of intervals
of membership degree. The third Liang and Shi’s [31] similarity measure considers the combination of the
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difference between membership degrees, the difference between non-membership degrees, the difference
between degrees of support and the difference between hesitant degrees. Therefore, the components
of the distance can be the combination of the difference between membership degrees, the difference
between non-membership degrees, the difference between hesitant degrees, the difference between degrees
of support, the difference between the first quartiles of intervals of the membership degree and the
difference between the third quartiles of intervals of the membership degree. Then we apply Minkowski
distance to calculate the similarity degree between two IFSs. This paper focuses on these distance-based
similarity measures.

In the literature, many varied approaches for the similarity measures between two IFSs are
inconsistent with our intuition [14–30]. Two typical counterintuitive examples are (1) quite distinct IFSs
having high similarity to each other and (2) two very distinct IFSs appearing to have equal similarity
to a third IFS. However, these two typical counterintuitive ones are simple examples in the literature.
This paper proposes six general counterintuitive test problems to analyze the counterintuitive behaviors
of the distance-based similarity measures. As Li et al. [28] indicates, third Liang and Shi’s [30] similarity
measure has “ . . . no counterintuitive cases”. We further present four types of counterintuitive test
problems for the third Liang and Shi’s [30] similarity measure.

The main contribution of this paper is to propose six general counterintuitive test problems. To the best
of our knowledge, the general test problems have not been yet presented to analyze the counterintuitive
behaviors of the distance-based similarity measures. Moreover, the proposed general counterintuitive test
problems can be used to analyze the counterintuitive behaviors of any similarity measures.

The organization of this paper is as follows. Section 2 briefly reviews the FSs and IFSs and
presents the distance-based similarity measures. Section 3 presents six general counterintuitive test
problems and analyzes the counterintuitive behaviors of distance-based similarity measures. Section 4
further presents the counterintuitive behaviors of the third Liang and Shi’s [31] similarity measure.
Finally, some concluding remarks and future research are presented.

2. IFSs and Similarity Measures

We firstly review the basic notations of FSs and IFSs. Let X = {x1, x2, . . . , xn} be a non-empty
universal set of real numbers R.

Definition 1. An FS A over X is defined by a membership function

µA : X→ [0, 1] for 1 ≤ i ≤ n.

Then the fuzzy set A over X is the set

A =
{
(xi, µA(xi))

∣∣∣1 ≤ i ≤ n
}
. (1)

We denote the set of all FSs over X by FS(X).

Definition 2. An IFS A over X is defined as

A =
{
(xi, µA(xi), vA(xi))

∣∣∣1 ≤ i ≤ n
}
, (2)

where the membership function µA : X→ [0, 1] and non-membership function vA : X→ [0, 1] of the xi to the
set A satisfy

µA(xi) + vA(xi) ≤ 1.

The set of all IFSs over X is denoted by IFS(X). The degree of hesitancy associated with each xi is defined as

πA(xi) = 1− µA(xi) − vA(xi) (3)
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measuring the lack of information or certitude.
We now briefly review some operations involving IFSs.

Definition 3. Let A =
{
(xi, µA(xi), vA(xi))

∣∣∣1 ≤ i ≤ n
}

and B =
{
(xi, µB(xi), vB(xi))

∣∣∣1 ≤ i ≤ n
}

be two
IFSs. Then,

1. A ⊆ B if and only if µA(xi) ≤ µB(xi) and vA(xi) ≥ vB(xi) for 1 ≤ i ≤ n.
2. A = B if and only if µA(xi) = µB(xi) and vA(xi) = vB(xi) for 1 ≤ i ≤ n.
3. The complement of A is defined as Ac =

{
(xi, vA(xi), µA(xi))

∣∣∣1 ≤ i ≤ n
}
.

4. We denote the pure intuitionistic fuzzy set by PI =
{
(xi, 0, 0)

∣∣∣1 ≤ i ≤ n
}
.

For the fuzzy set A ∈ FS(X), πA(xi) = 0 for every xi ∈ X, and for the pure intuitionistic fuzzy set,
πPI(xi) = 1 for every xi ∈ X.

We now recall the definition of similarity measures between two IFSs.

Definition 4. A similarity measure S : IFS(X)2
→ [0, 1] should satisfy the following properties:

1. S(A, B) ∈ [0, 1].
2. S(A, B) = 1 if and only if A = B.
3. S(A, B) = S(B, A).
4. If A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B) and S(A, C) ≤ S(B, C).

So far, in the literature, many papers have been dedicated to problems connected with the
similarity measures between two IFSs and research on this area is still carried on. Let A ={
(xi, µA(xi), vA(xi))

∣∣∣1 ≤ i ≤ n
}

and B =
{
(xi, µB(xi), vB(xi))

∣∣∣1 ≤ i ≤ n
}

be two IFSs. The existing
distance-based similarity measures S(A, B) between two IFSs A and B are defined as follows:

Chen [21]:

SC(A, B) = 1−
1

2n

n∑
i=1

∣∣∣µA(xi) − vA(xi) − (µB(xi) − vB(xi))
∣∣∣

Hong and Kim [26]:

SHK(A, B) = 1−
1

2n

n∑
i=1

∣∣∣µA(xi) − µB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣
Li and Xu [24]:

SLX(A, B) = 1− 1
4n

n∑
i=1
{

∣∣∣µA(xi) − µB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣
+

∣∣∣µA(xi) − vA(xi) − (µB(xi) − vB(xi))
∣∣∣}

Dengfeng and Chuntian [23]:

SDC(A, B) = 1− p

√√
1

2n

n∑
i=1

∣∣∣µA(xi) − vA(xi) − (µB(xi) − vB(xi))
∣∣∣p

Mitchell [17]:

SM(A, B) = 1−
1
2

 p

√√
1
n

n∑
i=1

∣∣∣µA(xi) − µB(xi)
∣∣∣p + p

√√
1
n

n∑
i=1

∣∣∣vA(xi) − vB(xi)
∣∣∣p
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Liang and Shi [30]:

SLS1(A, B) = 1−
1
2

p

√
1
n

∑n

i=1
(
∣∣∣µA(xi) − µB(xi)

∣∣∣+ ∣∣∣vA(xi) − vB(xi)
∣∣∣)p

SLS2(A, B) = 1− 1
8 (

1
n
∑n

i=1(
∣∣∣3(µA(xi) − µB(xi)) − (vA(xi) − vB(xi))

∣∣∣+∣∣∣(µA(xi)−

µB(xi)) − 3(vA(xi) − vB(xi))
∣∣∣) p

)
1/p

SLS3(A, B) = 1− 1
2 (

1
3n

∑n
i=1 (

∣∣∣µA(xi) − µB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣+ ∣∣∣µA(xi) − vA(xi)−

(µB(xi) − vB(xi))
∣∣∣+ ∣∣∣µA(xi) + vA(xi) − (µB(xi) + vB(xi))

∣∣∣)p
)

1/p

Hung and Yang [27]:

SHY1(A, B) = 1−
1
n

n∑
i=1

max{
∣∣∣µA(xi) − µB(xi)

∣∣∣, ∣∣∣vA(xi) − vB(xi)
∣∣∣}

SHY2(A, B) =
e−

1
n
∑n

i=1 max{|µA(xi)−µB(xi)|,|vA(xi)−vB(xi)|} − e−1

1− e−1

SHY3(A, B) =
1− 1

n
∑n

i=1 max
{∣∣∣µA(xi) − µB(xi)

∣∣∣, ∣∣∣vA(xi) − vB(xi)
∣∣∣}

1 + 1
n
∑n

i=1 max
{∣∣∣µA(xi) − µB(xi)

∣∣∣, ∣∣∣vA(xi) − vB(xi)
∣∣∣}

Li, Zhongxian and Degin [29]:

SLZD(A, B) = 1−

√
1

2n

∑n

i=1
(µA(xi) − µB(xi))

2 + (vA(xi) − vB(xi))
2.

Therefore, we adopt twelve distance-based similarity measures. When p = 1, we have

SDC(A, B) = SC(A, B)

SM(A, B) = 1−
1

2n

n∑
i=1

∣∣∣µA(xi) − µB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣ = SHK(A, B)

and

SLS1(A, B) = 1−
1

2n

n∑
i=1

∣∣∣µA(xi) − µB(xi)
∣∣∣+ ∣∣∣vA(xi) − vB(xi)

∣∣∣ = SHK(A, B).

Among these distance-based similarity measures, four types of components of distance are
distinguished: (I) the combination of difference between membership degrees and difference between
non-membership degrees; (II) the difference between hesitant degrees; (III) the difference between
degrees of support and (IV) the combination of difference between the first quartiles of intervals of
membership degree and the difference between the third quartiles of intervals of membership degree.
Detailed results are presented in Table 1. The similarity measures SHK(A, B), SM(A, B), SLS1(A, B),
SHY1(A, B), SHY2(A, B), SHY3(A, B) and SLZD(A, B) are dependent on type I. The similarity measures
SC(A, B) and SDC(A, B) are concerned with type III. SLX(A, B) is dependent on the combination of
types I and III. SLS2(A, B) is concerned with type IV. SLS3(A, B) is concerned with the combination of
types I, II and III. The largest number of components of the distance in the similarity measure is four
for the similarity measure SLS3(A, B). Therefore, we anticipate that the intuitive behavior of SLS3(A, B)
is superior to those of other similarity measures.
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Table 1. The four types of components of distance-based similarity measures.

Similarity I II III IV

SC(A, B)
√

SHK(A, B)
√

SLX(A, B)
√ √

SDC(A, B)
√

SM(A, B)
√

SLS1(A, B)
√

SLS2(A, B)
√

SLS3(A, B)
√ √ √

SHY1(A, B)
√

SHY2(A, B)
√

SHY3(A, B)
√

SLZD(A, B)
√

3. General Counterintuitive Test Problems

Much literature has been written on the counterintuitive examples for the similarity measures
between two IFSs. Two typical counterintuitive examples are (I) S(A, B) = 1 for A , B, A, B ∈ IFS(X)

and (II) S(P1, Q) = S(P2, Q) for P1 , P2, P1, P2, Q ∈ IFS(X). This paper proposes six general
counterintuitive test problems presented in Table 2. From Definition 4, a similarity measure which fails
type I is not a similarity measure.

Table 2. The six general counterintuitive test problems.

# Test Problem

T1 A(a, a), B(b, b), a , b, 0 ≤ a, b ≤ 1/2 satisfying S(A, B) = 1.
T2 A(a, a), B(b, b), C(a, b), D(b, a), a , b, 0 ≤ a, b ≤ 1/2 satisfying S(A, B) = S(C, D).
T3 P1(a, b), P2(

a+b
2 , a+b

2 ), Q(b, b), a , b, 0 ≤ a, b, a + b ≤ 1, b ≤ 1/2 satisfying S(P1, Q) = S(P2, Q).
T4 P1(1, 0), P2(a, 1− a), Q(0, 0), 0 ≤ a ≤ 1 satisfying S(P1, Q) = S(P2, Q).

T5 P1(b, b− α), P2(b, a− α), Q(a, a− α), a , b, α ≤ a, b, a + b− α ≤ 1, 2a− α ≤ 1, 2b− α ≤ 1
satisfying S(P1, Q) = S(P2, Q).

T6 P1
{
(a + α, b), (a, b + α)

}
, P2

{
(a + α, b + α), (a + α, b + α)

}
, Q

{
(a, b), (a + α, b)

}
, a , b, 0 ≤

a, b, α, a + b + 2α ≤ 1 satisfying S(P1, Q) = S(P2, Q).

Test problem T1 is a type I counterintuitive one. So, a similarity measure which fails test
problem T1 is not a similarity measure. Test problem T2 is to distinguish the positive difference and
negative difference. Test problems T3, T4, T5 and T6 can be considered pattern recognition problems.
Consider two known patterns P1 and P2. We want to classify an unknown pattern represented by Q
into one of the patterns P1 and P2. For test problem T3, the membership degree and non-membership
degree of P2 is the average of those of P1 and Q. For S(P1, Q) = S(P2, Q), it implies that T3 is a
counterintuitive test problem. For test problem T4 with S(P1, Q) = S(P2, Q), a crisp set P1 is as similar
to PI Q as any FS P2. So T4 is a counterintuitive test problem. For test problem T5, although∣∣∣µP1 − µQ

∣∣∣ , ∣∣∣µP2 − µQ
∣∣∣ or

∣∣∣vP1 − vQ
∣∣∣ ,∣∣∣vP2 − vQ

and ∣∣∣µP1 − µQ
∣∣∣+ ∣∣∣vP1 − vQ

∣∣∣ , ∣∣∣µP2 − µQ
∣∣∣+ ∣∣∣vP2 − vQ

∣∣∣,
but∣∣∣µP1 − µQ

∣∣∣+ ∣∣∣vP1 − vQ
∣∣∣+ ∣∣∣µP1 − vP1 − (µQ − vQ)

∣∣∣ = ∣∣∣µP2 − µQ
∣∣∣+ ∣∣∣vP2 − vQ|+|µP2 − vP2 − (µQ − vQ)

∣∣∣, (4)
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then S(P1, Q) = S(P2, Q). It follows that T5 is a counterintuitive test problem. For test problem T6, if

2∑
i=1

(
∣∣∣µP1(xi) − µQ(xi)

∣∣∣+ ∣∣∣vP1(xi) − vQ(xi)
∣∣∣+ ∣∣∣µP1(xi) − vP1(xi) − (µQ(xi) − vQ(xi))

∣∣∣
+

∣∣∣µP1(xi) + vP1(xi) − (µQ(xi) + vQ(xi))
∣∣∣)

=
2∑

i=1
(
∣∣∣µP2(xi) − µQ(xi)

∣∣∣+ ∣∣∣vP2(xi) − vQ(xi)
∣∣∣+ |µP2(xi) − vP2(xi)

−(µQ(xi) − vQ(xi))|+|µP2(xi) + vP2(xi) − (µQ(xi) + vQ(xi))
∣∣∣)

(5)

then S(P1, Q) = S(P2, Q). So T6 is a counterintuitive test problem.
For each distance-based similarity measure, we analyze the counterintuitive behaviors of the six

general counterintuitive test problems as follows.
For similarity measure SC(A, B), since SC(A, B) = 1 for test problem T1, it implies that T1 is the

counterintuitive test problem for the similarity measure SC(A, B).
For similarity measure SHK(A, B), we have

SHK(A, B) = SHK(C, D) = 1− |a− b| (6)

SHK(P1, Q) = SHK(P2, Q) = 1−
|a− b|

2
(7)

and
SHK(P1, Q) = SHK(P2, Q) = 0.5 (8)

for test problems T2, T3 and T4, respectively. So the counterintuitive test problems for the similarity
measure SHK(A, B) are T2, T3 and T4.

The counterintuitive test problem for the similarity measure SLX(A, B) is T5, because

SLX(P1, Q) = SLX(P2, Q) = 1−
|a− b|

2
(9)

A similar argument shows that the counterintuitive test problems for the similarity measures
SDC(A, B) and SM(A, B) are test problem T1 and test problems T2, T3, T4, respectively.
The counterintuitive test problems for the three Liang and Shi’s similarity measures SLS1(A, B),
SLS2(A, B) and SLS3(A, B) are test problems T2, T3, T4, test problem T5, and test problem T6,
respectively. The counterintuitive test problems are T2 and T5 for the three Hung and Yang’s
similarity measures SHY1(A, B), SHY2(A, B) and SHY3(A, B), and T2 for SLZD(A, B). Detailed results
are displayed in Table 3. SC(A, B) and SDC(A, B) are not similarity measures. The smallest number of
counterintuitive test problems is one. These counterintuitive test problems are T2 for SLZD(A, B), T5 for
SLX(A, B), SLS2(A, B), and T6 for SLS3(A, B). Therefore, the counterintuitive test problem is T1 for
SC(A, B) and SDC(A, B), T2 for SHK(A, B), SM(A, B), SLS1(A, B), SHY1(A, B), SHY2(A, B), SHY3(A, B)
and SLZD(A, B), T3 and T4 for SHK(A, B), SM(A, B) and SLS1(A, B), T5 for SLX(A, B), SLS2(A, B),
SHY1(A, B), SHY2(A, B) and SHY3(A, B), and T6 for SLS3(A, B).



Mathematics 2019, 7, 437 7 of 10

Table 3. The counterintuitive test problems of distance-based similarity measures.

Similarity Counterintuitive Test Problems

SC(A, B) T1
SHK(A, B) T2, T3, T4
SLX(A, B) T5
SDC(A, B) T1
SM(A, B) T2, T3, T4

SLS1(A, B) T2, T3, T4
SLS2(A, B) T5
SLS3(A, B) T6
SHY1(A, B) T2, T5
SHY2(A, B) T2, T5
SHY3(A, B) T2, T5
SLZD(A, B) T2

4. Counterintuitive Test Problem for SLS3(A,B)

From the analysis of counterintuitive test problems in the previous section and those of Li et al. [28],
the third Liang and Shi’s similarity measure SLS3(A, B) outperforms other similarity measures.
This section further analyzes the counterintuitive behaviors of the third Liang and Shi’s similarity
measure SLS3(A, B).

Consider the four types of three IFSs A, B and C as follows.
(I) A(a1, a2), B(a1, a2 + α) and C(c1, a2 + α−β) for c1 ≥ a1.
(II) A(a1, a2), B(a1, a2 + α) and C(c1, a2 + α−β) for a1 ≥ c1.
(III) A(a1, a2), B(a1, a2 −α) and C(c1, a2 −α+ β) for c1 ≥ a1.
(IV) A(a1, a2), B(a1, a2 −α) and C(c1, a2 −α+ β) for a1 ≥ c1.
By fixing A(a1, a2) and B(a1, a2 ±α), we will present the explicit form of IFS C(c1, a2 ±α∓β)

satisfying SLS3(A, B) = SLS3(A, C). This implies that
{
A(a1, a2), B(a1, a2 ±α), C(c1, a2 ±α∓β)

}
is a

counterintuitive example for the similarity measure SLS3(A, B).
We now analyze type I. From A(a1, a2), B(a1, a2 + α), C(c1, a2 + α−β), and c1 ≥ a1, it follows that

SLS3(A, B) = 3α (10)

and
SLS3(A, C) = c1 − a1 + |α−β|+

∣∣∣c1 − a1 − (α−β)
∣∣∣+ |c1 − a1 + α−β| (11)

Four cases are considered as follows.
Case I1: α−β ≥ 0, c1 − a1 − (α−β) ≤ 0 and c1 − a1 + α−β ≥ 0.
We get that

SLS3(A, C) = −a1 + c1 + 3α− 3β.

In order to SLS3(A, B) = SLS3(A, C), we have that c1 = a1 + 3β, implying

C(a1 + 3β, a2 + α−β). (12)

The following conditions should be satisfied for A, B, C ∈ IFS(X) and c1 ≥ a1,

a1 − c1 + α−β = α− 4β ≥ 0, a1 + a2 + α ≤ 1, a1 + a2 + α+ 2β ≤ 1, a1, a2,α, β ≥ 0.

Therefore, if α ≥ 4β, a1 + a2 + α + 2β ≤ 1, a1, a2,α, β ≥ 0, then A(a1, a2), B(a1, a2 + α) and
C(a1 + 3β, a2 + α−β) satisfying SLS3(A, B) = SLS3(A, C).

A similar argument shows the other three cases as follows. Detailed results of C(c1, a2 + α−β)

and conditions for c1 ≥ a1 are summarized in Table 4.
Case I2: α−β ≥ 0, c1 − a1 − (α−β) ≥ 0 and c1 − a1 + α−β ≥ 0.
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If β ≤ α ≤ 4β, a1 + a2 +
5α−2β

3 ≤ 1 and a1, a2,α, β ≥ 0, then A(a1, a2), B(a1, a2 + α) and
C(a1 +

2α+β
3 , a2 + α−β) satisfying SLS3(A, B) = SLS3(A, C).

Case I3: α−β ≤ 0, c1 − a1 − (α−β) ≥ 0 and c1 − a1 + α−β ≥ 0.
If 4β/7 ≤ α ≤ β, a1 + a2 + α ≤ 1 and a1, a2,α, β ≥ 0, then A(a1, a2), B(a1, a2 + α) and

C(a1 +
4α−β

3 , a2 + α−β) satisfying SLS3(A, B) = SLS3(A, C).
Case I4: α−β ≤ 0, c1 − a1 − (α−β) ≥ 0 and c1 − a1 + α−β ≤ 0.
If β/2 ≤ α ≤ 4β/7, a1 + a2 + α ≤ 1 and a1, a2,α, β ≥ 0, then A(a1, a2), B(a1, a2 + α) and

C(a1 + 6α− 3β, a2 + α−β) satisfying SLS3(A, B) = SLS3(A, C).

Table 4. A(a1, a2), B(a1, a2 + α) and C satisfying SLS3(A, B) = SLS3(A, C), a1, a2,α, β ≥ 0.

C(c1, a2+α−β) Conditions

I1 C(a1 + 3β, a2 + α− β) c1 ≥ a1, α ≥ 4β, a1 + a2 + α+ 2β ≤ 1
I2 C(a1 +

2α+β
3 , a2 + α− β) c1 ≥ a1, β ≤ α ≤ 4β, a1 + a2 +

5α−2β
3 ≤ 1

I3 C(a1 +
4α−β

3 , a2 + α− β) c1 ≥ a1, 4/7β ≤ α ≤ β, a1 + a2 + α ≤ 1
I4 C(a1 + 6α− 3β, a2 + α− β) c1 ≥ a1, 0.5β ≤ α ≤ 4/7β, a1 + a2 + α ≤ 1
II1 C(a1 − 3β, a2 + α− β) a1 ≥ c1, α ≥ 4β, a1 + a2 + α ≤ 1
II2 C(a1 −

2α+β
3 , a2 + α− β) a1 ≥ c1, β ≤ α ≤ 4β, a1 + a2 + α ≤ 1

II3 C(a1 −
4α−β

3 , a2 + α− β) a1 ≥ c1, 4/7β ≤ α ≤ β, a1 + a2 + α ≤ 1
II4 C(a1 − 6α+ 3β, a2 + α− β) a1 ≥ c1, 0.5β ≤ α ≤ 4/7β, a1 + a2 + α ≤ 1

For type II, from A(a1, a2), B(a1, a2 + α), C(c1, a2 + α−β) and a1 ≥ c1, it follows that
Equation (10) and

SLS3(A, C) = a1 − c1 + |α−β|+ |a1 − c1 + α−β|+ |a1 − c1 −α+ β| (13)

Four cases are considered as follows.
Case II1: α− β ≥ 0, a1 − c1 + α− β ≥ 0 and a1 − c1 − α+ β ≤ 0.
Case II2: α− β ≥ 0, a1 − c1 + α− β ≥ 0 and a1 − c1 − α+ β ≥ 0.
Case II3: α− β ≤ 0, a1 − c1 + α− β ≥ 0 and a1 − c1 − α+ β ≥ 0.
Case II4: α− β ≤ 0, a1 − c1 + α− β ≤ 0 and a1 − c1 − α+ β ≥ 0.
A similar argument presents the explicit form of C(c1, a2 + α− β) and conditions for a1 ≥ c1

shown in Table 4. Given A(a1, a2) and B(a1, a2 + α), from c1 ≥ a1 of type I to a1 ≥ c1 of type II, the form
of C from C(a1 + γi, a2 + α− β) of type I case Ii to C(a1 − γi, a2 + α− β) of type II case IIi, for each case,
where γi is the ith component of

[
3β, 2α+β

3 , 4α−β
3 , 6α− 3β

]
.

By symmetric argument, the form of C(c1, a2 − α+ β) and conditions for types III and IV are
presented in Table 5. From Table 5, given A(a1, a2) and B(a1, a2 − α), from c1 ≥ a1 of type III to a1 ≥ c1

of type IV, the form of C from C(a1 + γi, a2 − α+ β) of type III case IIIi to C(a1 − γi, a2 − α+ β) of type
IV case IVi, for each case, where γi is the ith component of

[
3β, 2α+β

3 , 4α−β
3 , 6α− 3β

]
.

Table 5. A(a1, a2), B(a1, a2 − α) and C satisfying SLS3(A, B) = SLS3(A, C), a1, a2,α, β ≥ 0.

C(c1, a2−α+β) Conditions

III1 C(a1 + 3β, a2 − α+ β) c1 ≥ a1, α ≥ 4β, a1 + a2 − α+ 4β ≤ 1
III2 C(a1 +

2α+β
3 , a2 − α+ β) c1 ≥ a1, β ≤ α ≤ 4β, a1 + a2 +

−α+4β
3 ≤ 1

III3 C(a1 +
4α−β

3 , a2 − α+ β) c1 ≥ a1, 4/7β ≤ α ≤ β, a1 + a2 +
α+2β

3 ≤ 1
III4 C(a1 + 6α− 3β, a2 − α+ β) c1 ≥ a1, 0.5β ≤ α ≤ 4/7β, a1 + a2 + 5α− 2β ≤ 1
IV1 C(a1 − 3β, a2 − α+ β) a1 ≥ c1, α ≥ 4β, a1 + a2 − α ≤ 1
IV2 C(a1 −

2α+β
3 , a2 − α+ β) a1 ≥ c1, β ≤ α ≤ 4β, a1 + a2 − α ≤ 1

IV3 C(a1 −
4α−β

3 , a2 − α+ β) a1 ≥ c1, 4/7β ≤ α ≤ β, a1 + a2 −
7α−4β

3 ≤ 1
IV4 C(a1 − 6α+ 3β, a2 − α+ β) a1 ≥ c1, 0.5β ≤ α ≤ 4/7β, a1 + a2 − 7α+ 4β ≤ 1
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From Tables 4 and 5, we observe that there are 1-1 correspondences between the explicit forms
of C of four types. More precisely, for each case i, C(a1 + γi, a2 + α− β) of type I case Ii corresponds
to C(a1 − γi, a2 + α− β) of type II case IIi, which, in turn, to C(a1 + γi, a2 − α+ β) of type III case
IIIi, which in turn to C(a1 − γi, a2 − α+ β) of type IV case IVi, where γi is the ith component of[
3β, 2α+β

3 , 4α−β
3 , 6α− 3β

]
.

5. Conclusions and Future Research

This paper considers twelve distance-based similarity measures. Among which the largest number
of components of the distance in the similarity measure is four for SLS3(A, B). Therefore, we anticipate
that the intuitive behaviors of SLS3(A, B) is superior to those of other similarity measures.
Much literature has been written on the counterintuitive examples for the similarity measures between
two IFSs. This paper proposes six general counterintuitive test problems T1–T6. The counterintuitive
test problem is T1 for SC(A, B) and SDC(A, B), T2 for SHK(A, B), SM(A, B), SLS1(A, B), SHY1(A, B),
SHY2(A, B), SHY3(A, B) and SLZD(A, B), T3 and T4 for SHK(A, B), SM(A, B) and SLS1(A, B), T5 for
SLX(A, B), SLS2(A, B), SHY1(A, B), SHY2(A, B) and SHY3(A, B), and T6 for SLS3(A, B). For SLS3(A, B),
four types of counterintuitive example

{
A(a1, a2), B(a1, a2 ± α), C(c1, a2 ±α∓ β)

}
exist. There are

1-1 correspondences between the explicit forms of C of four types.
Worthy of future research is when the counterintuitive analysis is extended to other types of

similarity measures. In particular, the analysis can be extended to the similarity measures based
on the transformation techniques or based on the centroid points of transformation techniques.
Thus, the counterintuitive analyses of the transformation techniques based or centroid points based
similarity measures is a subject of considerable ongoing research.
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